JPS6225359B2 - - Google Patents

Info

Publication number
JPS6225359B2
JPS6225359B2 JP53081954A JP8195478A JPS6225359B2 JP S6225359 B2 JPS6225359 B2 JP S6225359B2 JP 53081954 A JP53081954 A JP 53081954A JP 8195478 A JP8195478 A JP 8195478A JP S6225359 B2 JPS6225359 B2 JP S6225359B2
Authority
JP
Japan
Prior art keywords
phenylglycine
hydroxy
hydroxymethyl
aminoacylase
acetyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53081954A
Other languages
Japanese (ja)
Other versions
JPS559738A (en
Inventor
Hamao Umezawa
Hajime Morishima
Ryosuke Ushijima
Junji Yoshizawa
Hideo Takeda
Ikuo Iwatsuki
Ikuo Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MSD KK
Original Assignee
Banyu Phamaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Banyu Phamaceutical Co Ltd filed Critical Banyu Phamaceutical Co Ltd
Priority to JP8195478A priority Critical patent/JPS559738A/en
Publication of JPS559738A publication Critical patent/JPS559738A/en
Publication of JPS6225359B2 publication Critical patent/JPS6225359B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は光学活性3−ヒドロキシ−4−(ヒド
ロキシメチル)フエニルグリシンの製造法に関す
るものである。さらに詳しくは、Nアセチル−も
しくはN−ベンゾイル−3−ヒドロキシ−4−
(ヒドロキシメチル)−DL−フエニルグリシンに
微生物起原のアミノアシラーゼを作用させて、3
−ヒドロキシ−4−(ヒドロキシメチル)−L−フ
エニルグリシンおよびN−アセチル−もしくはN
−ベンゾイル−3−ヒドロキシ−4−(ヒドロキ
シメチル)−D−フエニルグリシンに不斉加水分
解し、両者を分離採取することからなる光学活性
3−ヒドロキシ−4−(ヒドロキシメチル)フエ
ニルグリシンの製造法に関するものである。 本発明の出発物質であるN−アセチル−もしく
はN−ベンゾイル−3−ヒドロキシ−4−(ヒド
ロキシメチル)−DL−フエニルグリシンは、たと
えば、N−アセチル−もしくはN−ベンゾイル−
3−ヒドロキシ−DL−フエニルグリシンに塩基
の存在下にホルムアルデヒドを作用させることに
よつて容易に製造することができる。 これらのN−アシルアミノ酸の不斉加水分解は
糸状菌アミノアシラーゼもしくはアゾトバクター
属菌株の産生するアシラーゼなどの微生物起原の
アミノアシラーゼによつて容易に行なわれる。糸
状菌アミノアシラーゼはたとえばアスペルギルス
属あるいはペニシリウム属などの糸状菌の培養物
からその産生するアミノアシラーゼを採取して得
られ、市販品として入手することができる。また
アミノアシラーゼを産生するアゾトバクター属菌
体としてはたとえばNo.1736をあげることができ
る。 その菌学的性状は特公昭45−8634に記載されて
いる。 微生物起原のアミノアシラーゼによる不斉加水
分解反応は、たとえばPH6−8、温度約35−40℃
で行なわれ、反応の進行状況はたとえば高速液体
クロマトグラフイーによつて反応液中のN−アシ
ルアミノ酸と遊離アミノ酸の比率を追跡すること
によつて知ることができる。 不斉加水分解反応液から3−ヒドロキシ−4−
(ヒドロキシメチル)−L−フエニルグリシンおよ
びN−アセチル−もしくはN−ベンゾイル−3−
ヒドロキシ−4−(ヒドロキシメチル)−D−フエ
ニルグリシンを分離採取するためには、たとえば
強酸性イオン交換樹脂によつて遊離アミノ酸のみ
を吸着させる方法が有利である。吸着した遊離ア
ミノ酸はアンモニア水によつて溶出され、この溶
出液を減圧濃縮すれば遊離のL−アミノ酸が析出
する。またイオン交換樹脂塔の通過液からN−ア
シル−D−アミノ酸が回収される。 3−ヒドロキシ−4−(ヒドロキシメチル)−L
−フエニルグリシンはたとえば免疫賦活剤として
有用である。その製法としては、従来、ストレプ
トミセス属菌株の生産する4−ホルミル−3−ヒ
ドロキシ−L−フエニルグリシンを還元する方法
が知られているが、本発明の方法によつて、化学
的合成ルートによるDL−型の中間体を光学分割
することができるようになつたものである。 以下に実施例をあげて本発明を具体的に説明す
る。 実施例 1 N−アセチル−3−ヒドロキシ−4−(ヒドロ
キシメチル)−DL−フエニルグリシン3.0gを
0.5N水酸化ナトリウムに溶解する。PH7.5に調整
したのち全液量を60mlとし、これに塩化コバルト
6水塩8mgおよび糸状菌アミノアシラーゼ(天野
製薬製アシラーゼアマノ、約15000単位/g)100
mgを加えて、37℃で48時間不斉加水分解反応を行
なう。 反応液を炭末脱色し、強酸性イオン交換樹脂ダ
ウエツクス50W−X4(H+)30mlを充填した塔に
通液して、不斉加水分解によつて生成したアミノ
酸を吸着させる。通過液を約50mlまで減圧濃縮し
て、ダイヤイオンHP−20のカラムで分画する
と、N−アセチル−3−ヒドロキシ−4−(ヒド
ロキシメチル)−D−フエニルグリシン1.5gが得
られる。水から再結晶して精製することができ
る。 m.p.172℃(分解)。〔α〕20 −206゜(1.0、
EtOH)。 IR(KBr)νmax(cm-1):3440、3365、3215、
2905、1715、1610、1580、1530、1430、1370、
1340、1295、1250、1220、1155、1110、1025、
960、910、865、820、730、 またアミノ酸を吸着した樹脂塔を水洗後、N
NH4OH250mlにて溶出し、溶出液を減圧濃縮して
3−ヒドロキシ−4−(ヒドロキシメチル)−L−
フエニルグリシン1.09gが得られた。m.p.223℃
(分解)。〔α〕20 131゜(1.0、N HCl)。 C9H11NO4としての元素分析値(%) C H N 計算値 54.82 5.62 7.10 実験値 54.69 5.69 7.06 実施例 2 N−アセチル−3−ヒドロキシ−4−(ヒドロ
キシメチル)−DL−フエニルグリシン200gを
0.5N水酸化ナトリウムに溶解してPH7.5に調整
し、全液量を4Lとしたのち、糸状菌アミノアシ
ラーゼ(天野製薬製アシラーゼアマノ、約15000
単位/g)5gおよび塩化コバルト0.4gを加え
て、37℃で24時間不斉加水分解反応を行なう。 反応液を炭末脱色し、強酸性イオン交換樹脂ダ
ウエツクス50W−X4(H+)1.33Lを充填した塔に
通液して、不斉加水分解によつて生成したアミノ
酸を吸着させる。このカラムを水洗後、N
NH4OHで溶出し、溶出液3.5Lを集めて減圧濃縮
すると、3−ヒドロキシ−4−(ヒドロキシメチ
ル)−L−フエニルグリシン76.3g(収率92.5
%)が得られる。さらに精製するために、この製
品158gをアンモニア水溶液に溶解して炭末脱色
し、約800mlまで減圧濃縮して一夜冷却し、析出
晶を冷水およびエタノールで洗浄して乾燥する。
収量146g。〔α〕24 130゜(1.0、N HCl)。 また樹脂塔通過液6Lを約300mlまで減圧濃縮し
て冷却すると、N−アセチル−3−ヒドロキシ−
4−(ヒドロキシメチル)−D−フエニルグリシン
が析出する。収量95.2g。〔α〕24 −193゜(
1.0、EtOH)。 実施例 3 N−ベンゾイル−3−ヒドロキシ−4−(ヒド
ロキシメチル)−DL−フエニルグリシン16.5gを
水酸化ナトリウム水溶液に溶解してPH8.0に調整
したのち全液量を800mlとし、これにアゾトバク
ター属菌株No.1736のアセトン乾燥菌体1.6gを加
えて、34−36℃で24時間不斉加水分解反応を行な
う。 反応液を塩酸でPH2.0に調整してメチルイソ
ブチルケトンで抽出後、水層をアンバーライト
IR120を充填した塔に通液してアミノ酸を吸着
し、ついで3N NH4OHで溶出する。溶出液を減
圧濃縮して析出する結晶を75%含水エタノールで
洗浄して、3−ヒドロキシ−4−(ヒドロキシメ
チル)−L−フエニルグリシンが得られた。収量
2.68g。〔α〕24 130゜(1.0、N HCl)。 また、メチルイソブチルケトン抽出液をPH8.0
にて水で再抽出し、水層をPH2.0に調整してから
ベンゼンで抽出して副生安息香酸を除去する。さ
らに酢酸エチルで抽出し、抽出液を減圧濃縮する
とN−ベンゾイル−3−ヒドロキシ−4−(ヒド
ロキシメチル)−D−フエニルグリシンが析出す
る。収量8.2g。 〔α〕24 −72゜(1、EtOH)。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing optically active 3-hydroxy-4-(hydroxymethyl)phenylglycine. More specifically, N-acetyl- or N-benzoyl-3-hydroxy-4-
(Hydroxymethyl)-DL-phenylglycine is treated with aminoacylase of microbial origin, and 3
-Hydroxy-4-(hydroxymethyl)-L-phenylglycine and N-acetyl- or N
-Asymmetric hydrolysis to benzoyl-3-hydroxy-4-(hydroxymethyl)-D-phenylglycine and separation and collection of both. It concerns the manufacturing method. The starting material according to the invention, N-acetyl- or N-benzoyl-3-hydroxy-4-(hydroxymethyl)-DL-phenylglycine, is, for example, N-acetyl- or N-benzoyl-3-hydroxy-4-(hydroxymethyl)-DL-phenylglycine.
It can be easily produced by reacting formaldehyde with 3-hydroxy-DL-phenylglycine in the presence of a base. Asymmetric hydrolysis of these N-acyl amino acids is easily carried out by aminoacylases of microbial origin, such as filamentous fungal aminoacylases or acylases produced by Azotobacter strains. Filamentous fungal aminoacylase is obtained by collecting the aminoacylase produced by a culture of filamentous fungi such as Aspergillus or Penicillium, and can be obtained as a commercial product. An example of an Azotobacter cell that produces aminoacylase is No. 1736. Its mycological properties are described in Japanese Patent Publication No. 45-8634. The asymmetric hydrolysis reaction by aminoacylase of microbial origin is performed at a pH of 6-8 and a temperature of approximately 35-40°C.
The progress of the reaction can be determined by monitoring the ratio of N-acyl amino acids to free amino acids in the reaction solution using, for example, high performance liquid chromatography. 3-hydroxy-4- from the asymmetric hydrolysis reaction solution
(Hydroxymethyl)-L-phenylglycine and N-acetyl- or N-benzoyl-3-
In order to separate and collect hydroxy-4-(hydroxymethyl)-D-phenylglycine, it is advantageous to adsorb only free amino acids using, for example, a strongly acidic ion exchange resin. The adsorbed free amino acids are eluted with aqueous ammonia, and when this eluate is concentrated under reduced pressure, free L-amino acids are precipitated. Further, N-acyl-D-amino acids are recovered from the liquid passing through the ion exchange resin tower. 3-hydroxy-4-(hydroxymethyl)-L
- Phenylglycine is useful, for example, as an immunostimulant. Conventionally, the production method is known to reduce 4-formyl-3-hydroxy-L-phenylglycine produced by Streptomyces strains, but the method of the present invention allows for chemical synthesis route. It has now become possible to optically resolve DL-type intermediates. The present invention will be specifically explained below with reference to Examples. Example 1 3.0 g of N-acetyl-3-hydroxy-4-(hydroxymethyl)-DL-phenylglycine
Dissolve in 0.5N sodium hydroxide. After adjusting the pH to 7.5, the total volume of the liquid was reduced to 60 ml, and to this was added 8 mg of cobalt chloride hexahydrate and 100 mg of filamentous fungal aminoacylase (Acylase Amano manufactured by Amano Pharmaceutical Co., Ltd., approximately 15,000 units/g).
mg was added, and the asymmetric hydrolysis reaction was carried out at 37°C for 48 hours. The reaction solution is decolorized with charcoal powder and passed through a tower filled with 30 ml of strongly acidic ion exchange resin Dowex 50W-X4 (H + ) to adsorb the amino acids produced by asymmetric hydrolysis. The permeate was concentrated under reduced pressure to about 50 ml and fractionated using a Diaion HP-20 column to obtain 1.5 g of N-acetyl-3-hydroxy-4-(hydroxymethyl)-D-phenylglycine. It can be purified by recrystallization from water. mp172℃ (decomposed). [α] 20 D -206° ( c 1.0,
EtOH). IR (KBr) νmax (cm -1 ): 3440, 3365, 3215,
2905, 1715, 1610, 1580, 1530, 1430, 1370,
1340, 1295, 1250, 1220, 1155, 1110, 1025,
960, 910, 865, 820, 730, and after washing the resin tower that adsorbed amino acids with water,
Elute with 250 ml of NH 4 OH and concentrate the eluate under reduced pressure to obtain 3-hydroxy-4-(hydroxymethyl)-L-
1.09 g of phenylglycine was obtained. mp223℃
(Disassembly). [α] 20 D 131° ( c 1.0, N HCl). Elemental analysis value (%) as C 9 H 11 NO 4 C H N Calculated value 54.82 5.62 7.10 Experimental value 54.69 5.69 7.06 Example 2 N-acetyl-3-hydroxy-4-(hydroxymethyl)-DL-phenylglycine 200g
After dissolving in 0.5N sodium hydroxide and adjusting the pH to 7.5 to bring the total volume to 4L, add filamentous fungal aminoacylase (Acylase Amano manufactured by Amano Pharmaceutical Co., Ltd., approximately 15,000
Units/g) 5g and cobalt chloride 0.4g are added, and the asymmetric hydrolysis reaction is carried out at 37°C for 24 hours. The reaction solution is decolorized with charcoal powder and passed through a tower packed with 1.33 L of strongly acidic ion exchange resin Dowex 50W-X4 (H + ) to adsorb the amino acids produced by asymmetric hydrolysis. After washing this column with water, N
Elution was performed with NH 4 OH, and 3.5 L of the eluate was collected and concentrated under reduced pressure to yield 76.3 g of 3-hydroxy-4-(hydroxymethyl)-L-phenylglycine (yield: 92.5
%) is obtained. For further purification, 158 g of this product is dissolved in an ammonia aqueous solution to decolorize the charcoal powder, concentrated under reduced pressure to about 800 ml, cooled overnight, and the precipitated crystals are washed with cold water and ethanol and dried.
Yield: 146g. [α] 24 D 130° ( c 1.0, N HCl). In addition, when 6L of the liquid passed through the resin tower was concentrated under reduced pressure to about 300ml and cooled, N-acetyl-3-hydroxy-
4-(Hydroxymethyl)-D-phenylglycine is precipitated. Yield: 95.2g. [α] 24 D -193゜( c
1.0, EtOH). Example 3 16.5 g of N-benzoyl-3-hydroxy-4-(hydroxymethyl)-DL-phenylglycine was dissolved in an aqueous sodium hydroxide solution and the pH was adjusted to 8.0, and the total liquid volume was adjusted to 800 ml. Add 1.6 g of acetone-dried bacterial cells of Azotobacter strain No. 1736, and carry out an asymmetric hydrolysis reaction at 34-36°C for 24 hours. After adjusting the reaction solution to PH2.0 with hydrochloric acid and extracting with methyl isobutyl ketone, the aqueous layer was extracted with Amberlite.
The solution is passed through a column packed with IR120 to adsorb amino acids, and then eluted with 3N NH 4 OH. The eluate was concentrated under reduced pressure and the precipitated crystals were washed with 75% aqueous ethanol to obtain 3-hydroxy-4-(hydroxymethyl)-L-phenylglycine. yield
2.68g. [α] 24 D 130° ( c 1.0, N HCl). In addition, methyl isobutyl ketone extract has a pH of 8.0.
Re-extract with water, adjust the aqueous layer to pH 2.0, and then extract with benzene to remove by-product benzoic acid. Further extraction is performed with ethyl acetate, and the extract is concentrated under reduced pressure to precipitate N-benzoyl-3-hydroxy-4-(hydroxymethyl)-D-phenylglycine. Yield: 8.2g. [α] 24 D −72° ( c 1, EtOH).

Claims (1)

【特許請求の範囲】 1 式 (式中Rはアセチル基もしくはベンゾイル基を示
す)で表わされるN−アシル−3−ヒドロキシ−
4−(ヒドロキシメチル)−DL−フエニルグリシ
ンに微生物起原のアミノアシラーゼを作用させて
不斉加水分解して該加水分解液から3−ヒドロキ
シ−4−(ヒドロキシメチル)−L−フエニルグリ
シンおよびN−アセチル−もしくはN−ベンゾイ
ル−3−ヒドロキシ−4−(ヒドロキシメチル)−
D−フエニルグリシンを分離採取することを特徴
とする光学活性3−ヒドロキシ−4−(ヒドロキ
シメチル)フエニルグリシンの製造法。 2 微生物起原のアミノアシラーゼが糸状菌アミ
ノアシラーゼである特許請求の範囲第1項記載の
製造法。 3 微生物起原のアミノアシラーゼがアゾトバク
ター属菌株の生産するアミノアシラーゼである特
許請求の範囲第1項記載の製造法。
[Claims] 1 formula N-acyl-3-hydroxy- (wherein R represents an acetyl group or a benzoyl group)
4-(Hydroxymethyl)-DL-phenylglycine is asymmetrically hydrolyzed by the action of aminoacylase of microbial origin, and 3-hydroxy-4-(hydroxymethyl)-L-phenylglycine is produced from the hydrolysis solution. and N-acetyl- or N-benzoyl-3-hydroxy-4-(hydroxymethyl)-
A method for producing optically active 3-hydroxy-4-(hydroxymethyl)phenylglycine, which comprises separating and collecting D-phenylglycine. 2. The production method according to claim 1, wherein the aminoacylase of microbial origin is a filamentous fungal aminoacylase. 3. The production method according to claim 1, wherein the aminoacylase of microbial origin is an aminoacylase produced by a strain of the Azotobacter genus.
JP8195478A 1978-07-07 1978-07-07 Production of optically active 3-hydroxy-4- (hydroxymethyl)phenylglycine Granted JPS559738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8195478A JPS559738A (en) 1978-07-07 1978-07-07 Production of optically active 3-hydroxy-4- (hydroxymethyl)phenylglycine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8195478A JPS559738A (en) 1978-07-07 1978-07-07 Production of optically active 3-hydroxy-4- (hydroxymethyl)phenylglycine

Publications (2)

Publication Number Publication Date
JPS559738A JPS559738A (en) 1980-01-23
JPS6225359B2 true JPS6225359B2 (en) 1987-06-02

Family

ID=13760885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8195478A Granted JPS559738A (en) 1978-07-07 1978-07-07 Production of optically active 3-hydroxy-4- (hydroxymethyl)phenylglycine

Country Status (1)

Country Link
JP (1) JPS559738A (en)

Also Published As

Publication number Publication date
JPS559738A (en) 1980-01-23

Similar Documents

Publication Publication Date Title
JPS6098995A (en) Production of optically active 3-(3,4-dihydroxyphenyl) serine and its derivative
KR102076532B1 (en) A method for the preparation of 2-keto carboxylic acid
HU202282B (en) Process for separating 2-keto-l-gulonic acid from fermentation juice
JPS6225359B2 (en)
JP2001258583A (en) Method for purifying shikimic acid
JP4361641B2 (en) Separation and recovery method of optically active amino acid and optically active amino acid amide
US5801241A (en) Cyclohexanone extraction of 3-hydroxymethylcephalosporins
US4740615A (en) Process for purified amino acids
JPS6338B2 (en)
US9802934B2 (en) Process for the synthesis of (R)-praziquantel
US4868285A (en) Antibiotic production
EP0357029B1 (en) Method for the production of (-) 2-difluoromethyl-ornithine
JPH034532B2 (en)
JPS62293A (en) Production of l-rhamnose
JP2001011013A (en) Purification of shikimic acid
CN110257457B (en) Method for recovering kanamycin A from amikacin treatment liquid by enzymolysis method
CN101289417A (en) Process for preparing D-3-thioacetyl-2-methylpropionyl-L-proline
JP3117790B2 (en) Method for producing L-α-aminoadipic acid
JP3078599B2 (en) Method for producing L-3,4-dihydroxyphenylserine derivative
JP2892038B2 (en) Preparation of phenylpropionic acid derivatives
US5217886A (en) Method for the production of (-)-4-difluoromethyl-ornithine
JPS6213000B2 (en)
JPH09322797A (en) Production of alpha-hydroxy carboxylic acid
US3154537A (en) Neomycin purification
JP2783823B2 (en) Preparation of cyclohexanecarboxylic acid derivatives