JPS6225258A - Electromagnetic ultrasonic transducer - Google Patents

Electromagnetic ultrasonic transducer

Info

Publication number
JPS6225258A
JPS6225258A JP60165336A JP16533685A JPS6225258A JP S6225258 A JPS6225258 A JP S6225258A JP 60165336 A JP60165336 A JP 60165336A JP 16533685 A JP16533685 A JP 16533685A JP S6225258 A JPS6225258 A JP S6225258A
Authority
JP
Japan
Prior art keywords
generation
detection
coil
detection coil
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60165336A
Other languages
Japanese (ja)
Inventor
Satoru Inoue
悟 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60165336A priority Critical patent/JPS6225258A/en
Publication of JPS6225258A publication Critical patent/JPS6225258A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To maximize the efficiency of generation and detection of ultrasonic waves by providing separately connecting terminals to the generation/detection coil connected to each of a pulser and a receiver, and making an impedance matching between them. CONSTITUTION:A generation/detection coil 17 consists of a generation coil 17a-b across terminals a-b and a detection coil 17a-c across terminals a-c. The generation/detection coil 17 can be set at a maximum generation/detection efficiency of ultrasonic waves by making an impedance matching separately between the generation coil 17a-b and a pulser 5, and between the detection coil 17a-c and a receiver 11.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、例えば超音波探傷装置に用いられるtm超
音波トランスジューサの発生・検出効率の向上改善に関
するものである。 〔従来の技術〕 第4図は従来の電磁超音波トランスジューサを用いた電
磁超音波送受信′回路を示す構成図である。 図において、1は高圧電源、2は充電抵抗、3は充放電
コンデンサ、4は高電圧スイッチ、5は高圧電源1.充
電抵抗2.充放電コンデンサ3及び高電圧スイッチ4よ
りなるパルサ、6は11L磁超音波を励振すると共に検
出する発生・検出コイル、7は抵抗、8は低周波信号を
除去するコンデンサ、9は高電圧信号をクリップするダ
イオード、10は増11@23.11は抵抗7.コンデ
ンサ8.ダイオード9及び増幅器10よりなるレシーバ
である。 第5図は、第4図の′It磁超磁波音波送受信回路ける
横波モードの1jL磁超音波の発生・検出原理を示す図
である。図において、12は超音波が伝搬する金属から
なる媒質、13 、15は媒質12の表面に垂直の靜磁
界Boを与える磁石、14は発生コイル6aと磁石13
よりなる送信用電磁超音波トランスジューサ、16は検
出フィル6aとd石15よりなる受信用電磁超音波トラ
ンスジューサである。また、5はパルサ、11はレシー
バである。 第6図は、第4図の電磁超音波送受信回路におけるパル
サの等両回路と発生コイルを流れる電流波形を示す図で
ある。 第7図は、第4図の電磁超音波送受信回路における発生
コイルの発生能、検出コイルの検出能及び発生・検出コ
イルの発生・検出能を、各コイルの巻数を変えた時の特
性曲線を示す図である。 次に、上記第4図に示す従来の電磁超音波送受信回路に
おける電磁超音波の発生・検出原理について説明する。 磁石13によって媒質12の表面に垂直な靜磁界B0を
与えた後に、パルサ5から発生コイル6aに第6図(b
lに示す交流パルス電流iを通電すると、発生コイル6
aの直下の媒質12の表層に渦電流Jtが誘起される。 すると、上記渦電流Jtと靜磁界B0との相互作用によ
ってローレンスフォースFが発生する。第5図に示すロ
ーレンスフォースFの方向は瞬時の振動方向であり、実
際は、発生コイル6aを流れる電流の周波数に同期した
振動、すなわち超音波となって第5図に矢印U(>)で
示す方向に伝搬する。さて、超音波の検出は、発生の逆
作用である。まず、超音波の発生の場合と同時に、磁石
15によって靜磁界B。 を与えておく。しかる後に、超音波が伝搬して来ると、
靜磁界Boの磁場中の媒質12の表面が振動するため、
その表面に渦1流Jrが誘起される。 この渦′1流Jrを検出コイル6bでピックアップする
こと(こよって超音波が検出できる。上記検出信号はレ
シーバ11で増幅される。 以上の電磁超音波の発生・検出原理によるvLm超音波
送受信回路の動作について説明する。以下の動作説明に
3いて、電磁超音波の発生・検出に必要なf#磁界Bo
はすでに与えられているものとして、その動作の説明は
省略する。まず、パルサ5に3いて、充放電コンデンサ
3は充電抵抗2を介し^圧篭源11こよって′1荷が光
電される。しかる後に、高゛ζ圧スイッチ4を閉成し、
充放′1コンデンサ3に充電された電荷を放電し、発生
・検出コイル6(こ超音波動部用の電流を流す。この時
の電流回路は、第6図(a)に示す直列R,−L−C共
振回路(等価回路)を構成する。また、その時の電流波
形を第6図tb+に示す。上記電流波形の周波数
[Industrial Application Field] The present invention relates to improving the generation and detection efficiency of a TM ultrasonic transducer used, for example, in an ultrasonic flaw detection device. [Prior Art] FIG. 4 is a block diagram showing an electromagnetic ultrasonic transmitting/receiving circuit using a conventional electromagnetic ultrasonic transducer. In the figure, 1 is a high-voltage power supply, 2 is a charging resistor, 3 is a charging/discharging capacitor, 4 is a high-voltage switch, and 5 is a high-voltage power supply 1. Charging resistance 2. A pulser consisting of a charging/discharging capacitor 3 and a high voltage switch 4, 6 a generation/detection coil that excites and detects 11L magnetic ultrasonic waves, 7 a resistor, 8 a capacitor for removing low frequency signals, and 9 a high voltage signal Clipping diode, 10 is increase 11 @ 23. 11 is resistor 7. Capacitor 8. This is a receiver consisting of a diode 9 and an amplifier 10. FIG. 5 is a diagram showing the principle of generation and detection of 1jL magnetic ultrasonic waves in transverse wave mode in the 'It magnetic ultramagnetic wave transmitting/receiving circuit of FIG. 4. In the figure, 12 is a medium made of metal through which ultrasonic waves propagate, 13 and 15 are magnets that apply a static magnetic field Bo perpendicular to the surface of the medium 12, and 14 is a generator coil 6a and a magnet 13.
16 is a receiving electromagnetic ultrasonic transducer consisting of a detection filter 6a and a d-stone 15. Further, 5 is a pulser, and 11 is a receiver. FIG. 6 is a diagram showing current waveforms flowing through the pulsar circuit and the generating coil in the electromagnetic ultrasonic transmitting/receiving circuit of FIG. 4. Figure 7 shows the characteristic curves of the generation ability of the generation coil, the detection ability of the detection coil, and the generation/detection ability of the generation/detection coil in the electromagnetic ultrasonic transmitting/receiving circuit shown in Figure 4 when the number of turns of each coil is changed. FIG. Next, the principle of generation and detection of electromagnetic ultrasonic waves in the conventional electromagnetic ultrasonic transmitter/receiver circuit shown in FIG. 4 will be explained. After applying a static magnetic field B0 perpendicular to the surface of the medium 12 by the magnet 13, the pulsar 5 applies the magnetic field B0 to the generating coil 6a in FIG.
When the alternating current pulse current i shown in l is applied, the generating coil 6
An eddy current Jt is induced in the surface layer of the medium 12 directly under a. Then, Lawrence force F is generated by the interaction between the eddy current Jt and the silent magnetic field B0. The direction of the Lawrence force F shown in FIG. 5 is the direction of instantaneous vibration, and in reality, it becomes a vibration synchronized with the frequency of the current flowing through the generating coil 6a, that is, an ultrasonic wave, which is shown by the arrow U (>) in FIG. propagate in the direction. Now, detection of ultrasonic waves is the reverse effect of generation. First, at the same time as the ultrasonic wave is generated, a static magnetic field B is generated by the magnet 15. I will give you. Afterwards, when the ultrasound waves propagate,
Since the surface of the medium 12 in the magnetic field of the quiet magnetic field Bo vibrates,
A vortex 1 flow Jr is induced on the surface. This vortex '1 flow Jr is picked up by the detection coil 6b (thus, the ultrasonic wave can be detected. The above detection signal is amplified by the receiver 11. The vLm ultrasonic transmitting/receiving circuit based on the above electromagnetic ultrasonic generation/detection principle. The operation of the f# magnetic field Bo required for the generation and detection of electromagnetic ultrasonic waves is
As it is assumed that has already been given, the explanation of its operation will be omitted. First, in the pulser 5, the charging/discharging capacitor 3 is photoelectrically charged by the pressure source 11 via the charging resistor 2. After that, close the high ζ pressure switch 4,
Charge/discharge '1 The electric charge charged in the capacitor 3 is discharged, and a current for the ultrasonic moving part flows through the generation/detection coil 6.The current circuit at this time consists of a series R, -L-C resonant circuit (equivalent circuit) is constructed.The current waveform at that time is shown in Figure 6 tb+.The frequency of the above current waveform

【と電
流iは、下記の第(1)式及び第(2)式で示すように
直列R−L−Cの共振回路の方程式で表わされる。 とする。 さい値になるので% Rを無視すると上記第(2)式は
次式のように表わされる。 II】 周波数「は次式のように表わされる。 よって、超音波の周波数は上記第(4)式で、電流は上
記第(3)式でそれぞれ示す直列R−L−C共振回路で
決まる。流れる電流の大きさは、高圧′電源1の電圧E
と充放電コンデンサ3の容量のvlテに比例し、発生コ
イル6aのインダクタンスJIIこ反比例する。また、
この時の電流は、発生・検出コイル6とレシーバ11に
分流されるが、レシーバ11の抵抗7の抵抗値が発生・
検出コイル6の抵抗値に比べて約1000倍と十分に大
きいために、はとんどの電流は発生・検出コイル6に流
入する。 しかし実際には、発生・検出コイル6のb点の電位が上
昇し、レシーバ11の増幅器IOに約100 V程度の
電圧が印加される。ダイオード9は上記の電圧をダイオ
ード9の順方向電圧(約0.6 V )でクリップし、
増幅器10の定格入力電圧以上の過電圧入力に対して保
護している。これをまとめると、増幅器10に対して抵
抗7は電流制限の、ダイオード9は過電圧保護のそれぞ
れの役目をしている。 また、コンデンサ8はノイズ成分となる低周波信号を除
去し、超音波信号帯域となる高周波成分だけを増幅器1
0に入力する。 一方、超音波の検出の際は、高電圧スイッチ4は開放状
態になっているので、検出回路は発生φ検出コイル6と
レシーバ11で構成される。発生・検出コイル6に誘起
される′1圧は約0.1v以下と小信号であるので、ダ
イオード9に関係なく抵抗1、コンデンサ8を介して増
幅器10に入力され、後の装置で信号処理されるレベル
まで増幅される。 この時の超音波信号の出力vRwは次式で表わされる。 ここで、NR:検出コイル6bの巻線密度c本/m)A
R:検出コイル6bの検出に有効な面積(m:) Bo:靜磁界(T) NT二発生コイル6aの巻線密度c本/m)I丁=発生
コイル6aを流れる1流(A)V:音速(m/式) 電磁超音波は、従来の圧電探触子に比べて、発生・検出
効率が約4QdB以上低い。このため、実用化するには
この問題点を除去しなければならない。感度を向上する
には上記第(5)式から判るように、NRe ’R−”
Oe Nア、IT  を大きくすれば良い。しかし、超
音波トランスジューサの性能、すなわち送信周波数2口
径が制限されるので、上記項目中のNRI AH、8丁
をむやみに大きくできないが、コイルの巻数を調整し、
パルサ5及びレシーバ11とのインピーダンスマツチン
グを計ることlこよって、制限付きながらも感度の向上
に寄与できる。その概念を第7図に示す。第7図は発生
コイル6aと検出コイル6bの巻数と発生能、すなわち
効率の関係を示す特性曲線である。最大効率は発生コイ
ル6aと検出コイル6bで異なった巻数となる。第4図
に示すように、発生コイル6aと検出コイル6bを同一
とする発生・検出コイル6においては1両者の特性を合
わせて最大の効率を示す巻数を選択している。しかし、
巻数の選択は、超音波の撮動の口径(音場)、送信周波
数によっても制限され、また、増幅510の入力インピ
ーダンスも検出コイル6bのインピーダンスに合わせる
套装があるので、第7図(al及び(blに○印で示す
ように必ずしも最適値が選択できるとは限らない。 さらに、上記第(5)式中の靜磁界B、を大きくするに
は、各送信用、受信用電磁超音波トランスジューサ14
 、16の形状を大きくすれば良いが1重量。 形状が大きくなり実用的でない。これらのことから、従
来のものではパルサ5に高電圧パルサを用い、上記第(
5)式の電流ITを大電流にすることによって感度の向
上を計っている。しかしこれにも、使用部品の耐電圧特
性、イぎ頓性等を考慮すると限界がある。 〔発明が解決しようとする問題点〕 上記のような従来の電磁超音波トランスジューサを用い
た電磁超音波送受信回路では、発生コイル6aと検出コ
イル6bが共通である発生・検出コイル6による電磁超
音波トランスジューサの感度を向上するために、高圧な
パルサ5を導入し、パルサ5と発生・検出コイル6とレ
シーバ11トのインピーダンスマツチング等を計って最
大感度を得ている。ところが、周波数及び口径が決まっ
た後では、最適な発生・検出効率を得る発生・検出コイ
ル6の巻数、インダクタンスL等の最適条件を選択する
のは非常に困難なことから、バルサ5ト発生・検出コイ
ル6とレシーバ11の間にミスマツチングが生じ、感度
の低下を招くという問題点があった。 この発明は、かかる問題点を解決するためになされたも
ので、超音波の発生・検出効率が最大になるように発生
・検出コイルの巻数が個別1こ選択され、感度をより一
層向上できる電磁超音波トランスジューサを得ることを
目的とする。 〔問題点を解決するための手段〕 この発明に係る電磁超音波トランスジューサは、発生・
検出コイルの各接続端子をパルサとレシーバとで各々別
個fこ設け、それぞれをインピーダンスマツチングする
ようにしたものである。 〔作用〕 この発明の電磁超音波トランスジューサにおいテハ、パ
ルサとレシーバとにそれぞれ接続される発生・検出コイ
ルの接続端子を、各々別個に設けであるので、それぞれ
においてインピーダンスマツチングができ、超音波の発
生拳検出効率が最大となるように設定して、感度のより
一層の向上を計ることができる。 〔実施例〕 、第1図はこの発明の一実施例であるxi超音波トラン
スジューサを用いた電磁超音波送受信回路を示す構成図
で、第4図と同一部分は同一符号を用いて表示してあり
、その詳細な説明は省略する。 図において%17はこの発明による発生・検出コイル、
18は上記第4図に示す従来の増幅器10の入力インピ
ーダンスよりも高い入力インピーダンスを有する増幅器
である。 第2図は、第1図及び第4図のそれぞれにおける発生・
検出コイルの比較を示す外観図である。 第3図は、第1図及び第4図のそれぞれにおける発生・
検出コイルの発生−検出効率の比較を示す特性曲線であ
る。 次ζこ、上記第1図に示すこの発明の一実施例である電
磁超音波トランスジューサを用いた電磁超音波送受信回
路の動作について説明する。第1図に示す発生・検出コ
イル17において、各端子a−b間は発生コイル17 
a −b 、各端子a −c間は検出コイル17 a 
−cをそれぞれ構成している。第1図に示すこの発明の
ta超音波送受信回路では、発生・検出コイル17と増
幅618の入力インピーダンスが異なるだけなので、こ
こでは、特に発生書検出コイル17の動作を中心に説明
する。超音波トランスジューサの音場特性は、送信周波
数と発生・検出コイル17の口径との関係で決まる。こ
こで、上記送信周波数と発生・検出コイル17の口径を
一定とした条件下で、従来例の’を磁波音波トランスジ
ューサ以上の感度を、第1図に示す発生・検出コイル1
7を用いて実現しようとするものである。 第2図に、上記発生・検出コイル17と従来例の発生・
検出コイル6とを比較して示している。両発生・検出コ
イル17,6とも口径はd (IIm)と等しく、この
発明による発生Φ検出コイル17の巻数は、従来例の発
生・検出コイル6の巻数と比較して約2倍以上ある。ま
た、第2図+bj Iこ示すように発生・検出コイル1
7には接続端子が3個(a、b、c)用意されており、
1個の端子は共通のグランド端子で、他の2個の端子は
それぞれパルサ5とレシーバ11にそれぞれ接続する。 発生會検出効率を靜磁界B。と直流′電圧E以外の要素
、すなわち発生・検出コイル17の構成によって同上す
るζこは、上記XG t5)式から判るようtこ2発生
コイル17 a −bは巻線密度NTを、検出コイル1
7 a −cはコイル面積(NR”AR)をそれぞれ増
大すれば良い。従来例では、発生・検出コイル6、パル
サ5及びレシーバ11の王者のインピーダンスマツチン
グが必要であったが、この発明による発′生・検出コイ
ル17では、発生コイル17 a −bとパルサ5、検
出コイル17 a−Cとレシーバ11とを個別(こイン
ピーダンスマツチングを行えば良い。 まず、発生コイル17 a −b側では上記第(5)式
から判るように、発生コイル17a−b’、巻線密度8
丁を増せば良い。しかし、発生コイル17 a −bの
インピーダンスZLが後述する第(6)及び第(7)式
に示すように増大して工Tが小さくなる。よって1巻数
を増加するだけでは超音波の発生の効率は向上しない。 また、周波数【も上記第(4)式から求まるように低く
なる。発生コイル17 a −bのインピーダンスZL
及びインダクタンスLは次式で表わされる。 Lキk 、 d 、 N”         ・・・・
・・・・・(7)ここで、k:定数 d:発生コイル17 a −bの直径 N:発生コイル17 a −bの巻数 よって、充放電コンデンサ3の容JiCを一定とすると
、発生コイル17 a −bの巻数は送信周波数によっ
て決まってしまい、この巻数キインピーダンスの間作か
ら超音波の発生効率を最適(最大)にできる。 一方、検出コイル17 a −c用では上記編(5)式
から判るように、巻線密度8人と検出コイル17 a 
−Cの検出面積A、の積に比例する。すなわち総巻線数
に比例する。よって、検出コイル17 a −cは第2
図(b)に示すように口径augで8を層することによ
って総巻数を増加する。さらに、検出コイル17a −
Cのインピーダンスに等しくなるように増幅器18の入
力インピーダンスを高くし、両者のインピーダンスをマ
ツチングして感度(効率)の向上を計る。第3図fa)
及び(blにこの発明と従来例とのそれぞれの発生・検
出コイルと発生・検出能との特性曲線を示している。図
中の○印のポイントで超音波の発生及び検出を行うこと
ができるので、第3図(a)に示す従来例のものと比べ
て、第3図(blに示すこの発明のものは感度が向上す
る。 なお、上記実施例では、増幅器18の入力インピーダン
スを検出コイル17 a −cのインピーダンスに整合
させて感度を向上する場合について説明したが、発生・
検出コイル17は同一のものを用い、送信周波数を充放
電コンデンサ3の容量を変えることで変化させる場合も
ある。この時、送信周波数にしたがって検出コイル17
 a −cのインピーダンスも変わり、増幅518とミ
スマツチングを生じて感度が低下する。これを避けるた
めlこ、その都度、増幅器18の入力インピーダンスを
調整する。 あるいは、想定される最大の検出コイル17 a −c
のインピーダンスZin(例えば約10OKΩ程度)に
合わせた増幅器18を設置すれば、上記のインピーダン
ス以下の検出コイル17 a −c用の増幅618を用
いても、多少の検出感度は低下するが、増幅器18のイ
ンピーダンスを送信周波数に合わせて調整する手数が省
ける効果がある。 〔発明の効果〕 この発明は以上説明したとおり、 tffl超音波トラ
ンスジューサにおいて、パルサとレシーバとにそれぞれ
接続される発生・検出コイルの接続端子を各々別個に設
け、それぞれにおいてインピーダンスマツチングできる
ように構成したので、超音波の発生・検出効率を最大に
なるように設定でき、極めて高い感度の電磁超音波トラ
ンスジューサが得られるという優れた効果を奏するもの
である。
[ and current i are expressed by equations of a series R-L-C resonant circuit as shown in equations (1) and (2) below. shall be. Since it is a small value, if %R is ignored, the above equation (2) can be expressed as the following equation. II] The frequency is expressed by the following equation. Therefore, the frequency of the ultrasonic wave is determined by the above equation (4), and the current is determined by the series R-L-C resonant circuit shown by the above equation (3). The magnitude of the flowing current is determined by the voltage E of the high voltage power supply 1.
is proportional to the capacitance of the charging/discharging capacitor 3, and is inversely proportional to the inductance JII of the generating coil 6a. Also,
The current at this time is divided into the generation/detection coil 6 and the receiver 11, but the resistance value of the resistor 7 of the receiver 11 is the generation/detection coil 6 and the receiver 11.
Since the resistance value is approximately 1000 times greater than the resistance value of the detection coil 6, most of the current flows into the generation/detection coil 6. However, in reality, the potential at point b of the generation/detection coil 6 increases, and a voltage of about 100 V is applied to the amplifier IO of the receiver 11. Diode 9 clips the above voltage with the forward voltage of diode 9 (approximately 0.6 V),
It protects against overvoltage input exceeding the rated input voltage of the amplifier 10. To summarize, for the amplifier 10, the resistor 7 serves as current limiter, and the diode 9 serves as overvoltage protection. In addition, the capacitor 8 removes low frequency signals that are noise components, and only transmits high frequency components that are in the ultrasonic signal band to the amplifier 1.
Enter 0. On the other hand, when detecting ultrasonic waves, the high voltage switch 4 is in an open state, so the detection circuit is composed of the generation φ detection coil 6 and the receiver 11. Since the '1 voltage induced in the generation/detection coil 6 is a small signal of approximately 0.1 V or less, it is input to the amplifier 10 via the resistor 1 and capacitor 8 regardless of the diode 9, and is processed by a later device. amplified to the level that The output vRw of the ultrasonic signal at this time is expressed by the following equation. Here, NR: Winding density of the detection coil 6b c windings/m) A
R: Effective area for detection of the detection coil 6b (m:) Bo: Silent magnetic field (T) Winding density of the NT two generation coil 6a c windings/m) I = 1 current flowing through the generation coil 6a (A) V :Sound velocity (m/formula) The generation and detection efficiency of electromagnetic ultrasound is approximately 4QdB lower than that of conventional piezoelectric probes. Therefore, this problem must be eliminated in order to put it into practical use. As can be seen from the above equation (5), in order to improve the sensitivity, NRe 'R-''
Oe NA, IT should be increased. However, since the performance of the ultrasonic transducer, that is, the transmission frequency 2 diameters, is limited, it is not possible to unnecessarily increase the number of NRI AH and 8 in the above item, but it is possible to adjust the number of turns of the coil,
By impedance matching between the pulser 5 and the receiver 11, it is possible to contribute to improving the sensitivity, although there are limitations. The concept is shown in FIG. FIG. 7 is a characteristic curve showing the relationship between the number of turns of the generating coil 6a and the detecting coil 6b and the generating capacity, that is, the efficiency. The maximum efficiency is obtained when the number of turns is different between the generation coil 6a and the detection coil 6b. As shown in FIG. 4, in the generating/detecting coil 6 in which the generating coil 6a and the detecting coil 6b are the same, the number of turns that exhibits the maximum efficiency by combining the characteristics of both is selected. but,
The selection of the number of turns is also limited by the ultrasonic imaging aperture (sound field) and transmission frequency, and there is a jacket that matches the input impedance of the amplifier 510 to the impedance of the detection coil 6b. (As indicated by the circle in bl, it is not always possible to select the optimal value. Furthermore, in order to increase the silent magnetic field B in the above equation (5), each transmitting and receiving electromagnetic ultrasonic transducer must be 14
, it would be better if the shape of 16 was made larger, but the weight is 1. The shape becomes large and is not practical. For these reasons, in the conventional system, a high voltage pulser is used as the pulser 5, and the
Sensitivity is improved by increasing the current IT in equation 5) to a large current. However, there are limits to this, considering the voltage resistance characteristics, shock resistance, etc. of the parts used. [Problems to be Solved by the Invention] In the electromagnetic ultrasonic transmitting/receiving circuit using the conventional electromagnetic ultrasonic transducer as described above, the electromagnetic ultrasonic wave is generated by the generation/detection coil 6 in which the generation coil 6a and the detection coil 6b are common. In order to improve the sensitivity of the transducer, a high-voltage pulser 5 is introduced, and impedance matching between the pulser 5, the generation/detection coil 6, and the receiver 11 is performed to obtain maximum sensitivity. However, once the frequency and diameter are determined, it is very difficult to select the optimal conditions such as the number of turns of the generation/detection coil 6 and the inductance L to obtain the optimum generation/detection efficiency. There was a problem in that mismatching occurred between the detection coil 6 and the receiver 11, leading to a decrease in sensitivity. This invention was made to solve this problem, and the number of turns of the generation/detection coil is individually selected to maximize the efficiency of ultrasonic generation/detection. The purpose is to obtain an ultrasonic transducer. [Means for solving the problem] The electromagnetic ultrasonic transducer according to the present invention
Separate connection terminals of the detection coil are provided for the pulser and the receiver, respectively, and impedance matching is performed between them. [Function] In the electromagnetic ultrasonic transducer of the present invention, the connection terminals of the generation and detection coils connected to the pulsar and receiver are provided separately, so impedance matching can be performed for each, and the ultrasonic The sensitivity can be further improved by setting the fist detection efficiency to be maximum. [Embodiment] FIG. 1 is a block diagram showing an electromagnetic ultrasonic transmitting/receiving circuit using a xi ultrasonic transducer according to an embodiment of the present invention, and the same parts as in FIG. 4 are indicated using the same symbols. Yes, the detailed explanation will be omitted. In the figure, %17 is the generation/detection coil according to the present invention;
Reference numeral 18 denotes an amplifier having a higher input impedance than the input impedance of the conventional amplifier 10 shown in FIG. 4 above. Figure 2 shows the occurrence and occurrence of each of Figures 1 and 4.
FIG. 3 is an external view showing a comparison of detection coils. Figure 3 shows the occurrence and occurrence of each of Figures 1 and 4.
It is a characteristic curve showing a comparison of generation-detection efficiency of a detection coil. Next, the operation of the electromagnetic ultrasonic transmitting/receiving circuit using the electromagnetic ultrasonic transducer which is an embodiment of the present invention shown in FIG. 1 will be explained. In the generation/detection coil 17 shown in FIG.
a-b, and a detection coil 17 a between each terminal a-c.
-c respectively. In the TA ultrasonic transmitting/receiving circuit of the present invention shown in FIG. 1, the only difference is the input impedance of the generation/detection coil 17 and the amplification 618, so the operation of the generation/detection coil 17 will be mainly explained here. The sound field characteristics of the ultrasonic transducer are determined by the relationship between the transmission frequency and the diameter of the generation/detection coil 17. Here, under the condition that the above-mentioned transmission frequency and the diameter of the generation/detection coil 17 are constant, the generation/detection coil 1 shown in FIG.
This is what we are trying to achieve using 7. FIG. 2 shows the generation/detection coil 17 and the conventional generation/detection coil 17.
It is shown in comparison with the detection coil 6. The diameter of both generation/detection coils 17, 6 is equal to d (IIm), and the number of turns of the generation/detection coil 17 according to the present invention is about twice or more than the number of turns of the generation/detection coil 6 of the conventional example. Also, as shown in Figure 2 +bj I, the generation/detection coil 1
7 has three connection terminals (a, b, c),
One terminal is a common ground terminal, and the other two terminals are connected to the pulser 5 and receiver 11, respectively. The detection efficiency of the generated magnetic field B. and ζ, which is the same as above depending on elements other than the DC' voltage E, that is, the configuration of the generating/detecting coil 17. As can be seen from the above equation 1
7 a to c, it is sufficient to increase the coil area (NR"AR) respectively. In the conventional example, impedance matching of the generator/detection coil 6, the pulser 5 and the receiver 11 was required, but according to the present invention, In the generation/detection coil 17, the generation coils 17a-b and the pulser 5, and the detection coils 17a-C and the receiver 11 are connected individually (impedance matching can be performed here. First, the generation coils 17a-b side Then, as can be seen from the above equation (5), the generating coils 17a-b', the winding density 8
It is better to increase the number of dings. However, the impedance ZL of the generating coils 17a-b increases as shown in equations (6) and (7), which will be described later, and the torque T becomes smaller. Therefore, simply increasing the number of turns per turn does not improve the efficiency of generating ultrasonic waves. In addition, the frequency [ is also lowered as determined from the above equation (4). Impedance ZL of generating coil 17a-b
and inductance L are expressed by the following equation. Lkik, d, N”...
(7) Here, k: Constant d: Diameter of generating coil 17 a - b N: Number of turns of generating coil 17 a - b If the capacity JiC of the charging/discharging capacitor 3 is constant, the generating coil The number of turns of 17a-b is determined by the transmission frequency, and the efficiency of ultrasonic wave generation can be optimized (maximized) by intercropping the impedance of the turns. On the other hand, for the detection coils 17 a - c, as can be seen from the above equation (5), the winding density is 8 people and the detection coil 17 a
-C is proportional to the product of the detection area A. In other words, it is proportional to the total number of windings. Therefore, the detection coils 17a-c are
As shown in Figure (b), the total number of turns is increased by layering 8 with a diameter aug. Furthermore, detection coil 17a -
The input impedance of the amplifier 18 is made high so as to be equal to the impedance of C, and the two impedances are matched to improve sensitivity (efficiency). Figure 3 fa)
and (bl) shows the characteristic curves of the generation/detection coils and generation/detection capabilities of this invention and the conventional example.Ultrasonic waves can be generated and detected at the points marked with ○ in the figure. Therefore, compared to the conventional example shown in FIG. 3(a), the sensitivity of the invention shown in FIG. 3(bl) is improved. In the above embodiment, the input impedance of the amplifier 18 is 17 We have explained the case where the sensitivity is improved by matching the impedance of a to c, but the generation and
The same detection coil 17 may be used, and the transmission frequency may be changed by changing the capacity of the charging/discharging capacitor 3. At this time, the detection coil 17
The impedance of a-c also changes, causing mismatching with the amplification 518 and reducing sensitivity. To avoid this, the input impedance of the amplifier 18 is adjusted each time. Alternatively, the assumed maximum detection coils 17 a - c
If the amplifier 18 is installed to match the impedance Zin (for example, about 10 OKΩ), even if the amplifier 618 for the detection coils 17 a - c whose impedance is less than the above impedance is used, the detection sensitivity will decrease to some extent, but the amplifier 18 This has the effect of saving the trouble of adjusting the impedance of the transmitter according to the transmission frequency. [Effects of the Invention] As explained above, the present invention is configured such that in a TFFL ultrasonic transducer, the connection terminals of the generation and detection coils connected to the pulser and the receiver are provided separately, and impedance matching can be performed in each. Therefore, the ultrasonic generation/detection efficiency can be set to be maximum, and an electromagnetic ultrasonic transducer with extremely high sensitivity can be obtained, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例である電磁超音波トランス
ジューサを用いた′を磁波音波送受信回路を示す構成図
、第2図は、第1図及び第4図のそれぞれlこおける発
生・検出コイルの比較を示す外観図、第3図は、第1図
及び第4図のそれぞれにおける発生争検出コイルの発生
・検出効率の比較を示す特性曲線、第4図は従来のti
超音波トランスジューサを用いた電磁超音波送受信回路
を示す構成図、第5図は、第4図の電磁超音波送受信回
路における横波モードの電磁超音波の発生書検出原理を
示す図、第6図は、第4図の電磁超音波送受信回路にお
けるパルサの等価回路と発生コイルを流れる電流波形を
示す図。第7図は、第4図の電磁超音波送受信回路にお
ける発生コイルの発生能、検出コイルの検出能及び発生
・検出コイルの発生・検出能を、各コイルの巻数を変え
た時の特性曲線を示す図である。 図ζこおいて、1・・・高圧電源、2・・・充電抵抗、
3・・・充放電コンデンサ、4・・高電圧スイッチ、5
・・・パルサ、7・・・抵抗、8・・・コンデンサ、9
・・・ダイオード、11・・・レシーバ、17・・・発
生・検出コイル、17 a −b・・・発生コイル、1
7a−c・・・検出コイル、18・・・増幅器である。 なお、各図中、同一符号は同一、又は相当部分を示す。
Fig. 1 is a block diagram showing a magnetic wave transceiver circuit using an electromagnetic ultrasonic transducer according to an embodiment of the present invention, and Fig. 2 shows generation and detection in each of Figs. 1 and 4. 3 is an external view showing a comparison of the coils; FIG. 3 is a characteristic curve showing a comparison of the generation and detection efficiency of the conflict detection coils in FIGS. 1 and 4; FIG. 4 is a conventional TI
FIG. 5 is a block diagram showing an electromagnetic ultrasonic transmitting/receiving circuit using an ultrasonic transducer. FIG. , is a diagram showing an equivalent circuit of a pulsar in the electromagnetic ultrasonic transmitting/receiving circuit of FIG. 4 and a current waveform flowing through a generating coil. Figure 7 shows the characteristic curves of the generation ability of the generation coil, the detection ability of the detection coil, and the generation/detection ability of the generation/detection coil in the electromagnetic ultrasonic transmitting/receiving circuit shown in Figure 4 when the number of turns of each coil is changed. FIG. In the figure ζ, 1...high voltage power supply, 2...charging resistor,
3... Charge/discharge capacitor, 4... High voltage switch, 5
... Pulsar, 7... Resistor, 8... Capacitor, 9
...Diode, 11...Receiver, 17...Generation/detection coil, 17 a-b...Generation coil, 1
7a-c...detection coil, 18...amplifier. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 磁石と発生・検出コイルよりなる電磁超音波トランスジ
ューサにおいて、パルサとレシーバとにそれぞれ接続さ
れる前記発生・検出コイルの接続端子を、各々別個に設
ける構成としたことを特徴とする電磁超音波トランスジ
ューサ。
An electromagnetic ultrasonic transducer comprising a magnet and a generating/detecting coil, characterized in that connection terminals of the generating/detecting coils connected to a pulser and a receiver, respectively, are provided separately.
JP60165336A 1985-07-26 1985-07-26 Electromagnetic ultrasonic transducer Pending JPS6225258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60165336A JPS6225258A (en) 1985-07-26 1985-07-26 Electromagnetic ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60165336A JPS6225258A (en) 1985-07-26 1985-07-26 Electromagnetic ultrasonic transducer

Publications (1)

Publication Number Publication Date
JPS6225258A true JPS6225258A (en) 1987-02-03

Family

ID=15810396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60165336A Pending JPS6225258A (en) 1985-07-26 1985-07-26 Electromagnetic ultrasonic transducer

Country Status (1)

Country Link
JP (1) JPS6225258A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236920A (en) * 1995-05-11 2009-10-15 Mts Systems Corp Acoustic transducer
US7737684B2 (en) 1995-05-11 2010-06-15 Mts Systems Corporation Isolated magnetostrictive buffered liquid level sensor
JP2014173939A (en) * 2013-03-07 2014-09-22 Hitachi Power Solutions Co Ltd Ultrasonic flaw detection method and ultrasonic flaw detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236920A (en) * 1995-05-11 2009-10-15 Mts Systems Corp Acoustic transducer
US7737684B2 (en) 1995-05-11 2010-06-15 Mts Systems Corporation Isolated magnetostrictive buffered liquid level sensor
US8044657B2 (en) 1995-05-11 2011-10-25 Mts Systems Corporation Isolated magnetostrictive buffered liquid level sensor
JP2014173939A (en) * 2013-03-07 2014-09-22 Hitachi Power Solutions Co Ltd Ultrasonic flaw detection method and ultrasonic flaw detection device

Similar Documents

Publication Publication Date Title
CA1169359A (en) Step-up circuit for driving full-range-element electrostatic loudspeakers
CN113422198A (en) Magneto-electric mechanical resonant antenna integrated with permanent magnet
JP6041901B2 (en) Ultrasonic transceiver
JPS6225258A (en) Electromagnetic ultrasonic transducer
JPH0831770B2 (en) Frequency discriminator
US5367255A (en) Magnetostrictive position transducer with band passed mode converter output for rejecting mechanical noise
US7728680B2 (en) Method and circuit configuration for transmitting a two-valued signal
US20160103211A1 (en) Ultrasonic transmission and reception device
TW490560B (en) Improved EMAT transmit/receive switch
CN115051731B (en) Direct current power line carrier communication module
US2631271A (en) Tubular hydrophone
JPH07167947A (en) Matching transformer for ultrasonic wave transducer
CA2142430C (en) Remote preamplifier and impedance matching circuit for electromagnetic acoustic transducer
JPH0374560B2 (en)
Poulsen Low loss wideband protection circuit for high frequency ultrasound
Allam et al. Detachable Dry-Coupled Ultrasonic Power Transfer Through Metallic Enclosures
JPS60227163A (en) Electromagnetic ultrasonic transducer for transversal wave using high-frequency magnetic core
JPH04159807A (en) Filter circuit
JPH0119111Y2 (en)
JPH031818Y2 (en)
JPS61181959A (en) Signal detector for ultrasonic apparatus
SU1138114A1 (en) Ultrasonic doppler indicator of blood flow
Meydan et al. Displacement transducers using magnetostrictive delay line principle in amorphous materials
CN211291329U (en) Highway guardrail stand burial depth detection device
JP2514998B2 (en) Signal discriminator