JPH0374560B2 - - Google Patents

Info

Publication number
JPH0374560B2
JPH0374560B2 JP57159901A JP15990182A JPH0374560B2 JP H0374560 B2 JPH0374560 B2 JP H0374560B2 JP 57159901 A JP57159901 A JP 57159901A JP 15990182 A JP15990182 A JP 15990182A JP H0374560 B2 JPH0374560 B2 JP H0374560B2
Authority
JP
Japan
Prior art keywords
ultrasonic transducer
circuit
ultrasonic
coil
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57159901A
Other languages
Japanese (ja)
Other versions
JPS5949098A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15990182A priority Critical patent/JPS5949098A/en
Publication of JPS5949098A publication Critical patent/JPS5949098A/en
Publication of JPH0374560B2 publication Critical patent/JPH0374560B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes

Description

【発明の詳細な説明】 本発明は、圧電セラミツクの圧電型超音波振動
子を送受兼用に用いた超音波回路に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic circuit using a piezoelectric ultrasonic transducer made of piezoelectric ceramic for both transmission and reception.

従来の圧電セラミツクを用いた超音波振動子の
送波回路又は受波回路は、第1図に示すようなも
のが提供されていた。第1図aは送波回路を示す
もので、11は送波用の超音波振動子、3は送波
信号を増巾して超音波振動子11を駆動する送波
増巾回路である。第1図bは受波回路を示し、1
は受波用の超音波振動子、2は超音波振動子12
からの出力を増巾して受波信号を出力する受波増
巾回路である。RLは超音波振動子12に並列に接
続してある負荷抵抗である。ここで、第1図aに
示す送波回路において、第2図に示すようなパル
ス状のトーンパースト波によつて超音波振動子1
を駆動すると、第3図に示すような波形が出力
される。図中t1が正規の超音波の送波区間で、t2
が残響信号が送波される区間である。即ち、超音
波振動子11の残留エネルギーによる減衰振動と
して残響時間が比較的長く発生する。このような
残響の存在する超音波振動子を1個の超音波振動
子で送波及び受波を切替えて動作させる送受兼用
型の回路を第4図に示す。4は送受切替回路で、
超音波の送波と受波とを切替えるものである。第
4図の回路において、超音波振動子1を駆動する
と第5図に示すような超音波が送波される。t1
送波区間、t2が残響信号区間、t3が受波不可能区
間を示す。つまり超音波の送波信号による残響が
存在する間は受波信号を検出することができず、
特に、残響信号区間が比較的長いために、近距離
の物体検知がどきないという問題があつた。
A conventional transmitting circuit or receiving circuit for an ultrasonic transducer using piezoelectric ceramics has been provided as shown in FIG. Figure 1a shows the transmitting circuit, where 11 is an ultrasonic transducer for transmitting waves, and 3 is a transmitting amplification circuit that amplifies the transmitted signal and drives the ultrasonic transducer 11 . be. Figure 1b shows the receiving circuit, 1
2 is an ultrasonic transducer for receiving waves, 2 is an ultrasonic transducer 1 2
This is a receiving wave amplification circuit that amplifies the output from the receiver and outputs a received signal. RL is a load resistance connected in parallel to the ultrasonic transducer 12 . Here, in the wave transmitting circuit shown in FIG. 1a, the ultrasonic transducer 1 is
1 , a waveform as shown in FIG. 3 is output. In the figure, t 1 is the regular ultrasound transmission section, and t 2
is the section in which the reverberant signal is transmitted. That is, a relatively long reverberation time occurs as damped vibration due to the residual energy of the ultrasonic transducer 1 1 . FIG. 4 shows a transmitting/receiving circuit that operates an ultrasonic transducer with such reverberation by switching between transmitting and receiving waves with one ultrasonic transducer. 4 is a transmission/reception switching circuit,
It switches between transmitting and receiving ultrasonic waves. In the circuit shown in FIG. 4, when the ultrasonic transducer 1 is driven, ultrasonic waves as shown in FIG. 5 are transmitted. t 1 indicates a wave transmission section, t 2 indicates a reverberation signal section, and t 3 indicates an unreceivable section. In other words, the received signal cannot be detected while there is reverberation due to the transmitted ultrasound signal.
In particular, since the reverberant signal section is relatively long, there is a problem in that it is difficult to detect objects at short distances.

本発明は上述の点に鑑みて提供したものであつ
て、超音波振動子のパルス駆動時におけるパルス
応答性の向上を図ることを目的とした超音波回路
を提供するものである。
The present invention has been provided in view of the above-mentioned points, and provides an ultrasonic circuit whose purpose is to improve pulse responsiveness during pulse driving of an ultrasonic transducer.

以下本発明の実施例を図面により詳述する。第
6図は基本回路を示すものであり、超音波振動子
1に2個のコイルL1,L2を直列接続した回路を
並列に接続し、他方のデータL2と並列に負荷抵
抗RLを接続している。また負荷抵抗RLの両端に
は送波回路又は受波回路を接続している。コイル
L1,L2のインダクタンスは次式で決定される。
超音波振動子1の共振周波数をf0とする。
Embodiments of the present invention will be described in detail below with reference to the drawings. Figure 6 shows the basic circuit, in which a circuit in which two coils L 1 and L 2 are connected in series to the ultrasonic transducer 1 is connected in parallel, and a load resistance RL is connected in parallel with the other data L 2 . Connected. Further, a wave transmitting circuit or a wave receiving circuit is connected to both ends of the load resistor RL. coil
The inductance of L 1 and L 2 is determined by the following formula.
Let the resonance frequency of the ultrasonic transducer 1 be f 0 .

L10+L20=1/(2πf02Co (H) ただし、L10,L20はコイルL1,L2のインダクタ
ンスとし、Coは超音波振動子1の持つ静電容量
値である。
L 10 +L 20 = 1/(2πf 0 ) 2 Co (H) However, L 10 and L 20 are the inductances of the coils L 1 and L 2 , and Co is the capacitance value of the ultrasonic transducer 1.

つまり、超音波振動子1はある静電容量値Co
を有しており、この静電容量値CoとコイルL1
L2のインダクタンスとによつて並列共振回路を
構成し、その共振周波数を超音波振動子1のもつ
共振周波数foに近似せしめている。この時の超音
波振動子1の両端で見た周波数fに対するインピ
ーダンスZは第7図に示すようになる。尚、超音
波振動子1の共振周波数foを40KHzとした例であ
る。このように、回路インピーダンスを、超音波
振動子1の持つ共振周波数において最小となるよ
うな並列共振回路を構成することによつて、超音
波振動子1のQを低下させて、残響を減衰するこ
とができる。従つて、第8図a,bに示すように
残響時間が、共振回路を構成しない第8図aに示
すt2から、共振回路を構成した第8図bに示す
t2′へ大巾に短縮され、パルス応答の良い送波又
は受波が可能となるものである。
In other words, the ultrasonic transducer 1 has a certain capacitance value Co
This capacitance value Co and the coil L 1 ,
A parallel resonant circuit is formed by the inductance L2 , and its resonant frequency is approximated to the resonant frequency fo of the ultrasonic transducer 1. At this time, the impedance Z relative to the frequency f seen at both ends of the ultrasonic transducer 1 is as shown in FIG. Note that this is an example in which the resonance frequency fo of the ultrasonic transducer 1 is 40 KHz. In this way, by configuring a parallel resonant circuit in which the circuit impedance is minimized at the resonant frequency of the ultrasonic transducer 1, the Q of the ultrasonic transducer 1 is lowered and reverberation is attenuated. be able to. Therefore, as shown in Figure 8 a and b, the reverberation time changes from t 2 shown in Figure 8 a, which does not constitute a resonant circuit, to t 2 , shown in Figure 8 b, which constitutes a resonant circuit.
t 2 ', making it possible to transmit or receive waves with good pulse response.

前記のように、超音波振動子1にコイルL1
L2を並列に接続して並列共振回路を構成するこ
とにより、残響時間は大巾に短くなるものである
が、次のような超音波振動子1の持つ特性によつ
て問題が生じる。つまり、圧電セラミツクを用い
た超音波振動子1の静電容量値Coは周囲の温度
変化によつて大きく変化する。その値は一例で+
0.8(%/℃)となつている。このように、超音波
振動子1の静電容量値Coが温度によつて大きく
変化すると、外付けコイルL1,L2との並列共振
回路の共振周波数が大きく変化して、超音波振動
子1の共振周波数foから大きくずれてしまい、残
響縮小効果がなくなつてしまう。これを防止する
ために、超音波振動子1の静電容量の変化と逆の
温度変化特性を持つコンデンサC1を第9図に示
すように、温度補償用として超音波振動子1に並
列に接続し、総合容量の変化を少なくしてコイル
L1,L2との並列共振回路の共振周波数の温度に
よる変化をなくしたものである。第10図に温度
と各容量との特性を示す。直線Aは超音波振動子
1の温度特性を示し、直線Bが超音波振動子1の
温度特性とは逆特性の温度補償用のコンデンサ
C1の温度特性である。このコンデンサC1の温度
特性は一例として−1.0(%/℃)のものを使用し
ている。従つて両特性から夫々温度変化による容
量が相殺されて全体としてあまり容量変化が生じ
ない。第11図は温度と共振周波数との関係を示
すものであり、実線Cは超音波振動子1の共振周
波数特性を示し、破線DがコンデンサC1を設け
た場合の並列共振回路の共振周波数特性を示して
いて、超音波振動子1の特性とほとんど差がな
く、温度補償がされていることがわかる。これに
対して一点鎖線Eは温度補償のない場合つまりコ
ンデンサC1を接続していない場合の並列共振回
路の共振周波数特性を示している。従つて、コン
デンサC1を設けない場合には、温度変化に対し
て共振回路の共振周波数が大きく変わり、前述し
たように温度補償しない場合には超音波振動子1
の残響縮小効果がなくなる。尚、第12図に示す
ように、第9図に示すコイルL1とコイルL2とを
一体にしてコイルL3を形成し、温度補償コンデ
ンサC1、コイルL3および負荷抵抗RLをすべて並
列接続としても良いものである。このように、並
列共振回路の共振周波数の温度変化による変化を
小さくすることによつて、使用温度内で安定した
パルス応答の良い超音波振動子1の駆動回路が構
成でき、残響時間を安定で小さなものにすること
ができる。
As mentioned above, the ultrasonic transducer 1 has a coil L 1 ,
By connecting L 2 in parallel to form a parallel resonant circuit, the reverberation time can be significantly shortened, but problems arise due to the following characteristics of the ultrasonic transducer 1. In other words, the capacitance value Co of the ultrasonic transducer 1 using piezoelectric ceramic changes greatly depending on changes in the surrounding temperature. The value is +
It is 0.8 (%/℃). In this way, when the capacitance value Co of the ultrasonic transducer 1 changes greatly depending on the temperature, the resonant frequency of the parallel resonant circuit with the external coils L 1 and L 2 changes greatly, and the ultrasonic transducer This results in a large deviation from the resonant frequency fo of 1, and the reverberation reduction effect is lost. In order to prevent this, a capacitor C1 , which has a temperature change characteristic opposite to the capacitance change of the ultrasonic transducer 1, is connected in parallel to the ultrasonic transducer 1 for temperature compensation, as shown in Figure 9. coil to reduce changes in total capacitance.
This eliminates temperature-related changes in the resonant frequency of the parallel resonant circuit with L 1 and L 2 . FIG. 10 shows the characteristics of temperature and each capacity. Straight line A shows the temperature characteristics of the ultrasonic transducer 1, and straight line B shows the temperature compensation capacitor whose characteristics are opposite to those of the ultrasonic transducer 1.
This is the temperature characteristic of C 1 . As an example, the temperature characteristic of this capacitor C1 is -1.0 (%/°C). Therefore, due to both characteristics, the capacitance due to temperature change is canceled out, so that there is not much change in capacitance as a whole. Figure 11 shows the relationship between temperature and resonant frequency, where the solid line C shows the resonant frequency characteristics of the ultrasonic transducer 1, and the broken line D shows the resonant frequency characteristics of the parallel resonant circuit when a capacitor C1 is provided. It can be seen that there is almost no difference in the characteristics from the ultrasonic transducer 1, and that temperature compensation has been performed. On the other hand, a dashed-dotted line E shows the resonant frequency characteristic of the parallel resonant circuit without temperature compensation, that is, when the capacitor C1 is not connected. Therefore, if the capacitor C1 is not provided, the resonant frequency of the resonant circuit will change greatly due to temperature changes, and as mentioned above, if temperature compensation is not provided, the ultrasonic transducer 1
The reverberation reduction effect disappears. As shown in Fig. 12, coil L 1 and coil L 2 shown in Fig. 9 are integrated to form coil L 3 , and temperature compensation capacitor C 1 , coil L 3 and load resistor RL are all connected in parallel. It is also a good connection. In this way, by reducing the change in the resonant frequency of the parallel resonant circuit due to temperature changes, it is possible to configure a drive circuit for the ultrasonic transducer 1 with a stable pulse response within the operating temperature, and to stabilize the reverberation time. It can be made small.

第13図は1個の超音波振動子1を送受兼用と
して使用する場合の実施例を示している。第9図
における構成と同様に、超音波振動子1に温度補
償用コンデンサC1を並列に接続し、両コイルL1
L2の直列回路をコンデンサC1に並例に接続し、
そしてコイルL2の両端に負荷抵抗RLを接続して
いる。この負荷抵抗RLの両端に生じる出力を受
波増巾回路2へ入力している。更に送波増巾回路
3は両コイルL1,L2の接続点から逆並列接続さ
れたダイオードD1,D2を介して接続してある。
尚、この構成は第14図に示すように、第12図
に示す構成にダイオードD1,D2を付加するよう
な構成としても勿論良い。しかして、単一の超音
波振動子1で送受波を兼用させた場合において
は、送波信号は送波増巾回路3において増巾され
てそのピーク値は、数十Vの大信号であるためダ
イオードD1,D2は低インピーダンスとなり、送
波増巾回路3の出力はそのまま超音波振動子1へ
印加されて、超音波振動子1より超音波信号が送
波される。この送波が終了すると、超音波振動子
1に受波出力される超音波変換信号は数mV以下
の小信号であるため、ダイオードD1,D2は高イ
ンピーダンスとなつて送波増巾回路3とは切り離
され、受波増巾回路2へ信号が出力される。この
とき、超音波振動子1の静電容量値Coとコイル
L1,L2との並列共振回路により、送波信号の残
響時間を大巾に短縮していることと、コンデンサ
C1により温度変化による残響時間が大きくなる
ことを防止していることとで、単一の超音波振動
子1によつて送波と受波とを可能にしている。し
たがつて、1個の超音波振動子1を送受兼用型で
使用した場合に、送波後の残響時間が短く、しか
も温度変化に対しても安定しているため、超音波
パルス反射型スイツチにおける近距離検知能力が
大巾に向上するものである。
FIG. 13 shows an embodiment in which one ultrasonic transducer 1 is used for both transmission and reception. Similar to the configuration in FIG. 9, a temperature compensation capacitor C 1 is connected in parallel to the ultrasonic transducer 1, and both coils L 1 ,
Connect the series circuit of L 2 to the capacitor C 1 in parallel,
A load resistor RL is connected to both ends of the coil L2 . The output generated at both ends of this load resistor RL is input to the receiving wave amplification circuit 2. Furthermore, the transmission amplification circuit 3 is connected from the connection point of both coils L 1 and L 2 via diodes D 1 and D 2 connected in antiparallel.
Note that, as shown in FIG. 14, this configuration may of course be a configuration in which diodes D 1 and D 2 are added to the configuration shown in FIG. 12. However, when a single ultrasonic transducer 1 is used for transmitting and receiving waves, the transmitted signal is amplified in the transmitting amplification circuit 3, and its peak value is a large signal of several tens of volts. Therefore, the diodes D 1 and D 2 have low impedance, and the output of the transmission amplification circuit 3 is directly applied to the ultrasonic transducer 1, and the ultrasonic transducer 1 transmits an ultrasonic signal. When this wave transmission is completed, the ultrasonic conversion signal received and output to the ultrasonic transducer 1 is a small signal of several mV or less, so the diodes D 1 and D 2 become high impedance and pass through the transmission amplification circuit. 3, and a signal is output to the received wave amplification circuit 2. At this time, the capacitance value Co of ultrasonic transducer 1 and the coil
The parallel resonant circuit with L 1 and L 2 greatly shortens the reverberation time of the transmitted signal, and the capacitor
Since C 1 prevents the reverberation time from increasing due to temperature changes, it is possible to transmit and receive waves using a single ultrasonic transducer 1. Therefore, when one ultrasonic transducer 1 is used for both transmission and reception, the reverberation time after transmission is short and the ultrasonic pulse reflection type switch is stable against temperature changes. This greatly improves the short-range detection ability of the system.

本発明は上述のように、超音波振動子の持つ静
電容量とで超音波振動子の有する共振周波数に対
する超音波振動子の両端のインピーダンスを小さ
くする並列共振回路を構成するコイルを備えてい
るので、超音波振動子の持つ静電容量とコイルと
で構成される並列共振回路で超音波振動子のQを
小さく抑えて、残響を減衰することができ、この
ため残響時間を短縮できる効果がある。従つて、
この超音波振動子1個で超音波を送受波して物体
を検知する場合に近距離の物体も検知できるよう
になる。
As described above, the present invention includes a coil that forms a parallel resonant circuit that reduces the impedance at both ends of the ultrasonic vibrator with respect to the resonance frequency of the ultrasonic vibrator with the capacitance of the ultrasonic vibrator. Therefore, the Q of the ultrasonic transducer can be suppressed to a small value using a parallel resonant circuit consisting of the capacitance of the ultrasonic transducer and the coil, thereby attenuating the reverberation, which has the effect of shortening the reverberation time. be. Therefore,
When detecting an object by transmitting and receiving ultrasonic waves using one ultrasonic transducer, objects at a short distance can also be detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは従来例の送波回路図、受波回路
図、第2図は同上の超音波振動子駆動波形図、第
3図は同上の動作波形図、第4図は同上の送受兼
用とした回路図、第5図は同上の動作波形図、第
6図は本発明の実施例の基本回路図、第7図は同
上の周波数とインピーダンスとの共振インピーダ
ンス特性図、第8図a,bは同上の動作波形図、
第9図は同上の温度補償型とした回路図、第10
図は同上の温度変化に対する静電容量の特性図、
第11図は同上の温度と共振周波数との特性図、
第12図は同上の第9図における他の実施例の回
路図、第13図は同上の送受兼用型とした回路
図、第14図は同上の第12図に対応する回路図
である。 1は超音波振動子、2は受波増巾回路、3は送
波増巾回路、L1,L2はコイル、D1,D2はダイオ
ード、C1はコンデンサを示す。
Figures 1a and b are the transmitter circuit diagram and receiver circuit diagram of the conventional example, Figure 2 is the ultrasonic transducer driving waveform diagram of the same as above, Figure 3 is the operating waveform diagram of the same as above, and Figure 4 is the same as the above. A circuit diagram for both transmission and reception, Fig. 5 is an operating waveform diagram of the same as above, Fig. 6 is a basic circuit diagram of an embodiment of the present invention, Fig. 7 is a resonance impedance characteristic diagram of frequency and impedance of the same as above, Fig. 8 a, b are the same operating waveform diagrams as above,
Figure 9 is a circuit diagram of the same temperature compensated type as above, Figure 10
The figure is a characteristic diagram of capacitance against temperature change, same as above.
Figure 11 is a characteristic diagram of temperature and resonant frequency same as above,
FIG. 12 is a circuit diagram of another embodiment of FIG. 9, FIG. 13 is a circuit diagram of a transmitting/receiving type, and FIG. 14 is a circuit diagram corresponding to FIG. 12. 1 is an ultrasonic transducer, 2 is a reception amplification circuit, 3 is a transmission amplification circuit, L 1 and L 2 are coils, D 1 and D 2 are diodes, and C 1 is a capacitor.

Claims (1)

【特許請求の範囲】 1 超音波振動子の持つ静電容量とで超音波振動
子の有する共振周波数に対する超音波振動子の両
端のインピーダンスを小さくする並列共振回路を
構成するコイルを備えた超音波回路。 2 超音波振動子の持つ静電容量の温度変化を補
償するコンデンサを備えた特許請求の範囲第1項
記載の超音波回路。 3 超音波振動子の受波出力を増巾する受波増巾
回路を上記コイルを備える超音波振動子に接続す
ると共に、超音波振動子を駆動する送波信号を超
音波振動子に加える送波増巾回路を逆並列接続さ
れたダイオードを介して上記コイルを備える超音
波振動子に接続した特許請求の範囲第1項または
第2項記載の超音波回路。
[Claims of Claims] 1. An ultrasonic wave device comprising a coil constituting a parallel resonant circuit that reduces the impedance at both ends of the ultrasonic vibrator with respect to the resonance frequency of the ultrasonic vibrator with the capacitance of the ultrasonic vibrator. circuit. 2. The ultrasonic circuit according to claim 1, comprising a capacitor that compensates for temperature changes in capacitance of the ultrasonic transducer. 3 A receiving amplification circuit for amplifying the receiving output of the ultrasonic transducer is connected to the ultrasonic transducer equipped with the above-mentioned coil, and a transmitting signal for driving the ultrasonic transducer is applied to the ultrasonic transducer. 3. The ultrasonic circuit according to claim 1, wherein the wave amplification circuit is connected to the ultrasonic transducer including the coil through anti-parallel connected diodes.
JP15990182A 1982-09-14 1982-09-14 Ultrasonic wave circuit Granted JPS5949098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15990182A JPS5949098A (en) 1982-09-14 1982-09-14 Ultrasonic wave circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15990182A JPS5949098A (en) 1982-09-14 1982-09-14 Ultrasonic wave circuit

Publications (2)

Publication Number Publication Date
JPS5949098A JPS5949098A (en) 1984-03-21
JPH0374560B2 true JPH0374560B2 (en) 1991-11-27

Family

ID=15703642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15990182A Granted JPS5949098A (en) 1982-09-14 1982-09-14 Ultrasonic wave circuit

Country Status (1)

Country Link
JP (1) JPS5949098A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152723A (en) * 2007-12-19 2009-07-09 Nippon Ceramic Co Ltd Ultrasonic sensor having built-in variable transformer
JP2012112851A (en) * 2010-11-26 2012-06-14 Toyota Central R&D Labs Inc Ultrasonic inspection device and ultrasonic inspection method
JP2012229990A (en) * 2011-04-26 2012-11-22 Panasonic Corp Ultrasonic sensor
JP6021055B2 (en) * 2012-05-31 2016-11-02 パナソニックIpマネジメント株式会社 Ultrasonic sensor
GB2536723A (en) * 2015-03-27 2016-09-28 Bae Systems Plc Acoustic Transducer
AU2016240008A1 (en) 2015-03-27 2017-10-19 Bae Systems Plc Acoustic transducer
JP6568493B2 (en) * 2016-03-18 2019-08-28 株式会社Soken Object detection device
JP7365705B2 (en) * 2020-03-06 2023-10-20 本多電子株式会社 Transmitter/receiver unit for fish finder and its vibrator drive circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057694A (en) * 1973-09-21 1975-05-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057694A (en) * 1973-09-21 1975-05-20

Also Published As

Publication number Publication date
JPS5949098A (en) 1984-03-21

Similar Documents

Publication Publication Date Title
US8107322B2 (en) Device and method for attenuating an anti-resonant circuit
JPS57161672A (en) Measuring method utilizing ultrasonic wave
US10677902B2 (en) Excitation interval for ultrasonic transducer
JP6041901B2 (en) Ultrasonic transceiver
US4427912A (en) Ultrasound transducer for enhancing signal reception in ultrasound equipment
JPH0374560B2 (en)
JPS6119948B2 (en)
JPH01160535A (en) Ultrasonic diagnostic apparatus
US5569854A (en) Apparatus and method for transmitting and receiving ultrasonic waves having an acoustoelectric, ultrasonic transducer
US5347495A (en) Matching transformer for ultrasonic transducer
JPH08340597A (en) Ultrasonic wave transmitter-receiver
JPH11103496A (en) Ultrasonic sensor
JP3005736B2 (en) Transceiver
JPS62269078A (en) Ultrasonic vibrator
JPH0138541Y2 (en)
JPS61181959A (en) Signal detector for ultrasonic apparatus
JPS61288185A (en) Ultrasonic sensor
JPH0112814Y2 (en)
JPS6398579A (en) Driving of vibrator of ultrasonic sensor
JPH04112597U (en) Ultrasonic transducer
JPH021247A (en) Ultrasonic diagnostic apparatus
JPH0454480A (en) Ultrasonic detector
JPH11153665A (en) Ultrasonic sensor
JP2838812B2 (en) Ultrasonic transducer drive system
JP2527960B2 (en) Reverberation damping device for ultrasonic transducer