JPS62252341A - Sintered glass - Google Patents
Sintered glassInfo
- Publication number
- JPS62252341A JPS62252341A JP9515386A JP9515386A JPS62252341A JP S62252341 A JPS62252341 A JP S62252341A JP 9515386 A JP9515386 A JP 9515386A JP 9515386 A JP9515386 A JP 9515386A JP S62252341 A JPS62252341 A JP S62252341A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- mgo
- weight
- sintered body
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 41
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 239000000843 powder Substances 0.000 claims abstract description 12
- 239000002667 nucleating agent Substances 0.000 claims abstract description 6
- 238000010304 firing Methods 0.000 claims description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 9
- 239000002245 particle Substances 0.000 abstract description 5
- 238000009413 insulation Methods 0.000 abstract description 4
- 229910052593 corundum Inorganic materials 0.000 abstract description 3
- 230000006866 deterioration Effects 0.000 abstract description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 4
- GOLCXWYRSKYTSP-UHFFFAOYSA-N Arsenious Acid Chemical compound O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 abstract 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 abstract 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 abstract 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 239000011230 binding agent Substances 0.000 abstract 1
- 238000001354 calcination Methods 0.000 abstract 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 abstract 1
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 238000005245 sintering Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 229910052878 cordierite Inorganic materials 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical group [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910008367 Li-Pb Inorganic materials 0.000 description 1
- 229910006738 Li—Pb Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000010344 co-firing Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052634 enstatite Inorganic materials 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- BBCCCLINBSELLX-UHFFFAOYSA-N magnesium;dihydroxy(oxo)silane Chemical compound [Mg+2].O[Si](O)=O BBCCCLINBSELLX-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4611—Manufacturing multilayer circuits by laminating two or more circuit boards
- H05K3/4626—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
- H05K3/4629—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Insulating Materials (AREA)
- Glass Compositions (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
この発明は、高集積化したLSIを多数搭載するための
多層配線基板などの絶縁材料などどして用いられ、銀、
銀−パラジウム、金などの低抵抗導体金属と同時焼成し
て得ることもできるガラス焼結体に関する。[Detailed Description of the Invention] [Technical Field] The present invention is used as an insulating material for multilayer wiring boards on which a large number of highly integrated LSIs are mounted.
The present invention relates to a glass sintered body that can be obtained by co-firing with low resistance conductive metals such as silver-palladium and gold.
LSIを搭載する基板として、従来、次のようなものが
あった。すなわち、アルミナを主材にしてグリーンシー
トを形成し、このグリーンシート上に高融点金属(Mo
、W等)の導体配線を厚膜技術により印刷形成する。そ
のあと、このグリーンシートを貼り合わせて積層した多
層グリーンシートを約1500℃前後の高温非酸化雰囲
気中で焼成する。このようにして得られた、いわゆるア
ルミナシート多層基板である。Conventionally, there have been the following types of substrates on which LSIs are mounted. That is, a green sheet is formed using alumina as the main material, and a high melting point metal (Mo
, W, etc.) is printed by thick film technology. Thereafter, a multilayer green sheet made by laminating these green sheets together is fired in a high-temperature non-oxidizing atmosphere at about 1500°C. This is a so-called alumina sheet multilayer substrate obtained in this way.
しかし、上述のようなアルミナを主材料とする多層配線
基板では、アルミナの高い比誘電率と、微細化配線導体
(Mo、W等の高融点金属)の高い抵抗によって、多層
配線基板−
伝達時間が長(なり、高速化の要望に応え難かった。However, in the multilayer wiring board mainly made of alumina as described above, due to the high dielectric constant of alumina and the high resistance of the miniaturized wiring conductor (high melting point metal such as Mo, W, etc.), the transmission time of the multilayer wiring board This made it difficult to meet demands for faster speeds.
この問題を解決するためには、高抵抗の高融点金属材料
の代わりに、固有抵抗の低い金属材料(A u 、 A
g 、 A g −P d 、 Cu等)を使って微
細化配線を形成することも考えられる。しかしながら、
これらの低抵抗金属材料は融点が1000℃付近であり
、アルミナの焼結温度よりもはるかに低くなっている。In order to solve this problem, instead of high-resistance, high-melting-point metal materials, metal materials with low specific resistance (A u , A
It is also conceivable to form finer interconnections using materials such as Cu, Ag-Pd, Cu, etc.). however,
The melting point of these low resistance metal materials is around 1000°C, which is much lower than the sintering temperature of alumina.
そのため、仮に用いたとしても、焼結以前に配線パター
ンが融解して表面張力で収縮し、断線したり他の配線と
つながったりするという問題があった。Therefore, even if it were used, there was a problem that the wiring pattern would melt before sintering and shrink due to surface tension, resulting in disconnection or connection with other wiring.
この問題を解決するために、上記の低抵抗金属の融点(
l OO0℃前後)以下で焼成可能で、しかも、比誘電
率が低い材料が要求されている。To solve this problem, the melting point (
There is a need for materials that can be fired at temperatures below 0° C. and that have a low dielectric constant.
この要求を満たすために、ガラス、あるいはガラス粉末
焼結体(ガラス−セラミックス体)の多層配線基板が捷
案されている。To meet this requirement, multilayer wiring boards made of glass or glass powder sintered bodies (glass-ceramic bodies) have been devised.
このようなガラス粉末焼結体の具体例が、特公昭59−
223.99号公報、特開昭59−178752号公報
、特公昭57−6257号公報などに記載されている。A specific example of such a glass powder sintered body is the
It is described in Japanese Patent Application Publication No. 223.99, Japanese Unexamined Patent Publication No. 178752/1982, Japanese Patent Publication No. 6257/1987, etc.
しかし、いずれも、組成にNa、に、Li、Pbの比較
的イオン伝感性の高い元素を含んでいることから、マイ
グレーション現象が生ずる。そのため、配線基板として
もっとも重要な特性である絶縁性の劣化が生じやすいと
いう問題がある。However, since both of them contain elements with relatively high ion conductivity, such as Na, Li, and Pb, a migration phenomenon occurs. Therefore, there is a problem in that insulation, which is the most important characteristic of a wiring board, tends to deteriorate.
この発明は、このような事情に鑑みて、低抵抗金属の融
点よりも低い温度での焼成で十分緻密化され、多層配線
基板材料として用いても、マイグレーション現象による
絶縁劣化の心配がなく、しかも誘電率も低いガラス焼結
体を提供することを目的としている。In view of these circumstances, the present invention has been developed to provide a material that can be sufficiently densified by firing at a temperature lower than the melting point of low-resistance metals, and can be used as a multilayer wiring board material without worrying about insulation deterioration due to migration phenomena. The purpose is to provide a glass sintered body with a low dielectric constant.
この発明は、上記の目的を達成するために、Si Of
、A 120xおよびMgOを主成分とするガラス組
成物の粉末の成形体を焼成してなるガラス焼結体であっ
て、前記ガラス組成物の組成は、Sin、が40〜60
重量%、
A1.Oゴが10〜40重量%、
MgOが10〜40重量%、
であって、前記MgOのうち10〜30重景%が重量O
,BaOおよびCaOからなる群より選ばれた少なくと
も1種で置換されており、Ti0z 、ZrO,% S
now 、Pg Os % ZnO,As、O,および
M o O,からなる群より選ばれた少なくとも1種の
核発生剤が5重量%以下の各割合であることを特徴とす
るガラス焼結体を要旨とする。In order to achieve the above object, this invention
A glass sintered body obtained by firing a molded body of powder of a glass composition containing A 120x and MgO as main components, the composition of the glass composition having a Sin of 40 to 60.
Weight %, A1. Ogo is 10 to 40% by weight, MgO is 10 to 40% by weight, and 10 to 30% of the MgO is by weight O
, BaO and CaO, and TiOz , ZrO, % S
A glass sintered body characterized in that the proportion of at least one nucleating agent selected from the group consisting of PgOs% now, PgOs% ZnO, As, O, and MoO is 5% by weight or less. This is the summary.
以下に、この発明にかかるガラス焼結体を詳しく説明す
る。Below, the glass sintered body according to the present invention will be explained in detail.
上記組成範囲内のガラス粉末は、850〜950℃の焼
成温度で充分緻密化を行うことができ、焼結体の主結晶
相は、コーディエライトであるので、比誘電率が低く、
機械的強度も大きい。また、ガラス作製時に、約140
0℃以下で原料の溶融が可能であるので、通常の溶融炉
や粘土るつぼを用いることができ、製造上都合がよい。Glass powder within the above composition range can be sufficiently densified at a firing temperature of 850 to 950°C, and the main crystal phase of the sintered body is cordierite, so it has a low dielectric constant.
It also has great mechanical strength. In addition, when producing glass, approximately 140
Since the raw materials can be melted at temperatures below 0°C, a normal melting furnace or clay crucible can be used, which is convenient for production.
また、上記ガラス組成物は、マイグレーションを起こす
心配のあるNa−に−Li−Pb等の比較的イオン伝導
性の高い元素を含まない。Further, the glass composition does not contain elements with relatively high ion conductivity such as Na--Li-Pb, which may cause migration.
この発明に用いられるガラス組成物の組成割合が上記の
ように限定されるのは、次の理由によるSiO□の組成
割合が60重量%を越えると、焼結温度が高くなり、1
000℃以下では緻密化しない。40重量%を下回ると
、ガラス溶融時に1500〜1600℃でも充分にガラ
ス化できなかったり、仮にガラスが得られても1000
℃以下では結晶化が起こらない。The reason why the composition ratio of the glass composition used in this invention is limited as described above is because if the composition ratio of SiO□ exceeds 60% by weight, the sintering temperature becomes high.
It does not become densified at temperatures below 000°C. If it is less than 40% by weight, it may not be possible to vitrify the glass sufficiently even at 1500 to 1600°C during glass melting, or even if glass is obtained, the
Crystallization does not occur below ℃.
Al2O3の組成割合が40重蓋%を越えると、焼結で
きる温度が上昇して、1000℃以下の焼成温度では十
分な焼結が行えない。10重量%を下回ると、主結晶相
のコーディエライトの結晶量が減少して、ガラスの多い
焼結体となるため、比誘電率が大きくなる。When the composition ratio of Al2O3 exceeds 40%, the temperature at which sintering can be performed increases, and sufficient sintering cannot be performed at a firing temperature of 1000° C. or lower. When it is less than 10% by weight, the amount of cordierite crystals as the main crystalline phase decreases, resulting in a sintered body with a large amount of glass, resulting in a high dielectric constant.
MgOの組成割合が40重量%を越えると、主結晶相が
コーディエライトではなく、MgO−5iO□系の結晶
(フォルステライト、エンスタタイト)が析出し、比誘
電率が大きくなってしまう。また、同時に、焼結温度も
上昇する。10重蓋%を下回ると、緻密な焼結体となり
難い。When the composition ratio of MgO exceeds 40% by weight, the main crystal phase is not cordierite, but MgO-5iO□-based crystals (forsterite, enstatite) are precipitated, and the dielectric constant becomes large. At the same time, the sintering temperature also increases. If it is less than 10%, it is difficult to form a dense sintered body.
上記組成割合のMgOのうち10〜30重量%は、S
r O% B a OおよびCaOからなる群より選ば
れた1種または複数種と置換する。置換率が、10重量
%を下回ると、ガラス溶融温度が上昇して、1400℃
付近での溶融が困難になる。また、比誘電率を低くする
効果があられれない。30重量%を越えると、焼結温度
が高くなり、比誘電率も大きくなる。また、MgO成分
が少なくなるため、α−コーディエライト結晶の析出が
悪くなり、電気特性が悪くなる。Of the MgO in the above composition ratio, 10 to 30% by weight is S
r O% B a Replaced with one or more selected from the group consisting of O and CaO. When the substitution rate is less than 10% by weight, the glass melting temperature increases to 1400°C.
Melting in the vicinity becomes difficult. Further, the effect of lowering the dielectric constant cannot be achieved. When it exceeds 30% by weight, the sintering temperature becomes high and the dielectric constant becomes high. Furthermore, since the MgO component decreases, precipitation of α-cordierite crystals becomes worse, resulting in poor electrical properties.
核発生剤は、焼結体の結晶をより確実にα−コーディエ
ライトとするために、5重量%以下の組成割合で用いる
。核発生剤としては、TtO,、Z ro、 、SnO
,、P、Os 、ZnO,MoO、、As2O,などが
挙げられ、それぞれ1種ずつまたは複数種あわせて用い
られる。The nucleating agent is used at a composition ratio of 5% by weight or less in order to more reliably form the crystals of the sintered body into α-cordierite. As a nucleating agent, TtO, , Z ro, , SnO
, P, Os, ZnO, MoO, As2O, etc., each of which may be used singly or in combination.
核発生剤は、5重量%を越えると、結晶化速度が急速と
なるために、充分に緻密化しない焼結体となってしまう
。When the nucleating agent exceeds 5% by weight, the crystallization rate becomes rapid, resulting in a sintered body that is not sufficiently densified.
上記ガラス組成物の粉末は、たとえば、重量%組成が上
記範囲内となるように各成分を配合して溶融し、この溶
融体を結晶を析出させないように急冷して透明なガラス
を得たのち、微粉砕して得られるが、他の方法によって
得るようにしてもよい。ガラス組成物の粉末の粒度は、
特に限定されないが、平均粒径として1〜10μmとす
るのが好ましい。平均粒径が10μmを越えると、ガラ
ス焼結体の表面凹凸がはげしくなり、配線基板とした場
合、回路の導体精度も悪くなることがある。また、結晶
化温度が高くなることがあるので、1000℃以下の焼
成では充分な結晶析出が起こらず、結晶量の低い焼結体
となるため、誘電率の低下が望めなくなるおそれがある
。同時に、機械的強度が低くなることがあるので、実用
性に欠けるおそれがある。他方、1μmを下回ると、ガ
ラス組成物の結晶化速度が早まることがあり、充分な焼
結が起こるまでに、結晶化が終了してしまうということ
が発生し、焼結密度が上がりにくくなるおそれがある。The powder of the above-mentioned glass composition is obtained by, for example, blending and melting each component so that the weight percent composition is within the above-mentioned range, and then rapidly cooling the melt so as not to precipitate crystals to obtain a transparent glass. Although it can be obtained by finely pulverizing it, it may also be obtained by other methods. The particle size of the powder of the glass composition is
Although not particularly limited, it is preferable that the average particle size is 1 to 10 μm. If the average particle size exceeds 10 μm, the surface unevenness of the glass sintered body becomes severe, and when used as a wiring board, the conductor accuracy of the circuit may deteriorate. Furthermore, since the crystallization temperature may become high, sufficient crystal precipitation will not occur if the temperature is 1000° C. or lower, resulting in a sintered body with a low amount of crystals, so there is a possibility that a reduction in dielectric constant cannot be expected. At the same time, the mechanical strength may become low, which may lead to a lack of practicality. On the other hand, if it is less than 1 μm, the crystallization rate of the glass composition may accelerate, and the crystallization may end before sufficient sintering occurs, making it difficult to increase the sintered density. There is.
上記ガラス組成物の粉末の成形体は、たとえば、グリー
ンシートまたはこれを複数枚積層したものなどがあるが
、これらに限るものではない。成形体を得るのに樹脂、
溶媒などの有機物を用いた場合には、あらかじめ前焼成
を行って有機物を除去したのちに、焼結のための焼成を
行うようにするのがよい。なお、前記有機物は特に限定
されず、種々のものが用いられる。また、有機物以外の
ものが用いられたり、何も用いずに成形体を得てもよい
。Examples of the molded body of the powder of the glass composition include, but are not limited to, a green sheet or a stack of a plurality of green sheets. resin to obtain the molded body,
When an organic substance such as a solvent is used, it is preferable to perform pre-firing in advance to remove the organic substance, and then carry out the firing for sintering. Note that the organic substance is not particularly limited, and various types can be used. Moreover, materials other than organic substances may be used, or a molded article may be obtained without using anything.
前記成形体を焼成する条件は、特に限定されないが、上
述の低抵抗金属材料の融点(L OO0℃前後)よりも
低い温度で焼成を行っても焼結できるので、その温度で
焼成するようにすれば、低抵抗金属材料を印刷などして
同時焼成できる。同時焼成でなくてもよい。多層配線基
板は、たとえば、この発明のガラス焼結体の絶縁材料層
と、低抵抗導体配線層とが交互に積層されてなるが、こ
れに限らない。用途は多層配線板に限られない。The conditions for firing the molded body are not particularly limited, but since sintering can be performed at a temperature lower than the melting point of the above-mentioned low-resistance metal material (around 0°C), it is recommended that the molded body be fired at that temperature. This allows printing and firing of low-resistance metal materials at the same time. It does not have to be fired at the same time. The multilayer wiring board is, for example, formed by alternately laminating insulating material layers of the glass sintered body of the present invention and low resistance conductor wiring layers, but is not limited thereto. Applications are not limited to multilayer wiring boards.
つぎに、この発明にかかるガラス焼結体を実施例に基づ
いて詳しく説明する。Next, the glass sintered body according to the present invention will be explained in detail based on Examples.
第1表(その1)および第1表(その2)の実施例1〜
31および比較例1〜5に示す割合の組成となるように
ガラス原料を調合し、混合後アルミナ質ルツボ内に入れ
て約1400℃の加熱温度下で溶融した。このようにし
て得られた溶融液を水中に投下して、透明なガラス組成
物(フリット)を得た。この組成物を、湿式または乾式
で、ボールミル中で粉砕して、平均粒径1〜IOμmの
ガラス粉末とした。Examples 1 to Table 1 (Part 1) and Table 1 (Part 2)
Glass raw materials were prepared to have compositions in the proportions shown in No. 31 and Comparative Examples 1 to 5, and after mixing, they were placed in an alumina crucible and melted at a heating temperature of about 1400°C. The melt thus obtained was dropped into water to obtain a transparent glass composition (frit). This composition was wet or dry milled in a ball mill to give a glass powder with an average particle size of 1 to IO μm.
このガラス粉末にポリブチルメタクリレート樹脂、フタ
ル酸ジブチル、トルエン等を加え混練し、減圧下で脱泡
処理してスラリーを得た。そのあと、このスラリーを用
いてドクタブレード法によりフィルムシート上に0.2
*m Kの連続シートラ作製した。これを乾燥した後
、フィルムシートからはがし、打ち抜きして適当な大き
さのグリーンシートとした。つぎに、個々のグリーンシ
ートにスルホールを施し、低抵抗金属導体ペーストを用
い、配線パターンを印刷形成した。スルホールと配線パ
ターンを形成したグリーンシート複数枚を積層し、プレ
ス成形して成形体とした。Polybutyl methacrylate resin, dibutyl phthalate, toluene, etc. were added to this glass powder and kneaded, followed by defoaming treatment under reduced pressure to obtain a slurry. Then, using this slurry, 0.2
* A continuous sheet of mK was produced. After this was dried, it was peeled off from the film sheet and punched out to obtain a green sheet of an appropriate size. Next, through-holes were formed in each green sheet, and a wiring pattern was printed using a low-resistance metal conductor paste. A plurality of green sheets with through holes and wiring patterns formed thereon were laminated and press-molded to form a molded body.
この積層グリーンシートを、室温から500℃まで2.
5℃/minの速度で昇温し、500℃で2時間45分
保持して、脱脂を充分に行った。その後、3.3℃/m
inの速度で第1表(その1)および第1表(その2)
に示した所定の焼成温度まで昇温し、この焼成温度で3
時間保持して積層グリーンシートを焼成した。こののち
、1.8℃/minの速度で400℃まで降温し、以後
、自然放冷して焼結体を得た。2. This laminated green sheet is heated from room temperature to 500°C.
The temperature was raised at a rate of 5° C./min and held at 500° C. for 2 hours and 45 minutes to thoroughly degrease. After that, 3.3℃/m
Table 1 (Part 1) and Table 1 (Part 2) at the speed of in
Raise the temperature to the specified firing temperature shown in 3.
The laminated green sheets were fired by holding for a certain period of time. Thereafter, the temperature was lowered to 400°C at a rate of 1.8°C/min, and then allowed to cool naturally to obtain a sintered body.
このようにして得た実施例1〜31および比較例1〜5
の焼結体について比誘電率および吸水率を測定し、その
結果を第1表(その1)および第1表(その2)に示し
た。比誘電率の測定は、IM Hzの周波数で行った。Examples 1 to 31 and Comparative Examples 1 to 5 thus obtained
The dielectric constant and water absorption rate of the sintered bodies were measured, and the results are shown in Table 1 (Part 1) and Table 1 (Part 2). Measurements of dielectric constant were performed at a frequency of IM Hz.
吸水率の測定は、JIS C−2141に従って行った
。The water absorption rate was measured according to JIS C-2141.
第1表(その1)および第1表(その2)で明らかなよ
うに、実施例の焼結体は、いずれも、比較例のそれより
も比誘電率が低(電気特性が優れており、吸水率も低い
。また、実施例の焼結体は、いずれも、比較例のそれよ
りも低い温度で焼成されており、1000℃以下の焼成
で充分焼結していることがわかる。As is clear from Table 1 (Part 1) and Table 1 (Part 2), the sintered bodies of Examples have lower dielectric constants (and have better electrical properties) than those of Comparative Examples. Moreover, the sintered bodies of the examples were all fired at a lower temperature than that of the comparative example, and it can be seen that the sintered bodies of the examples were sufficiently sintered by firing at a temperature of 1000° C. or lower.
この発明のガラス焼結体は、以上にみるように、上記組
成のガラス組成物の粉末の成形体を焼成してなるので、
1000℃以下の低い温度での焼成で十分緻密化され、
誘電率も低(、しかも多層配線基板材料として用いても
、マイグレーション現象による絶縁劣化の心配がない焼
結体を得ることができる。As described above, the glass sintered body of the present invention is obtained by firing a molded body of powder of the glass composition having the above composition.
It is sufficiently densified by firing at a low temperature of 1000℃ or less,
It is possible to obtain a sintered body with a low dielectric constant (and even when used as a material for a multilayer wiring board, there is no fear of insulation deterioration due to migration phenomena).
Claims (1)
分とするガラス組成物の粉末の成形体を焼成してなるガ
ラス焼結体であって、前記ガラス組成物の組成は、 SiO_2が40〜60重量%、 Al_2O_3が10〜40重量%、 MgOが10〜40重量%、 であって、前記MgOのうち10〜30重量%がSrO
、BaOおよびCaOからなる群より選ばれた少なくと
も1種で置換されており、 TiO_2、ZrO_2、SnO_2、P_2O_5、
ZnO、As_2O_3およびMoO_3からなる群よ
り選ばれた少なくとも1種の核発生剤が5重量%以下の
各割合であることを特徴とするガラス焼結体。(1) A glass sintered body obtained by firing a molded body of powder of a glass composition containing SiO_2, Al_2O_3 and MgO as main components, the composition of the glass composition being: 40 to 60% by weight of SiO_2; Al_2O_3 is 10 to 40% by weight, MgO is 10 to 40% by weight, and 10 to 30% by weight of the MgO is SrO.
, is substituted with at least one member selected from the group consisting of BaO and CaO, TiO_2, ZrO_2, SnO_2, P_2O_5,
A glass sintered body characterized in that at least one nucleating agent selected from the group consisting of ZnO, As_2O_3 and MoO_3 is contained in a proportion of 5% by weight or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9515386A JPS62252341A (en) | 1986-04-24 | 1986-04-24 | Sintered glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9515386A JPS62252341A (en) | 1986-04-24 | 1986-04-24 | Sintered glass |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62252341A true JPS62252341A (en) | 1987-11-04 |
Family
ID=14129845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9515386A Pending JPS62252341A (en) | 1986-04-24 | 1986-04-24 | Sintered glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62252341A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03257041A (en) * | 1989-10-19 | 1991-11-15 | E I Du Pont De Nemours & Co | Dielectric composition |
-
1986
- 1986-04-24 JP JP9515386A patent/JPS62252341A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03257041A (en) * | 1989-10-19 | 1991-11-15 | E I Du Pont De Nemours & Co | Dielectric composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4749665A (en) | Low temperature fired ceramics | |
EP0163155B1 (en) | Low temperature fired ceramics | |
US5468694A (en) | Composition for producing low temperature co-fired substrate | |
US4812422A (en) | Dielectric paste and method of manufacturing the paste | |
JP3387531B2 (en) | Glass-based and glass-ceramic based composites | |
US5024975A (en) | Crystallizable, low dielectric constant, low dielectric loss composition | |
EP0326093B1 (en) | Dielectric composition | |
JPH0343786B2 (en) | ||
EP2168928B1 (en) | Glass Ceramic Substrate | |
JPH04231363A (en) | Conductive composition containing iolite and glass | |
JPS63107838A (en) | Glass-ceramic sintered body | |
JPS62278145A (en) | Sintered material of glass ceramic | |
JP3678260B2 (en) | Glass ceramic composition | |
JP3721570B2 (en) | Glass ceramic dielectric material | |
JP3890779B2 (en) | Glass ceramic composition | |
JPH0643258B2 (en) | Dielectric material for circuit boards | |
JPS6379739A (en) | Sintered glass ceramic body | |
JPH0617249B2 (en) | Glass ceramic sintered body | |
JPS62252340A (en) | Sintered glass and sintered glass ceramic | |
JPH05116985A (en) | Ceramic substrate | |
JPS63295473A (en) | Dielectric material for circuit board | |
JPS62252341A (en) | Sintered glass | |
JPH0260236B2 (en) | ||
JP3315233B2 (en) | Composition for ceramic substrate | |
JP3315182B2 (en) | Composition for ceramic substrate |