JPS6225190B2 - - Google Patents

Info

Publication number
JPS6225190B2
JPS6225190B2 JP55078889A JP7888980A JPS6225190B2 JP S6225190 B2 JPS6225190 B2 JP S6225190B2 JP 55078889 A JP55078889 A JP 55078889A JP 7888980 A JP7888980 A JP 7888980A JP S6225190 B2 JPS6225190 B2 JP S6225190B2
Authority
JP
Japan
Prior art keywords
cable
temperature
rodent
paint
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55078889A
Other languages
Japanese (ja)
Other versions
JPS575765A (en
Inventor
Kenji Mochiki
Reiji Aoki
Yoshuki Kawato
Mochiharu Miura
Morikuni Hasebe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7888980A priority Critical patent/JPS575765A/en
Publication of JPS575765A publication Critical patent/JPS575765A/en
Publication of JPS6225190B2 publication Critical patent/JPS6225190B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 本発明はシクロヘキシミド類を添加せしめた電
線、ケーブル塗布用防鼠塗料の改良に係わるもの
である。 従来シクロヘキシミド類の防鼠効果を利用して
これを各種の樹脂溶液に溶解させて、溶液となし
たのち、該溶液を電線、ケーブルの被覆層(シー
ス)上に塗布して防鼠塗膜を形成する事はすでに
知られている。 しかしてこのシクロヘキシミド類を含む皮膜形
成の主要素、すなわちビヒクルとしては従来、電
線、ケーブルのシース材料として用いられている
ポリエチレン樹脂、ポリ塩化ビニル樹脂、エチレ
ン―酢酸ビニル樹脂、ポリアミド樹脂、ポリカー
ボネート樹脂等を有機溶剤に濃度10%程度溶解さ
せた塗料が採用されている。 しかしながらこの種の樹脂類を用いてなる防鼠
塗料をケーブル上に塗布した場合いくつかの大き
な欠点があつて実用上著しい制約を受けているの
が現状である。 先ず欠点の1つはケーブル直上に塗布形成され
た塗膜自体が過大な押圧力を受けた場合に誘発さ
れるケーブルシースの破壊にある。 すなわち、ケーブルシース上に塗膜を形成する
場合、塗料塗布―乾燥の工程を経たケーブルは、
ケーブルドラムに巻とられ、使用に際して再度ド
ラムよりひきだされるが周知の様にケーブルがド
ラムに巻きとられる際には巻回ケーブルにたるみ
のないようにかなりの張力を付加して重ね巻きす
る。 従つてドラムに巻取られたケーブルは相互に密
着かつ押圧が加えられた状態下で放置されるもの
であり、この場合防鼠塗膜形成後のケーブルにあ
つては塗膜相互が密着した状態となる。 このとき該塗膜相互の接着強度が過大の場合は
巻戻し時に剥離作用によりケーブルシース(一般
にはポリ塩化ビニル)を破裂させる危険がある。 すなわち市場に提供されている防鼠塗料で、酢
酸ビニル系樹脂を主体としたもの、具体例をあげ
ればポリ酢酸ビニル系樹脂では被覆電線への接着
性を高めて防鼠塗膜形成上はすぐれているが、塗
膜同志間での接着力も高いことからこれを塗布し
たケーブルは相互接触で高い接着力を生じる。 この接着力はケーブルの巻もどしに際してビニ
ル被覆のもつ機械的特性以上に高い剥離強度とな
つてあらわれ、結果としてケーブルのシースであ
るビニル被覆の何れか一方が引き裂けることによ
つてケーブルは使用不能の状態となる。 このような事はケーブルが使用前に一時的にで
も高温下に放置され、しかるのちに低温環境下で
巻戻しを行なうようなとき顕著に現れる。例えば
前述の酢酸ビニル系樹脂ベースの防鼠塗料塗布ケ
ーブルが80℃前後で放置され、その後5〜10℃程
度まで温度を低下した場合等は、ケーブルのドラ
ムからのひきだし時に必ずと言つてよい程ケーブ
ルシース層に割れ、裂が生じる。 これは防鼠塗料のビヒクルであるポリ酢酸ビニ
ル系樹脂が温度依存を受けることで軟化して積重
ねられたケーブルシース上の塗膜相互の融着一体
化が進行し、低温下では一層強固な接着力を発揮
することに他ならない。またこの傾向は上述のポ
リ酢酸ビニル系樹脂に限らず、ポリ塩化ビニル系
樹脂、ポリアミド系樹脂等をビヒクルとした市販
の防鼠塗料にはすべて見られる重大な欠点であ
る。 次に他の欠点として、従来の防鼠塗料から形成
された塗膜は塗布してケーブルシースの耐低温脆
化性を低下させるという問題がある。すなわち前
述の接着に伴うケーブルシースの剥離破壊の有無
にかかわらず、塗膜形成主要素たる樹脂の低温脆
化温度が高い場合、かかる塗膜がケーブルシース
上に塗布されると、ケーブルシースの低温脆化温
度が塗膜の低温脆化温度まで上昇するか少くとも
ケーブルシース自体の低温脆化温度を維持できな
い高い温度で脆化する。 これは低温時の打撃衝撃に対して、衝撃エネル
ギーの吸収が小さい塗膜が上皮として密着介在す
る場合、下層であるケーブルシースはその衝撃波
をまともに受けることによつて本来の低温脆化性
が悪化することとなる。 一例として、塩化ゴムをベースとする塗膜がビ
ニルシースケーブル上に形成された場合は、ケー
ブルシース(PVC)の低温脆化温度(ASTMD
746―73)が本来−23℃あるにもかかわらず、こ
の場合には−15℃となり、著しい低下が認められ
ている。 従つて第1の欠点である接着によるシース材料
の剥離破壊をひきおこさせぬビヒクルであつたと
してもシース材の低温脆化温度を高める様な素材
(樹脂)をビヒクルとして用いることは実用的見
地から好ましいことではない。 また樹脂溶液の溶剤として従来引火の危険性の
低いこと等から使用される事の多かつた塩素系有
機溶剤中では防鼠の薬効成分であるシクロヘキシ
ミドの安定性が悪く、残存率が著しく低い事が知
られてきた。 すなわち塩素系有機溶剤の代表例であるトリク
ロロエチレン中にシクロヘキシミドを溶解させた
場合、室温1ケ月保存時の残存率32%、35℃保存
時0%という結果が得られている。 これはシクロヘキシミドが塩素系有機溶剤中で
異性体を作ると推定され、鼠への忌避効果はそれ
なりに発揮するが、シクロヘキシミド残存性が低
い塩素系有機溶剤の使用はより確実な防鼠効果を
得るためには好ましいことではない。 本発明者等は従来の塗料に存在するこのような
欠点を解決すべく鋭意研究の結果、ケーブルシー
ス材(PVC)への密着性を保証し、かつ低温脆
化性においてケーブルシースの本来の性能を損な
うことなく更に防鼠薬効成分であるシクロヘキシ
ミドの残存性が高い電線、ケーブル塗布用防鼠塗
料を見出すことができたものである。 すなわち本発明の電線、ケーブル塗布用防鼠塗
料は皮膜形成樹脂とシクロヘキシミドを有機溶剤
に溶解してなる防鼠塗料において、皮膜形成樹脂
としてアクリル酸ブチルエステルを主成分とする
アクリル酸系合成ゴムを用いたことを特徴とする
防鼠塗料で該塗料が塗布されたケーブルにあつて
は従来の防鼠塗料の使用に見られた如きシース上
の塗膜相互接着による前記ケーブルシースの破壊
を生ずることなく、かつ塗膜形成に伴うケーブル
シースの低温脆化性も悪化させることなく、すぐ
れた防鼠効果が得られる事が判明した。 本発明において皮膜形成用樹脂及びシクロヘキ
シミドを溶解させる有機溶剤としてはトリクロル
エチレンに代表される従来の塩素系有機溶剤に比
べて特にシクロヘキシミドの高い鼠への忌避効果
が得られることから、例えばトルエン、シクロヘ
キサンなどの炭化水素系、アセトン、メチルエチ
ルケトンなどのケトン系、イソプロピルアルコー
ル、エチルアルコールなどのアルコール系溶剤な
どの非塩素系有機溶剤を用いることが望ましい。 また皮膜形成用樹脂として用いるアクリル酸ブ
チルエステルを主成分とするアクリル酸系合成ゴ
ムは他のモノマー例えばアクリロニトリル、塩化
ビニル、塩化ビニリデン、ブタジエン等との不規
則的任意結合によるブロツクコポリマー、又は側
鎖結合のグラフトコポリマー等があげられこのア
クリル酸系合成ゴムとしては例えば東亜ペイント
株式会社製、商品名“トーアアクロンPS”
#200、#210、#250、等が市販されている。 またこの皮膜形成用樹脂の含有量としては塗料
中に0.5重量%〜20重量%となるような範囲で用
いられる。樹脂分が0.5重量%に達しない場合は
ケーブルシース上への防鼠塗膜の保持が困難であ
り、また20重量%を超えて使用しても塗膜形成上
特にメリツトはなく、若干の剥離、脆化特性低下
をおこすようになるためである。 またシクロヘキシミドの含有量は塗料中に0.1
〜5重量%含有するように添加し溶解させる。 シクロヘキシミドの含有量が0.1%に達しない
場合は得られる塗膜において充分な鼠忌避効果が
得られないためである。また上限は特段限定され
るものでないが5重量%をこえると鼠忌避効果は
5重量%までの添加と有意差はなく、塗料価格を
高価になるだけでメリツトは少ないものである。
以下本発明をさらに実施例について説明する。 実施例1〜6 比較例1〜3 皮膜形成用樹脂としてアクリル酸ブチルエステ
ルとアクリロニトリルとの共重合体からなるアク
リル酸系合成ゴム(東亜ペイント(株)製商品名トー
アアクロンPS#250)及び比較のためエチレン酢
酸ビニル共重合体、酢酸ビニル塩化ビニル共重合
体を用い表1に示した組成からなる各種防鼠塗料
をVVケーブルシース上に塗料製造直後、製造後
1年でそれぞれ塗布した。かかる処理を施した
各々のケーブルをドブネズミによつて食害実験を
行なつた。実施例1〜5は食害を受けなかつたが
溶剤としてトリクロルエチレンを用いた実施例6
は少し食害を受けている。比較例1〜2は塩素系
有機溶剤を使用しているためシクロヘキシミドの
鼠忌避効果が減少している。また塗膜によるケー
ブルシース相互の剥離性を調べた。 剥離力試験方法としては第1図乃至第3図に示
すようにケーブルシース用ビニル樹脂組成物を短
冊片3(長さA+B、巾C)を重ね合せ接着させ
た試験体1をそれぞれ成形し、これより両方の短
冊片を引きはがす際の剥離時荷重をそれぞれ測定
するのであるが、前述の如く調整した各々の塗料
を各々の短冊片の片面に刷子塗りにより塗布した
のち、これを80℃の温度で5分間乾燥し、これを
第3図に示す如く2枚重ねて平滑な底板4上に載
置し、上から押え板5を介して20Kg/50mm×20mm
(=長さ×巾=塗布面積)の荷重6を加えて接着
せしめ、試料体1のB(50mm)の部分に接着層2
を形成した。 しかして荷重を加えて次の如き一定温度に維持
した状態下で引張り試験機により両方の短冊片を
引きはがし、その際の剥離時荷重をそれぞれ測定
した。(第4図参照)なお測定条件は以下の通り
である。 荷重維持温度 5℃ 10℃ 20℃ 荷重維持時間 3時間 引張り速度 500mm/分 以上の方法により実施例品と比較例品の塗料を
用いたものの得られた測定値を第1表に併記し
た。 上記の試験方法は防鼠塗料を塗布されたケーブ
ルがドラムに巻取られ多層状態で放置される。こ
のとき線相互は巻き締め圧力をうけるため塗膜の
接着力はこの巻き締めにより一層影響を受ける。
かかる関係を模擬したものでアクリル酸系合成ゴ
ムを使用していない比較例1,2とは剥離力にあ
きらかな差がみとめられる。 ケーブルがまきもどされるときの速度(通常15
m/分)において比較例1,2が示す剥離時荷重
はケーブルシースに剥離破裂を発生させるに十分
な接着力であることを示唆しており低温となるほ
ど塗膜の強度増加によつて剥離時荷重が増加する
傾向大である。 このことはケーブルの巻きもどし時の環境を左
右するものとして実際作業に過大な制約を与え
る。 これに対して本実施例品はわずかに温度依存を
うけるもののケーブルのまきもどしに全く制約を
与えぬ程度の剥離時荷重にすぎない。 次に本発明塗料を適用したケーブルシースの低
温脆化性への影響をしらべた。 ASTMD 746―73にのつとり脆化温度試験を行
なつた結果を表1に併記したが、アクリル酸系合
成ゴムを20重量%以下の配合の実施例1〜4及び
6は比較例3のブランクと同等の脆化温度を示
す。 これに対してアクリル酸系合成ゴムを30重量%
も配合した実施例5、アクリル酸系合成ゴムを使
用しない比較例2,3はブランクより脆化温度が
あきらかに高温になつている。 本発明塗料が低温の可とう性にもすぐれている
ことからケーブルシース上に塗膜を形成しても何
等の影響も与えないことを示している。 以上得られた結果を第1表に纒めて示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the improvement of a rodent-proof paint for coating electric wires and cables to which cycloheximides are added. Conventionally, the rat-proofing effect of cycloheximides was utilized by dissolving them in various resin solutions to form a solution, and then applying the solution to the coating layer (sheath) of electric wires and cables to form a rat-proofing coating. is already known to form. However, the main elements for forming a film containing cycloheximides, that is, vehicles, are polyethylene resins, polyvinyl chloride resins, ethylene-vinyl acetate resins, polyamide resins, polycarbonate resins, etc., which are conventionally used as sheath materials for electric wires and cables. The paint used is a 10% concentration of dissolved in an organic solvent. However, at present, when a rodent-proofing paint made of this type of resin is applied to a cable, there are several major drawbacks, and there are significant limitations in practical use. First, one of the drawbacks is that the cable sheath may be destroyed if the coating film formed directly on the cable itself is subjected to excessive pressing force. In other words, when forming a coating film on a cable sheath, the cable that has gone through the coating-drying process is
The cable is wound around a cable drum, and when it is used it is pulled out from the drum again, but as is well known, when the cable is wound around the drum, a considerable amount of tension is applied to the wound cable so that there is no slack, and the cable is wound in layers. . Therefore, the cables wound around the drum are left in close contact with each other and under pressure, and in this case, in the case of cables after the rat-proof coating has been formed, the coatings are in close contact with each other. becomes. At this time, if the adhesive strength between the coating films is excessive, there is a risk that the cable sheath (generally made of polyvinyl chloride) will rupture due to peeling action during unwinding. In other words, among the rat-proofing paints available on the market, those made mainly of vinyl acetate resin, for example, polyvinyl acetate-based resin, have improved adhesion to coated wires and are excellent in forming a rat-proof coating. However, since the adhesive strength between the coatings is also high, cables coated with this coating produce high adhesive strength when they come into contact with each other. This adhesive force manifests itself in a peel strength that is higher than the mechanical properties of the vinyl sheath when the cable is unwound, and as a result, either one of the vinyl sheaths, which is the cable sheath, is torn and the cable becomes unusable. The state will be as follows. This phenomenon becomes noticeable when the cable is left at a high temperature even temporarily before use, and then rewound in a low temperature environment. For example, if a cable coated with the above-mentioned vinyl acetate resin-based rodent-proof paint is left at around 80℃ and then the temperature drops to about 5 to 10℃, it is almost always necessary to remove the cable from the drum. Cracks and tears occur in the cable sheath layer. This is because the polyvinyl acetate resin, which is the vehicle for rodent-proof paint, softens due to temperature dependence, and the coatings on the stacked cable sheaths fuse together to form an integrated structure, resulting in even stronger adhesion at low temperatures. It's all about demonstrating your power. Moreover, this tendency is a serious drawback not only in the above-mentioned polyvinyl acetate resin, but also in all commercially available rat-proof paints using polyvinyl chloride resins, polyamide resins, etc. as vehicles. Another drawback is that coatings formed from conventional rodent-resistant paints reduce the low-temperature embrittlement resistance of the cable sheath when applied. In other words, regardless of whether or not the cable sheath peels off due to adhesion as described above, if the low-temperature embrittlement temperature of the resin, which is the main element forming the coating film, is high, when such a coating film is applied on the cable sheath, the low temperature of the cable sheath The embrittlement temperature rises to the low-temperature embrittlement temperature of the coating, or at least becomes embrittled at a temperature so high that the low-temperature embrittlement temperature of the cable sheath itself cannot be maintained. This is because when a coating film that absorbs little impact energy is closely interposed as an epithelial layer against impact impact at low temperatures, the underlying cable sheath receives the shock waves and loses its inherent low-temperature embrittlement. It will get worse. As an example, if a chlorinated rubber-based coating is formed on a vinyl-sheathed cable, the low temperature embrittlement temperature of the cable sheath (PVC) (ASTMD
746-73), which is originally -23°C, in this case it is -15°C, a significant decrease. Therefore, even if the vehicle does not cause peeling failure of the sheath material due to adhesion, which is the first drawback, it is not practical to use a material (resin) that increases the low-temperature embrittlement temperature of the sheath material. This is not a good thing. Furthermore, in chlorinated organic solvents that have traditionally been used as solvents for resin solutions due to their low risk of flammability, cycloheximide, a medicinal ingredient for rodent repellency, has poor stability and a significantly low residual rate. has become known. That is, when cycloheximide is dissolved in trichlorethylene, which is a typical example of a chlorinated organic solvent, a residual rate of 32% when stored at room temperature for one month and 0% when stored at 35°C has been obtained. This is because cycloheximide is presumed to form isomers in chlorinated organic solvents, which exerts a certain degree of repellent effect on rats, but the use of chlorinated organic solvents with low residual cycloheximide yields a more reliable rat-repellent effect. That's not a good thing. As a result of intensive research in order to solve these drawbacks of conventional paints, the present inventors have succeeded in guaranteeing adhesion to the cable sheath material (PVC) and maintaining the original performance of the cable sheath in terms of low-temperature embrittlement. We have now found a rodent-proofing paint for electric wires and cables that has a high persistence of cycloheximide, an effective rodent-proofing ingredient, without impairing the rodent-proofing properties. That is, the rodent-proof paint for applying to electric wires and cables of the present invention is a rodent-proof paint made by dissolving a film-forming resin and cycloheximide in an organic solvent, and uses an acrylic acid-based synthetic rubber containing butyl acrylate as the main component as the film-forming resin. In the case of a cable coated with a rodent-proof paint characterized by the use of a rodent-proof paint, the cable sheath may be destroyed due to mutual adhesion of the paint films on the sheath, as seen in the use of conventional rodent-proof paints. It has been found that an excellent rodent-proofing effect can be obtained without deteriorating the low-temperature embrittlement of the cable sheath due to coating film formation. In the present invention, organic solvents for dissolving the film-forming resin and cycloheximide include toluene, cyclohexane, etc., since cycloheximide has a particularly high rat repellent effect compared to conventional chlorinated organic solvents such as trichlorethylene. It is desirable to use a non-chlorinated organic solvent such as a hydrocarbon solvent such as, a ketone solvent such as acetone or methyl ethyl ketone, or an alcohol solvent such as isopropyl alcohol or ethyl alcohol. In addition, the acrylic acid-based synthetic rubber containing butyl acrylate as the main component used as the film-forming resin is a block copolymer formed by irregular arbitrary bonds with other monomers such as acrylonitrile, vinyl chloride, vinylidene chloride, butadiene, or side chains. An example of this acrylic acid-based synthetic rubber is one manufactured by Toa Paint Co., Ltd. under the trade name "Toa Acron PS".
#200, #210, #250, etc. are commercially available. Further, the content of this film-forming resin is used within a range of 0.5% to 20% by weight in the paint. If the resin content does not reach 0.5% by weight, it will be difficult to maintain the rodent-proof coating on the cable sheath, and if it exceeds 20% by weight, there will be no particular merit in forming the coating, and some peeling may occur. This is because the embrittlement properties deteriorate. In addition, the content of cycloheximide in the paint is 0.1
Add and dissolve so that the content is ~5% by weight. This is because if the content of cycloheximide does not reach 0.1%, a sufficient rat repellent effect cannot be obtained in the resulting coating film. The upper limit is not particularly limited, but if it exceeds 5% by weight, there is no significant difference in the rat repellent effect from adding up to 5% by weight, which only increases the cost of the paint and has little merit.
The present invention will be further described below with reference to Examples. Examples 1 to 6 Comparative Examples 1 to 3 Acrylic acid-based synthetic rubber made of a copolymer of butyl acrylate and acrylonitrile (trade name TOA ACRON PS #250, manufactured by Toa Paint Co., Ltd.) as a film-forming resin and comparison Therefore, various rodent-proof paints using ethylene-vinyl acetate copolymer and vinyl acetate-vinyl chloride copolymer and having the composition shown in Table 1 were applied onto the VV cable sheath immediately after the paint was manufactured and one year after the manufacture. A feeding damage experiment was conducted using brown rats on each of the cables subjected to such treatment. Examples 1 to 5 did not suffer from feeding damage, but Example 6 used trichlorethylene as the solvent.
has suffered some damage. Comparative Examples 1 and 2 use a chlorinated organic solvent, so the rat repellent effect of cycloheximide is reduced. We also investigated the peelability of the coating between cable sheaths. As shown in FIGS. 1 to 3, the peel force test method involves molding test specimens 1 in which strips 3 (length A+B, width C) of vinyl resin composition for cable sheath are laminated and bonded. From this, the peeling load when both strips are peeled off is measured. After applying each paint adjusted as described above to one side of each strip with a brush, it was heated to 80°C. After drying at temperature for 5 minutes, the two sheets were stacked and placed on a smooth bottom plate 4 as shown in Figure 3, and a weight of 20 kg/50 mm x 20 mm was placed from above through a presser plate 5.
Apply a load 6 of (= length x width = coated area) to adhere the adhesive layer 2 to the B (50 mm) part of the sample body 1.
was formed. Both strips were then peeled off using a tensile testing machine under a condition where a load was applied and the temperature was maintained at a constant temperature as shown below, and the load at the time of peeling was measured. (See Figure 4) The measurement conditions are as follows. Load holding temperature: 5°C 10°C 20°C Load holding time: 3 hours Pulling speed: 500 mm/min Table 1 also lists the measured values obtained using the coatings of the example and comparative examples using the above method. In the above test method, a cable coated with rodent-proof paint is wound around a drum and left in a multilayered state. At this time, since the wires are subjected to tightening pressure, the adhesive strength of the coating film is further affected by this tightening.
A clear difference in peeling force can be seen from Comparative Examples 1 and 2, which simulate this relationship and do not use acrylic acid-based synthetic rubber. The speed at which the cable is unwound (typically 15
The peeling loads shown in Comparative Examples 1 and 2 at (m/min) suggest that the adhesive force is sufficient to cause peeling rupture in the cable sheath, and the lower the temperature, the stronger the coating film becomes There is a strong tendency for the load to increase. This imposes excessive restrictions on actual work as it affects the environment during unwinding of the cable. On the other hand, although the product of this example is slightly temperature dependent, the load at the time of peeling is such that it does not impose any restrictions on the unwinding of the cable. Next, the effect on the low-temperature embrittlement of the cable sheath to which the coating of the present invention was applied was investigated. The results of the embrittlement temperature test conducted in accordance with ASTMD 746-73 are also listed in Table 1. Examples 1 to 4 and 6 containing 20% by weight or less of acrylic acid-based synthetic rubber were compared to Comparative Example 3. Shows the same embrittlement temperature as a blank. In contrast, 30% by weight of acrylic acid-based synthetic rubber
In Example 5, in which acrylic acid-based synthetic rubber was mixed, and in Comparative Examples 2 and 3, in which no acrylic acid-based synthetic rubber was used, the embrittlement temperature was clearly higher than that of the blank. This shows that since the coating of the present invention has excellent flexibility at low temperatures, it does not have any effect even if a coating film is formed on the cable sheath. The results obtained above are summarized in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例において剥離時荷重を
測定すべき試験体の正面断面略図、第2図は同じ
くその側断面略図、第3図は同じく荷重を加えた
試験体を示す断面略図、さらに第4図は同じく引
張り試験機によりひきはがされる試験体を示す断
面略図である。 1…試験体、2…接着塗料層、3…短冊型にし
たケーブルシース用ビニル、4…底板、5…押え
板、6…荷重、A…試験体1の塗膜形成のない面
の長さ(50mm)、B…試験体1の塗膜形成面の長
さ(50mm)、C…試験体1の塗膜形成面の巾(20
mm)、P…張力。
FIG. 1 is a schematic front cross-sectional view of a test specimen for which the load during peeling is to be measured in an example of the present invention, FIG. 2 is a schematic side cross-sectional view thereof, and FIG. Furthermore, FIG. 4 is a schematic cross-sectional view showing a test specimen torn off by a tensile testing machine. 1...Test specimen, 2...Adhesive paint layer, 3...Strip-shaped vinyl for cable sheath, 4...Bottom plate, 5...Pressure plate, 6...Load, A...Length of surface of test sample 1 on which no coating film is formed (50 mm), B... Length of the coating surface of test specimen 1 (50 mm), C... Width of the coating film forming surface of specimen 1 (20
mm), P...Tension.

Claims (1)

【特許請求の範囲】 1 皮膜形成樹脂とシクロヘキシミドを有機溶剤
に溶解してなる防鼠塗料において、前記皮膜形成
樹脂としてアクリル酸ブチルエステルを主成分と
するアクリル酸系合成ゴムを用いたことを特徴と
する電線、ケーブル塗布用防鼠塗料。 2 アクリル酸系合成ゴムが0.5〜20重量%、シ
クロヘキシミドが0.1〜5重量%残部有機溶剤か
らなる特許請求範囲第1項記載の電線、ケーブル
塗布用防鼠塗料。 3 有機溶剤が非塩素系有機溶剤である特許請求
範囲第1項記載の電線、ケーブル塗布用防鼠塗
料。
[Scope of Claims] 1. A rat-proofing paint made by dissolving a film-forming resin and cycloheximide in an organic solvent, characterized in that an acrylic acid-based synthetic rubber containing butyl acrylate as a main component is used as the film-forming resin. Rodent-proof paint for electric wires and cables. 2. The rodent-proof coating for electric wires and cables according to claim 1, comprising 0.5 to 20% by weight of acrylic acid-based synthetic rubber, 0.1 to 5% by weight of cycloheximide, and the balance being an organic solvent. 3. The rat-proof paint for applying to electric wires and cables according to claim 1, wherein the organic solvent is a non-chlorine organic solvent.
JP7888980A 1980-06-13 1980-06-13 Rodent-repelling coating composition Granted JPS575765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7888980A JPS575765A (en) 1980-06-13 1980-06-13 Rodent-repelling coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7888980A JPS575765A (en) 1980-06-13 1980-06-13 Rodent-repelling coating composition

Publications (2)

Publication Number Publication Date
JPS575765A JPS575765A (en) 1982-01-12
JPS6225190B2 true JPS6225190B2 (en) 1987-06-02

Family

ID=13674372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7888980A Granted JPS575765A (en) 1980-06-13 1980-06-13 Rodent-repelling coating composition

Country Status (1)

Country Link
JP (1) JPS575765A (en)

Also Published As

Publication number Publication date
JPS575765A (en) 1982-01-12

Similar Documents

Publication Publication Date Title
US3887745A (en) Finger-tearable adhesive tape
US3286009A (en) Method of improving the surface properties of polypropylene film
CA1214079A (en) Process for the manufacturing of adhesive tapes
MXPA01010974A (en) Pressure sensitive adhesive sheet and covered structure.
US3718495A (en) Heat-shrinkable pressure-sensitive adhesive tape
JPS61162577A (en) Pressure-sensitive tape
CA1223777A (en) Adhesive tapes having a film backing of polypropylene or other olefinic polymer or copolymer and related manufacturing process
US2816655A (en) Low adhesion coatings on adhesive tapes and liners
US2559990A (en) Insulating tape
JPH05331431A (en) Electrically conductive, transparent film for protection purposes
JP2003003132A (en) Adhesive sheet and pasting material
USRE23843E (en) Insulating tape
JPS6021063B2 (en) Polypropylene laminated film
JPS6225190B2 (en)
US2977267A (en) Packaging of tacky materials
US4617199A (en) Process for the manufacturing of adhesive tapes
GB1447837A (en) Pressure sensitive adhesive tapes
JP4191310B2 (en) Wrap film adhesion part forming paint and wrap film carton
US3232785A (en) Pressure-sensitive adhesive sheet
JP2003013014A (en) Pressure-sensitive adhesive sheet and adhesive body
EP0631859A2 (en) Plastic tape, method of use of plastic tape and process for manufacture of a body wrapped with a plastic tape
JPH01308473A (en) Releasable treatment layer
JPS6094174A (en) Formation of conductive coating film
CN113956813B (en) Surface protection film
JP2611303B2 (en) Winding tape for electrolytic capacitor element