JPS6225188A - Production of heat storage material - Google Patents

Production of heat storage material

Info

Publication number
JPS6225188A
JPS6225188A JP60165585A JP16558585A JPS6225188A JP S6225188 A JPS6225188 A JP S6225188A JP 60165585 A JP60165585 A JP 60165585A JP 16558585 A JP16558585 A JP 16558585A JP S6225188 A JPS6225188 A JP S6225188A
Authority
JP
Japan
Prior art keywords
heat storage
sodium sulfate
water
storage material
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60165585A
Other languages
Japanese (ja)
Other versions
JP2733571B2 (en
Inventor
Kenji Saida
健二 才田
Shozo Fujioka
藤岡 省三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP60165585A priority Critical patent/JP2733571B2/en
Publication of JPS6225188A publication Critical patent/JPS6225188A/en
Application granted granted Critical
Publication of JP2733571B2 publication Critical patent/JP2733571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:A heat storage material for heating of construction, etc., having improved long-term stability, by polymerizing a monomer such as unsaturated carboxylic acid, organic unsaturated sulfonic acid, etc., with a polyfunctional monomer in the presence of sodium sulfate, water and a polymerization initiator. CONSTITUTION:In the presence of (A) sodium sulfate or its eutectic crystal salt (e.g., eutectic crystal with sodium chloride), (B) water and (C) a polymerization initiator (preferably redox polymerization initiator such as ammonium peroxydisulfate-sodium thiosulfate, etc.,), (D) preferably 2-5wt% one or more monomers selected from an unsaturated carboxylic acid (e.g., acrylic acid, etc.,), an organic unsaturated sulfonic acid (e.g., 2-acrylamido-2-methylpropanesulfonic acid, etc.,) and its salt is polymeized with (E) preferably 0.05-0.5wt% polyfunctional monomer (e.g., N,N'-methylenebisacrylamide, etc.,), to give the aimed heat storage material consisting of a composition of the component A and a crosslinked polymer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、建造物の暖房等に用いられる蓄熱材の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a heat storage material used for heating buildings, etc.

(従来の技術) 蓄熱材として具備すべき条件は、蓄熱量が大きいこと、
所定の温度レベルで作動すること、長期間安定であるこ
と、安価であること、毒性がないこと、腐蝕性がないこ
となどが挙げられる。これらの条件を満たすものとして
、相変化性の水和塩が最もよく検討されているが、硫酸
ナトリウム10水塩はその代表的なものである。
(Conventional technology) The conditions that must be met for a heat storage material are a large amount of heat storage;
These include operating at a given temperature level, being stable for long periods of time, being inexpensive, being non-toxic, and being non-corrosive. Phase changeable hydrated salts have been most frequently studied as substances that satisfy these conditions, and sodium sulfate decahydrate is a typical example thereof.

硫酸ナトリウム10水塩は32℃に融点を有し、60C
al/7  の潜熱を有するため、これを蓄熱材として
利用しようとする試みは、1952年にこれと併用する
過冷却防止剤として四ホウ酸ナトリウム10水塩(N1
3”40?・10H20)が有効であることが判明して
以来、今日まで数多く検討されてきた。実用化検討にお
いて遭遇する問題点は、硫酸ナトリウム10水塩が非調
和性融解を示すことである。
Sodium sulfate decahydrate has a melting point of 32°C and 60°C
Since it has a latent heat of al/7, attempts to use it as a heat storage material began in 1952 when sodium tetraborate decahydrate (N1
Since it was discovered that 3"40?・10H20) is effective, many studies have been conducted to date.The problem encountered in practical studies is that sodium sulfate decahydrate exhibits anharmonic melting. be.

即ち、融解時に硫酸ナトリウム無水塩が生成し、液底に
沈降する。これを冷却すると、沈積した無水塩の表面層
は10水塩に復水するが、内部は無水塩のまま残留する
That is, upon melting, anhydrous sodium sulfate is generated and settles to the bottom of the liquid. When this is cooled, the surface layer of deposited anhydrous salt condenses to decahydrate, but the interior remains as anhydrous salt.

残留した無水塩は相変化に関与しないために蓄熱量が低
下することになる。これを解決するために無水塩を液底
に沈降させずに、液中に分散、保持させる方法が種々検
討されてきた。それらは有機質あるいは無機質の添加剤
によって増粘することにより、沈降を防止する方法であ
る。例えば、カルボキシメチルセルロース、澱粉などの
天然有機質重合体(米国特許3,986,969など)
が提案されたが、天然物は分解しやすいために長期使用
には不安がある。煙霧状シリカ(特公表昭55−501
.180 ) 、アタパルジャイト粘土(特開昭53−
34,687 )などの無機物が提案されたが、融解、
凝固のサイクルによって徐々に粘度が低下するために硫
酸ナトリウム無水塩の沈降防止が不十分となる。合成有
機質重合体ではポリアクリル酸ナトリウムなどの水溶性
重合体による増粘が提案されたが、これらは流動性があ
るため融解、凝固のサイクルにおける水和塩の結晶の成
長、消失の際に流動し、その結果、結晶が粗大化するこ
とになり、ついには無水塩の沈降がおこる。この場合の
沈降は必ずしも液底への沈降ばかりではなく、水溶性高
分子によって液中に形成された網状構造の中の水相だけ
からなる微小部分(以下ウォータープールと称する)の
中における沈降−ルが徐々に拡大される。水溶性重合体
のこのような問題点を解決するために架橋型重合体が提
案された。例えば、カルボキシル基又はスルホン酸基を
有する水溶性重合体に多価金属イオンを硫酸ナトリウム
等を含む液中で作用させてイオン架橋型重合体を生成さ
せる方法(特公昭57−30873 )、架橋性官能基
を有する水溶性重合体(例えば、ポリアクリルアミド)
と他の架橋剤(例えば、アルデヒド)とを硫酸ナトリウ
ム等を含む液中で作用させて共有性架橋型重合体を生成
させる方法(特公昭57−48027 )、系外で製造
された水膨潤性架橋型重合体を水和塩の融液に加える方
法(特開昭58−132075、特開昭59−1029
77 )などがある。これらは融解、凝固のサイクルに
おいて無水塩の沈降防止の効果がかなりあり、そのため
蓄熱量の低下が比較的少ない。
The remaining anhydrous salt does not participate in the phase change, resulting in a decrease in the amount of heat storage. In order to solve this problem, various methods have been studied to disperse and retain the anhydrous salt in the liquid without allowing it to settle to the bottom of the liquid. These methods prevent sedimentation by increasing the viscosity with organic or inorganic additives. For example, natural organic polymers such as carboxymethyl cellulose and starch (US Pat. No. 3,986,969, etc.)
has been proposed, but there are concerns about long-term use because natural products are easily decomposed. Fumed silica (Special Publication 1986-501)
.. 180), attapulgite clay (Japanese Unexamined Patent Publication No. 1983-
Inorganic substances such as 34,687) have been proposed, but melting,
As the viscosity gradually decreases through the coagulation cycle, prevention of precipitation of anhydrous sodium sulfate becomes insufficient. For synthetic organic polymers, thickening with water-soluble polymers such as sodium polyacrylate has been proposed, but since these have fluidity, they flow during the growth and disappearance of hydrated salt crystals during the melting and solidification cycle. However, as a result, the crystals become coarser and eventually the anhydrous salt settles. In this case, sedimentation is not necessarily sedimentation to the bottom of the liquid, but also sedimentation within a minute portion (hereinafter referred to as water pool) consisting only of the aqueous phase within the network structure formed in the liquid by water-soluble polymers. gradually expanded. Crosslinked polymers have been proposed to solve these problems with water-soluble polymers. For example, a method in which a water-soluble polymer having a carboxyl group or a sulfonic acid group is reacted with a polyvalent metal ion in a solution containing sodium sulfate to produce an ionically crosslinked polymer (Japanese Patent Publication No. 57-30873), Water-soluble polymers with functional groups (e.g. polyacrylamide)
and other crosslinking agents (e.g., aldehydes) in a solution containing sodium sulfate etc. to produce a covalently crosslinked polymer (Japanese Patent Publication No. 57-48027), water-swellable polymers produced outside the system Method of adding crosslinked polymer to hydrated salt melt (JP-A-58-132075, JP-A-59-1029)
77) etc. These have a considerable effect of preventing sedimentation of anhydrous salt during the melting and solidification cycle, and therefore the decrease in heat storage amount is relatively small.

(発明が解決しようとする問題点) 上記架橋重合体を使用する方法では、架橋性、水溶性重
合体と硫酸ナトリウム等との混合物を水と混合する、あ
るいは架橋性、水溶性重合体又は水膨潤性架橋型重合体
を硫酸ナトリウムの水和塩等の融液に溶解又は分散させ
る等の操作が行なわれる。この際一度に多量の重合体を
水と接触させると表面だけが水和し、水不透過性となる
、いわゆるままこになるために、強攪拌下に重合体を少
量ずつ水と接触させる必要がある。このことは上記混合
操作が煩雑であり;また特殊な装置を要するために、工
業的に不利であることになる。
(Problems to be Solved by the Invention) In the method using the crosslinked polymer described above, a mixture of a crosslinkable, water-soluble polymer and sodium sulfate, etc. is mixed with water, or a crosslinkable, water-soluble polymer or a water-soluble polymer is mixed with water. Operations such as dissolving or dispersing the swellable crosslinked polymer in a melt of hydrated salt of sodium sulfate, etc. are performed. At this time, if a large amount of polymer is brought into contact with water at once, only the surface will become hydrated and become water impermeable, so-called mako, so it is necessary to bring the polymer into contact with water little by little while stirring vigorously. There is. This makes the above-mentioned mixing operation complicated; and requires special equipment, which is industrially disadvantageous.

また、上記混合操作によって得られる液体は極めて粘稠
あるいはゼリー状固体であり、これを小分けして容器に
充填するには圧力をかけるなど特殊な充填機が必要とな
り、充填あるいは洗浄の操作が煩雑である。
In addition, the liquid obtained by the above mixing operation is extremely viscous or jelly-like solid, and in order to divide it and fill it into containers, a special filling machine that applies pressure is required, making filling and cleaning operations complicated. It is.

本発明は硫酸ナトリウム10水塩を主材とし、融解、凝
固のサイクルをくり返しても性能の低下がなく、かつ製
造プロセスにおいて上記のような問題のない蓄熱材の製
造方法を提供する。
The present invention provides a method for producing a heat storage material that uses sodium sulfate decahydrate as a main material, does not deteriorate in performance even after repeated cycles of melting and solidification, and does not have the above-mentioned problems in the production process.

(問題を解決するための手段) 本発明は、硫酸ナトリウム又はその共晶塩と水と重合開
始剤の存在下(こ不飽和カルボン酸、有機不飽和スルホ
ン酸およびこれらの塩から選ばれた少くとも1種の単量
体と、2シテ景多官能単量体とを重合させることを特徴
とする硫酸ナトリウム又はその共晶塩の水和物と架橋重
合体との組成物からなる蓄熱材の製造方法である。
(Means for Solving the Problems) The present invention provides a method for solving the problems in the presence of sodium sulfate or its eutectic salt, water, and a polymerization initiator (a small amount selected from unsaturated carboxylic acids, organic unsaturated sulfonic acids, and salts thereof). A heat storage material comprising a composition of a hydrate of sodium sulfate or its eutectic salt and a crosslinked polymer, characterized by polymerizing one type of monomer and two types of polyfunctional monomers. This is the manufacturing method.

硫酸ナトリウム又はその共晶塩と水は相変化蓄熱媒体と
なるものである。硫酸ナトリウムと共晶塩を形成する物
質は塩化ナトリウム、塩化カリウム、硝酸ナトリウム、
硝酸カリウム、硫酸マグネシウム、尿素など公知のもの
が適用できる。これらの比率は、硫酸ナトリウム1モル
に対し0.2〜1.0モルである。
Sodium sulfate or its eutectic salt and water serve as a phase change heat storage medium. Substances that form eutectic salts with sodium sulfate are sodium chloride, potassium chloride, sodium nitrate,
Known materials such as potassium nitrate, magnesium sulfate, and urea can be used. These ratios are 0.2 to 1.0 mol per mol of sodium sulfate.

共晶塩は硫酸ナトリウム単独をと比べ融点が低下する効
果がある。
The eutectic salt has the effect of lowering the melting point compared to sodium sulfate alone.

水の量は結晶水を含め硫酸ナトリウム1モル当り10〜
15モル程度である。10モルは硫酸ナトリウム10水
塩の理論量であり、15モル以上になると単に過剰とな
って蓄熱媒体の性能が低下する。
The amount of water is 10 to 1 mole of sodium sulfate, including crystal water.
It is about 15 moles. 10 moles is the theoretical amount of sodium sulfate decahydrate, and if it exceeds 15 moles, it will simply be excessive and the performance of the heat storage medium will deteriorate.

不飽和カルボン酸としてはアクリル酸、メタクリル酸、
ヒドロキシエチルアクリル酸、イタコン酸などがあげら
れる。
Unsaturated carboxylic acids include acrylic acid, methacrylic acid,
Examples include hydroxyethyl acrylic acid and itaconic acid.

有機不飽和スルホン酸としては2−アクリルアミド−2
−メチルプロパンスルホン酸、P−スチレンスルホン酸
、スルホエチルメタクリレート、アリルスルホン酸、メ
タアリルスルホン酸などが例示される。
As the organic unsaturated sulfonic acid, 2-acrylamide-2
Examples include -methylpropanesulfonic acid, P-styrenesulfonic acid, sulfoethyl methacrylate, allylsulfonic acid, metaallylsulfonic acid, and the like.

不飽和カルボン酸および有機不飽和スルホン酸の塩とし
ては、それらのアルカリ金属塩またはアンモニウム塩な
ど水に易溶性のものである。
Salts of unsaturated carboxylic acids and organic unsaturated sulfonic acids include those easily soluble in water, such as their alkali metal salts or ammonium salts.

又これら単量体と共重合可能な不飽和アミドを併用する
ことも可能である。
It is also possible to use unsaturated amides copolymerizable with these monomers.

この不飽和アミドとしてはアクリルアミドまたはメタア
クリルアミドが用いられる。
Acrylamide or methacrylamide is used as the unsaturated amide.

これら単量体の使用量は、蓄熱材全体に対して1チル1
0%、好ましくは2%〜5チである。1チ未満では粘度
が低く、相変化により生ずる硫酸ナトリウム無水塩の沈
降防止効果が少くなる。又必要以上に高濃度では蓄熱量
が減少する。
The amount of these monomers used is 1 chill 1 for the entire heat storage material.
0%, preferably 2% to 5%. If it is less than 1 ml, the viscosity will be low and the effect of preventing the precipitation of anhydrous sodium sulfate caused by phase change will be reduced. Also, if the concentration is higher than necessary, the amount of heat storage will decrease.

多官能単量体は重合体を架橋させるために用いられる。Polyfunctional monomers are used to crosslink the polymer.

具体的にはN、N’−メチレンビスアクリルアミド、N
、N’−メチレンビスメタアクリルアミド、N、N’−
ジメチレンビスアクリルアミド、N、N’−ジメチレン
ビスメタアクリルアミドなどが例示される。使用量は帆
01〜1%の範囲、好ましくは0.05〜0.5 %で
あり、0.01%以下では架橋効果に乏しく、1チ以上
では添加風に見合った効果が出ないので好ましくない。
Specifically, N,N'-methylenebisacrylamide, N
, N'-methylenebismethacrylamide, N, N'-
Examples include dimethylenebisacrylamide and N,N'-dimethylenebismethacrylamide. The amount used is in the range of 0.1% to 1%, preferably 0.05 to 0.5%. If it is less than 0.01%, the crosslinking effect will be poor, and if it is more than 1%, the effect commensurate with the added wind will not be obtained, so it is preferable. do not have.

重合開始剤としては、過酸化アセチル、過酸化ラウロイ
ル、過酸化ベンゾイルなどの過酸化ジアシル;クメンヒ
ドロペルオキシドなどのヒドロペルオキシド類;ジーt
ert−ブチルヘルオキシドなどのアルキルペルオキシ
ド;ベルオキソニ硫酸アンモニウム又はカリウム、過酸
化水素、2.2−アゾビスイソブチロニトリル等通常衆
知のラジカル重合開始剤が用いられる。なかでもレドッ
クス系重合開始剤が比較的低い温度で活性があるので好
ましい。
Examples of polymerization initiators include diacyl peroxides such as acetyl peroxide, lauroyl peroxide, and benzoyl peroxide; hydroperoxides such as cumene hydroperoxide;
Commonly known radical polymerization initiators such as alkyl peroxides such as ert-butylheroxide; ammonium or potassium beroxonisulfate, hydrogen peroxide, and 2,2-azobisisobutyronitrile are used. Among these, redox polymerization initiators are preferred because they are active at relatively low temperatures.

本発明で好適に使用されるレドックス系重合開始剤とし
ては通常知られているもののうち水溶性のものである。
Among the commonly known redox polymerization initiators preferably used in the present invention, water-soluble ones are used.

酸化剤としてはベルオクソニ硫酸アンモニウム又はカリ
ウム、過酸化水素などがあり、還元剤としてはチオ硫酸
ナトリウム、亜硫酸ナトリウム、硫酸第一鉄などがある
Oxidizing agents include ammonium or potassium peroxonisulfate, hydrogen peroxide, etc., and reducing agents include sodium thiosulfate, sodium sulfite, ferrous sulfate, and the like.

架橋重合させる温度は硫酸ナトリウム10水塩またはそ
の共晶塩の融点以上であって、通常20〜50℃で行な
われる。
The crosslinking polymerization temperature is higher than the melting point of sodium sulfate decahydrate or its eutectic salt, and is usually carried out at 20 to 50°C.

レドックス系重合開始剤は、構成している酸化剤と還元
剤を混合すると比較的短時間で重合活性を発現する。重
合活性が発現した後空気中の酸素と接触すると失活する
A redox polymerization initiator exhibits polymerization activity in a relatively short time when the constituent oxidizing agent and reducing agent are mixed. After the polymerization activity is developed, it is deactivated when it comes into contact with oxygen in the air.

従って、両者混合後は、なるべく空気と接触させない様
に速かに重合させる容器に送達させる必要がある。
Therefore, after mixing the two, it is necessary to quickly deliver the mixture to a container for polymerization while avoiding contact with air as much as possible.

本発明の方法を実施する形態にはいろいろある。例えば
比較的大型の容器内で重合を行ない、生成した蓄熱材を
暖房装置の蓄熱部分を構成する容器に小分は充填する方
法がある。
There are many ways to implement the method of the invention. For example, there is a method in which polymerization is carried out in a relatively large container, and a small amount of the produced heat storage material is filled into a container that constitutes a heat storage portion of a heating device.

重合させる大型の容器をあらかじめ窒素ガスによる置換
を行い、それぞれ原材料成分を混合し、重合を行なう。
A large container to be polymerized is replaced with nitrogen gas in advance, and the raw materials are mixed and polymerized.

本発明では、原材料に架橋型重合体等を使用せず、その
単量体を使用するので、混合操作が容易である。
In the present invention, since a cross-linked polymer or the like is not used as a raw material and its monomer is used, the mixing operation is easy.

また、重合を暖房装置等の蓄熱容器内で行なう方法があ
る。
There is also a method in which polymerization is carried out in a heat storage container such as a heating device.

本発明の特徴はこの方法の場合に特によく発揮される。The features of the invention are particularly well demonstrated in this method.

本発明においては、出発原料に架橋型重合体等ではなく
単量体を使用するので、重合前の混合材料は粘度の低い
液状組成物である。
In the present invention, since a monomer rather than a crosslinked polymer is used as a starting material, the mixed material before polymerization is a liquid composition with low viscosity.

したがって、容器が多数で複雑な形状をしていても混合
材料を容易に注入することができる。容器内で重合を行
なうことにより、粘稠な液体あるいはゼリー状の固体で
ある蓄熱材を複雑な形状の容器に容易に収納することが
できる。
Therefore, mixed materials can be easily poured into containers even if the containers have a large number of complicated shapes. By polymerizing inside the container, the heat storage material, which is a viscous liquid or a jelly-like solid, can be easily stored in a complicated-shaped container.

また、出発原料に架橋重合体等を使用しないので、材料
の混合操作が容易である。
Furthermore, since a crosslinked polymer or the like is not used as a starting material, the mixing operation of the materials is easy.

容器内に混合材料を充満させて重合を行なう場合は、必
ずしも容器内の窒素置換を行なう必要はない。
When a container is filled with a mixed material and polymerization is carried out, it is not necessarily necessary to replace the inside of the container with nitrogen.

蓄熱材を収納する容器へ、重合前の液状組成物を注入す
る方法としては、重合開始剤として鰺例えばレドックス
開始剤を使用する場合は酸化剤と還元剤を該組成物の流
通系内で連続混合しながら注入するのが望ましい。
In order to inject the liquid composition before polymerization into the container containing the heat storage material, if a redox initiator, for example, is used as a polymerization initiator, the oxidizing agent and the reducing agent are continuously injected in the distribution system of the composition. It is preferable to pour while mixing.

例えば、硫酸ナトリウム又はその共晶塩と水等と単量体
類の液状組成物を容器へ注入する途中に酸化剤と還元剤
を別々に添加する方法、該液状組成物に酸化剤又は還元
剤の一方を溶解しておき、容器へ注入する途中に他方を
添加する方法、該液状組成物を分割し、一方に酸化剤を
、他方に還元剤を溶解しておき、容器への注入系路で両
液を衝突させて混合し、容器(こ注入する方法などがあ
る。
For example, a method in which an oxidizing agent and a reducing agent are separately added to a liquid composition of sodium sulfate or its eutectic salt, water, etc., and monomers during injection into a container, and a method in which an oxidizing agent or a reducing agent is added to the liquid composition. A method in which one of the two is dissolved and the other is added during injection into a container; a method in which the liquid composition is divided, an oxidizing agent is dissolved in one and a reducing agent is dissolved in the other, and the injection route into the container is There is a method in which the two liquids are mixed by colliding with each other, and then poured into a container.

混合をより十分に行わせるため、液の流路にインライン
ミキサーを入れることも考えられる。
In order to achieve more thorough mixing, it is also conceivable to insert an in-line mixer into the liquid flow path.

本発明方法において、混合原材料を容器に注入後、単量
体の重合反応が進行して粘度が上昇するまでの間に、無
水硫酸ナトリウムその他の添加物が容器内で沈降分離す
るのを防ぐだめに、予め増結剤を添加して水性媒体の粘
度を増大させておくことも好ましい方法である。このた
めに使用される増結剤としては、周知の各種増粘剤が使
用されるが、例えば、煙霧状シリカ、湿式微粉シリカ、
各種粘土などの無機物、ポリアクリル酸ナトリウムなど
の水溶性重合体などがある。使用量は0.1〜7%程度
であり、単量体の重合、架橋反応が進行して増粘するま
での短時間に無水硫酸ナトリウムの沈降を防止する程度
の粘度を4九る量であればよい。
In the method of the present invention, after the mixed raw materials are poured into the container, the anhydrous sodium sulfate and other additives are prevented from settling and separating in the container until the polymerization reaction of the monomers progresses and the viscosity increases. It is also a preferable method to increase the viscosity of the aqueous medium by adding a binder in advance. As the thickening agent used for this purpose, various well-known thickening agents are used, such as fumed silica, wet fine powder silica,
These include inorganic materials such as various clays, and water-soluble polymers such as sodium polyacrylate. The amount used is about 0.1 to 7%, and the amount is such that the viscosity is reduced by 49% to prevent precipitation of anhydrous sodium sulfate in a short period of time until monomer polymerization and crosslinking reaction progress and the viscosity increases. Good to have.

蓄熱材には、一般的に過冷却防止剤が加えられる。A supercooling inhibitor is generally added to the heat storage material.

本発明の方法においては、重合の前の混合液にあらかじ
め過冷却防止剤を添加してもよいし、また重合後に添加
してもよい。ただし、蓄熱材を最終的に収納する容器で
重合を行なう場合には、重合前の混合液に添加しておく
必要がある。
In the method of the present invention, the supercooling inhibitor may be added in advance to the liquid mixture before polymerization, or may be added after polymerization. However, if polymerization is carried out in a container that will ultimately house the heat storage material, it is necessary to add it to the mixed solution before polymerization.

過冷却防止剤としては四ホウ酸ナトリウム10水塩が有
効であることは周知のことである。使用量は蓄熱材全体
の2〜5%程度であって、操作温度範囲において水性媒
体中の飽和溶解度以上の添加量であればよい。四ホウ酸
ナトリウム10水塩が水性媒体中で安定に存在するpH
範囲は中性〜塩基性であるから、単量体および重合体に
よって酸性になる場合はあらかじめアルカリによって中
和することが望ましい。
It is well known that sodium tetraborate decahydrate is effective as a supercooling inhibitor. The amount used is about 2 to 5% of the total heat storage material, and the amount added is sufficient as long as it is at least the saturation solubility in the aqueous medium within the operating temperature range. pH at which sodium tetraborate decahydrate exists stably in an aqueous medium
Since the range is neutral to basic, if the monomer or polymer becomes acidic, it is desirable to neutralize it with an alkali in advance.

(実施例) 次に本発明を実施例によって更に詳細に説明するが、本
発明はこの実施例によって同等制限されるものではない
(Example) Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the same extent by these Examples.

実施例1 アクリル酸を苛性ソーダ水溶液でpH 7,5まで中和した溶液(アクリル酸ナトリウムlQw
t%”) 150 、Fに水150.8 、Fを加え3
0℃で攪拌下にN、N−メチレンビスアクリルアミド0
.7511および無水硫酸ナトリウム177.41 、
塩化ナトリウム2’1.9.F。
Example 1 A solution of acrylic acid neutralized to pH 7.5 with an aqueous solution of caustic soda (sodium acrylate lQw
t%") 150, add 150.8% water to F, add 3
N,N-methylenebisacrylamide 0 under stirring at 0°C.
.. 7511 and anhydrous sodium sulfate 177.41,
Sodium chloride 2'1.9. F.

四ホウ酸ナトリウム10水塩15Iおよびシリカ微粉末
(トクシール■−P徳山曹達(株)製)251を加え沈
降性のない均一な混合物を得た。この混合物を2分割し
、一方にベルオクソニ硫酸アンモニウムo、s 、p。
15 I of sodium tetraborate decahydrate and 251 fine silica powder (Tokusil ■-P manufactured by Tokuyama Soda Co., Ltd.) were added to obtain a homogeneous mixture without sedimentation. This mixture was divided into two parts, one containing ammonium beroxonisulfate o, s, p.

他方にチオ硫酸ナトリウム5水塩0.5 Fをそれぞれ
加え混合した後、各々を別の流路から流出させ、その途
中で両液流を衝突混合させて40 X 800 rtr
mのポリエチレン袋に注入した。このものを40℃の雰
囲気中に吊し1時間後観察したところ架橋重合が進み均
一なゼリー状弾性重合体となっていた。
After adding and mixing 0.5 F of sodium thiosulfate pentahydrate to the other side, each was flowed out from a separate flow path, and in the middle, both liquid streams were collided and mixed to form a 40 x 800 rtr.
It was poured into a polyethylene bag of 1.5 m. When this product was suspended in an atmosphere at 40°C and observed after 1 hour, it was found that crosslinking polymerization had progressed and it had become a uniform jelly-like elastic polymer.

この重合体50Iをizf 30 X 100 wmの
ガラス製円筒に入れ、40℃と10℃の間で昇温、降温
のサイクルをくり返えす温度履歴を与えた。このものは
約28℃で相変化を起した。このものは100回のサイ
クルの熱履歴の後も安定であり、相分離現象も見られな
かった。
This polymer 50I was placed in a glass cylinder of izf 30 x 100 wm, and a temperature history was given by repeating a cycle of increasing and decreasing the temperature between 40°C and 10°C. This product underwent a phase change at about 28°C. This material remained stable even after a thermal history of 100 cycles, and no phase separation phenomenon was observed.

実施例2 実施例1と同様に調製した混合物500重量部を2分割
し、一方にベルオクソニ硫酸アンモニウム0.5.F、
他方に亜硫酸ナトリウム0.51を加え、それぞれ30
分間攪拌混合した後、各々声別の流路から流出させその
途中で両液流を衝突混合させて40X6001111+
のポリエチレン袋に注入した。このものを40℃の雰囲
気中に吊したところ10分間で均一なゼリー状弾性架橋
重合体となった。得られた重合体を実施例1と同様の1
00回のサイクルの温度履歴を与えても相分離はみられ
なかった。
Example 2 500 parts by weight of the mixture prepared in the same manner as in Example 1 was divided into two parts, and one part was mixed with 0.5 parts of ammonium beloxonisulfate. F,
Add 0.51 sodium sulfite to the other, 30
After stirring and mixing for a minute, each liquid flowed out from a separate flow path, and the two liquid streams were collided and mixed in the middle.
injected into a polyethylene bag. When this product was suspended in an atmosphere at 40°C, it became a uniform jelly-like elastic crosslinked polymer within 10 minutes. The obtained polymer was treated in the same manner as in Example 1.
No phase separation was observed even after a temperature history of 00 cycles was given.

実施例3 アクリル酸を苛性ソーダ水溶液で pH7,5まで中和
した溶液(アクリル酸ナトリウムiowt s > i
oo #に水195.8 、Fを加え大気中30℃で攪
拌下に、アクリルアマイド5Jl、N、N−メチレンビ
スアクリルアミド0.75 Fと亜硫酸ナトリウムo、
s Iiを溶解した。この溶液1こ無水硫酸ナトリウム
17’1.4 / 1塩化ナトリウム21.9Jr1四
ホウ酸ナトリウム10水塩15JIおよびシリカ微粉末
(トクシール■−P徳山曹達■製)25、Fを加え沈降
性のない均一な混合物を得た。このものを2分割し、一
方にベルオクソニ硫酸アンモニウム0.5.f、他方に
チオ硫酸ナトリウム5水塩0.5 Fをそれぞれ加え混
合した後、各々別の流路から流出させ、その途中で両液
流を衝突混合させ、ポリエチレン袋に注入し、40℃の
雰囲気下に置いた。約10分の後観察したところ均一な
ゼリー状弾性重合体となっていた。
Example 3 A solution of acrylic acid neutralized to pH 7.5 with an aqueous solution of caustic soda (sodium acrylate iowt s > i
Add 195.8 F of water and F to OO #, and while stirring at 30°C in the atmosphere, add 5 Jl of acrylamide, 0.75 F of N,N-methylenebisacrylamide, O of sodium sulfite,
s Ii was dissolved. To this solution, add 1 anhydrous sodium sulfate 17'1.4 / 1 sodium chloride 21.9 Jr 1 sodium tetraborate decahydrate 15 JI and silica fine powder (Tokusil ■-P Tokuyama Soda ■) 25, F to form a non-sedimentable solution. A homogeneous mixture was obtained. Divide this into two parts, and divide one half into 0.5% ammonium beroxonisulfate. f. Add and mix 0.5 F of sodium thiosulfate pentahydrate to the other, let each flow out from a separate flow path, collide and mix both liquid streams in the middle, pour into a polyethylene bag, and store at 40°C. I put it under the atmosphere. When observed after about 10 minutes, it was found to be a uniform jelly-like elastic polymer.

この重合体を実施例1と同様に100回のサイクルの温
度履歴を与えても相分離は認められなかった。
Even when this polymer was subjected to a temperature history of 100 cycles in the same manner as in Example 1, no phase separation was observed.

実施例4 アクリル酸ナトリウム10%溶液3(1を100−ビー
カーに取り、2−アクリルアミド−2−メチルプロパン
スルホン酸1.321を加え溶解後、苛性ソーダーでP
H7,37とし水を加えて全量を61.6 Fとした。
Example 4 Take 10% sodium acrylate solution 3 (1) in a 100-cm beaker, add 1.321 ml of 2-acrylamido-2-methylpropanesulfonic acid, dissolve it, and dilute with caustic soda.
H7.37 and water was added to bring the total volume to 61.6F.

この溶液にN、N−メチレンビスアクリルアミド0.1
5 Fと亜硫酸ナトリウム0.1gを溶解し、30℃大
気中攪拌下に無水硫酸ナトリウム35.5F、塩化ナト
リウム4.41、四ホウ酸ナトリウム10水塩3Iを加
えた懸濁液にベルオクソニ硫酸アンモニウム0.1F、
チオ硫酸ナトリウム5水塩0.11を加えると15秒後
に急激に重合し均一なゼリー状弾性重合体となった。
Add 0.1 N,N-methylenebisacrylamide to this solution.
5 F and 0.1 g of sodium sulfite were dissolved, and 35.5 F of anhydrous sodium sulfate, 4.41 sodium chloride, and 3 I of sodium tetraborate decahydrate were added to the suspension under stirring in the air at 30°C, and 0.0 g of ammonium beroxonisulfate was added to the suspension. .1F,
When 0.11 of sodium thiosulfate pentahydrate was added, it rapidly polymerized after 15 seconds to form a uniform jelly-like elastic polymer.

この重合体を実施例1と同様に100回のサイクルの温
度履歴を与えたが相分離は認められなかった。
This polymer was subjected to a temperature history of 100 cycles in the same manner as in Example 1, but no phase separation was observed.

比較例1 実施例1と同様に調製したアクリル酸ナトリウム10%
溶液30.Fに水30.2 Iiを加えN2を吹き込ん
だ。この溶液を30°Cに加熱攪拌下に無水硫酸ナトリ
ウム35.5 、F。
Comparative Example 1 10% sodium acrylate prepared in the same manner as Example 1
Solution 30. 30.2 Ii of water was added to F and N2 was blown into it. This solution was heated to 30°C and heated to 35.5°F of anhydrous sodium sulfate while stirring.

塩化ナトリウム4.4J’、四ホウ酸ナトリウム10水
塩31Iを混合した。この溶液にN。
4.4 J' of sodium chloride and 31 I of sodium tetraborate decahydrate were mixed. Add N to this solution.

気流下に、ベルオクソニ硫酸アンモニウム0.11およ
びチオ硫酸ナトリウム5水塩0.1 jiを加え攪拌し
た。約3分の後や一粘度上昇したが、その後攪拌を続け
ても粘度上昇は見られず攪拌を停止すると相分離現象が
見られた。
Under a stream of air, 0.11 ji of ammonium beroxonisulfate and 0.1 ji of sodium thiosulfate pentahydrate were added and stirred. After about 3 minutes, the viscosity increased by one degree, but no increase in viscosity was observed even after continued stirring, and a phase separation phenomenon was observed when stirring was stopped.

(この例は、架橋剤である多官能単量体を使用しない場
合の例である。) 比較例2 100−ビーカーに水57.2.Fを入れ30℃で攪拌
下にN、N−メチレンビスアクリルアミド0.2.F、
アクリルアマイド3.011、亜硫酸ナトリウム0.1
1を入れ溶解し透明な溶液を得た。この溶液中に無水硫
酸ナトリウム35.!Ml、塩化ナトリウム4.4gお
よび四ホウ酸ナトリウム10水塩3gを加えた後、ベル
オクソニ硫酸アンモニウム0.11およびチオ硫酸ナト
リウム5水塩0.1gを加えた。約10秒の後系内が白
濁し重合したが弾性重合体とはならず、ポリマーと水相
の分離が見られた。
(This example is an example in which a polyfunctional monomer as a crosslinking agent is not used.) Comparative Example 2 100 - Water 57.2. Add 0.2% of N,N-methylenebisacrylamide while stirring at 30°C. F,
Acrylamide 3.011, sodium sulfite 0.1
1 was added and dissolved to obtain a clear solution. Add 35% of anhydrous sodium sulfate to this solution. ! After adding Ml, 4.4 g of sodium chloride and 3 g of sodium tetraborate decahydrate, 0.11 g of ammonium beloxonisulfate and 0.1 g of sodium thiosulfate pentahydrate were added. After about 10 seconds, the inside of the system became cloudy and polymerized, but an elastic polymer was not formed, and separation of the polymer and aqueous phase was observed.

(この例は架橋型重合体が本発明と異なる場合の例であ
る。) (発明の効果) 本発明の蓄熱材の製造方法によれば、重合前の混合材料
は単量体の溶液の状態で取扱うのものを要しないという
利点がある。このことによって蓄熱材の生産性が著しく
向上するものである。しかも重合生成物は水膨潤性架橋
型重合体であって、融解、凝固のサイクルにおいて蓄熱
量の低下が抑制され、蓄熱材として長期安定性の優れた
ものである。
(This example is an example where the cross-linked polymer is different from that of the present invention.) (Effects of the invention) According to the method for producing a heat storage material of the present invention, the mixed material before polymerization is in the state of a monomer solution. It has the advantage that it does not require anything to handle. This significantly improves the productivity of the heat storage material. Moreover, the polymerization product is a water-swellable crosslinked polymer, which suppresses a decrease in the amount of heat storage during the melting and solidification cycles, and has excellent long-term stability as a heat storage material.

本発明方法によって製造される蓄熱材は、ソーラーコレ
クターあるいは深夜電力利用型の発熱体と組合わせて、
省エネルギー脱房システムを構成する蓄熱部分等に用い
られる。
The heat storage material produced by the method of the present invention can be combined with a solar collector or a heating element that uses late-night electricity,
Used in heat storage parts, etc. that make up energy-saving derooming systems.

Claims (2)

【特許請求の範囲】[Claims] (1)硫酸ナトリウム又はその共晶塩と水と重合開始剤
の存在下に不飽和カルボン酸、有機不飽和スルホン酸お
よびこれらの塩から選ばれた少くとも1種の単量体と、
多官能単量体とを重合させることを特徴とする硫酸ナト
リウム又はその共晶塩の水和物と架橋重合体との組成物
からなる蓄熱材の製造方法。
(1) At least one monomer selected from unsaturated carboxylic acids, organic unsaturated sulfonic acids, and salts thereof in the presence of sodium sulfate or its eutectic salt, water, and a polymerization initiator;
A method for producing a heat storage material comprising a composition of a hydrate of sodium sulfate or a eutectic salt thereof and a crosslinked polymer, the method comprising polymerizing the composition with a polyfunctional monomer.
(2)重合開始剤がレドックス系重合開始剤である特許
請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the polymerization initiator is a redox polymerization initiator.
JP60165585A 1985-07-25 1985-07-25 Manufacturing method of heat storage material Expired - Lifetime JP2733571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60165585A JP2733571B2 (en) 1985-07-25 1985-07-25 Manufacturing method of heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60165585A JP2733571B2 (en) 1985-07-25 1985-07-25 Manufacturing method of heat storage material

Publications (2)

Publication Number Publication Date
JPS6225188A true JPS6225188A (en) 1987-02-03
JP2733571B2 JP2733571B2 (en) 1998-03-30

Family

ID=15815149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60165585A Expired - Lifetime JP2733571B2 (en) 1985-07-25 1985-07-25 Manufacturing method of heat storage material

Country Status (1)

Country Link
JP (1) JP2733571B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2252327A (en) * 1991-01-31 1992-08-05 Sumitomo Chemical Co Heat storage composition and process for preparing the same
WO1994018283A1 (en) * 1993-02-12 1994-08-18 Sumitomo Chemical Company, Limited Thermal storage material composition and process for producing the same
JPH073252A (en) * 1993-02-12 1995-01-06 Sumitomo Chem Co Ltd Thermal energy storage material composition and its production
JPH0885785A (en) * 1994-07-20 1996-04-02 Sumitomo Chem Co Ltd Prevention of latent heat storage material composition from being overcooled and latent heat storage apparatus
JPH0953067A (en) * 1995-08-11 1997-02-25 Sumitomo Chem Co Ltd Production of heat storage material
WO2005066740A1 (en) * 2004-01-05 2005-07-21 Tamai Kasei Co. Ltd. Cooling pad
JP2006307235A (en) * 2006-06-26 2006-11-09 Sumitomo Chemical Co Ltd Absorptive type supercooling prevention agent for salt hydrate
JP2008063547A (en) * 2006-08-11 2008-03-21 Sk Kaken Co Ltd Heat-storing material composition, heat-storing body and heat-storing laminate
JP2009511660A (en) * 2005-10-06 2009-03-19 キャプゾ インターナショナル ビー.ブイ. POLYMER COMPOSITION CONTAINING HEAT STORAGE PHASE TRANSFER MATERIAL, METHOD FOR PRODUCING THE COMPOSITION, AND PRODUCT CONTAINING THE COMPOSITION
CN109384880A (en) * 2017-08-03 2019-02-26 艾-斯莱克特有限公司 Latent heat stores object medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566984A (en) * 1978-11-10 1980-05-20 Calor Group Ltd Heat energy storing material
JPS606780A (en) * 1983-06-25 1985-01-14 Satsuki Kitani Thermal energy storage material composition and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566984A (en) * 1978-11-10 1980-05-20 Calor Group Ltd Heat energy storing material
JPS606780A (en) * 1983-06-25 1985-01-14 Satsuki Kitani Thermal energy storage material composition and production thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2252327A (en) * 1991-01-31 1992-08-05 Sumitomo Chemical Co Heat storage composition and process for preparing the same
WO1994018283A1 (en) * 1993-02-12 1994-08-18 Sumitomo Chemical Company, Limited Thermal storage material composition and process for producing the same
JPH073252A (en) * 1993-02-12 1995-01-06 Sumitomo Chem Co Ltd Thermal energy storage material composition and its production
JPH0885785A (en) * 1994-07-20 1996-04-02 Sumitomo Chem Co Ltd Prevention of latent heat storage material composition from being overcooled and latent heat storage apparatus
JPH0953067A (en) * 1995-08-11 1997-02-25 Sumitomo Chem Co Ltd Production of heat storage material
WO2005066740A1 (en) * 2004-01-05 2005-07-21 Tamai Kasei Co. Ltd. Cooling pad
JP2009511660A (en) * 2005-10-06 2009-03-19 キャプゾ インターナショナル ビー.ブイ. POLYMER COMPOSITION CONTAINING HEAT STORAGE PHASE TRANSFER MATERIAL, METHOD FOR PRODUCING THE COMPOSITION, AND PRODUCT CONTAINING THE COMPOSITION
JP2006307235A (en) * 2006-06-26 2006-11-09 Sumitomo Chemical Co Ltd Absorptive type supercooling prevention agent for salt hydrate
JP2008063547A (en) * 2006-08-11 2008-03-21 Sk Kaken Co Ltd Heat-storing material composition, heat-storing body and heat-storing laminate
CN109384880A (en) * 2017-08-03 2019-02-26 艾-斯莱克特有限公司 Latent heat stores object medium

Also Published As

Publication number Publication date
JP2733571B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
EP0000099B1 (en) Thermal energy storage material
JPS6225188A (en) Production of heat storage material
JPS6025045B2 (en) Method for producing acrylic acid polymer with excellent salt water absorption ability
EP0087859A1 (en) Thermal energy storage compositions
JPS5916563B2 (en) Production method of water-soluble cationic polymer
JPH0525467A (en) Heat storage material composition and its production
JP2615896B2 (en) Thermal storage material composition
EP0693542B1 (en) Method for preventing supercooling of a latent heat storage composition and a latent heat storage equipment utilizing the same
EP0273779A1 (en) Process for producting heat storage materials
JP3479166B2 (en) Method for preventing supercooling of latent heat storage material composition and latent heat storage device
JPH06263803A (en) Production and use of water-soluble (meth)acrylic acid polymer
JP4465727B2 (en) Thermal storage material composition
US5155191A (en) Preparation process of granular polymers
WO1994018283A1 (en) Thermal storage material composition and process for producing the same
JPH0472871B2 (en)
US5882542A (en) Sodium sulfate base heat-storage composition and process for producing the same
JP3479172B2 (en) Manufacturing method of heat storage material
JP3479109B2 (en) Thermal storage material composition and method for producing the same
JPH10195116A (en) Production of acrylamide polymer dispersion
US4335237A (en) Adiabatic polymerization of acrylamide in the presence of sodium sulfate decahydrate
NO870165L (en) PROCEDURE FOR THE MANUFACTURE OF HEAT STORAGE MATERIALS.
JPH05186528A (en) Production of particulate cationic water-soluble polymer
JPS61101413A (en) Silicate slurry with high fluidity and suspension stability
JPS6063271A (en) Heat energy storing composition
JPH0680957A (en) Heat storage composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term