JPS62251648A - Carbon monoxide detecting element - Google Patents

Carbon monoxide detecting element

Info

Publication number
JPS62251648A
JPS62251648A JP9573786A JP9573786A JPS62251648A JP S62251648 A JPS62251648 A JP S62251648A JP 9573786 A JP9573786 A JP 9573786A JP 9573786 A JP9573786 A JP 9573786A JP S62251648 A JPS62251648 A JP S62251648A
Authority
JP
Japan
Prior art keywords
gas
gaseous
sensitive body
oxidation catalyst
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9573786A
Other languages
Japanese (ja)
Inventor
Fumio Uchikoba
文男 内木場
Yoshishige Towatari
戸渡 善茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP9573786A priority Critical patent/JPS62251648A/en
Publication of JPS62251648A publication Critical patent/JPS62251648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To discriminate a slight amt. of CO from a reducing gas or combustible gas and to detect the same with a single sensor by combining a sensitive body having selecting sensitivity with H2 and CO and oxidation catalyst which adsorbs H2. CONSTITUTION:The sensitive body 2, an insulating layer 3, a heater 4 and an oxidation catalyst 5, etc., are provided. Gaseous H2 is adsorbed to the catalyst 5 when gaseous CO is applied together with the reducing gas or combustible gas to the element. The gases, except the gaseous H2, which are not adsorbed by the catalyst 5 contact the sensitive body 2 next. Since the sensitive body 2 has the selective sensitivity only to the gaseous H2 and the gaseous CO, said body has no sensitivity even if the reducing gas or combustible gas except said gases contacts the same. The gaseous H2 is trapped by the adsorption effect of the catalyst 5 in this stage. In the end, the gas which contacts the sensitive body 2 is only the gaseous CO and the gaseous CO is detected as a change of the electric resistance of the sensitive body 2. The effect of the catalyst 5 to adsorb the gaseous H2 increase if the catalyst 5 is heated by a hater 5. The gaseous CO is thus detected with high sensitivity.

Description

【発明の詳細な説明】 産業上の利用分野 未発Ijlは、−酸化炭素検出素子に関し、H2及びC
Oに選択的感度を有する感応体と、H2を吸着する酸化
触媒とを組合せることにより、微徴のCOを、還元性ガ
スやiif燃性ガスから区別して、単一のセンサで検出
できるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The industrial field of application Ijl relates to carbon oxide detection elements, H2 and C
By combining a sensitive body that is selectively sensitive to O and an oxidation catalyst that adsorbs H2, it is possible to detect minute signs of CO with a single sensor, distinguishing it from reducing gases and IIF combustible gases. This is what I did.

従来の技術 従来のガスセンサとしては、半導体式のものや接触燃焼
式のものが知られている。を導体式ガスセンサは、金属
酸化物半導体でなる感応体部とヒータ部とからなり、金
属酸化物半導体に還元性ガスが触れたときに、金属酸化
物半導体の電気伝導度が変化するこを利用したものであ
る。接触燃焼式ガスセンサは、白金フィラメントと、貴
金属触媒を相持したアルミナ担体とからなり、if燃性
ガスが貴金属触媒上で燃焼する際の白金フィラメントの
抵抗値上昇によって、可燃性ガスを検知するものである
2. Description of the Related Art As conventional gas sensors, semiconductor type and catalytic combustion type are known. A conductive gas sensor consists of a sensing body made of a metal oxide semiconductor and a heater part, and utilizes the fact that the electrical conductivity of the metal oxide semiconductor changes when a reducing gas comes into contact with the metal oxide semiconductor. This is what I did. A catalytic combustion gas sensor consists of a platinum filament and an alumina carrier with a precious metal catalyst, and detects combustible gas by the increase in resistance of the platinum filament when the flammable gas burns on the precious metal catalyst. be.

発明が解決しようとする問題点 しかしながら、E述した従来のガスセンサは、還元性ガ
スやITf燃性ガスの検知を目的としたものであって、
例えば数1・ppm程度の′e闇のCOを、他の還元性
ガスや、可燃性ガスから区別して検出することができな
かった。
Problems to be Solved by the Invention However, the conventional gas sensor described above is aimed at detecting reducing gases and ITf flammable gases.
For example, it has not been possible to detect CO at a low level of about 1 ppm, distinguishing it from other reducing gases and combustible gases.

問題点を解決するための手段 上述する従来の問題点を解決するため、本発明に係る一
酸化炭素検出素子は、 H2及びCOに選択的感度を有
する金属酸化物半導体でなる感応体と、H7を吸ノ1さ
せる酸化触媒との組合せを特徴とする。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the carbon monoxide detection element according to the present invention includes a sensitive body made of a metal oxide semiconductor having selective sensitivity to H2 and CO; It is characterized by its combination with an oxidation catalyst that causes the inhalation of

信用 本発明に係る一酸化炭素検出素子−においては、まず、
酪化触媒によりH2を吸着する。感応体はH2とGOと
に選択的感度を有するが、前述したように、■2は酸化
触媒によって吸着されるので、感応体に接触するのはC
Oガスだけである。従って、還元性ガスやIi(燃性ガ
スから区別して、COガスだけを選択的に検知すること
ができる。
In the carbon monoxide detection element according to the present invention, first,
H2 is adsorbed by a butylation catalyst. The reactor has selective sensitivity to H2 and GO, but as mentioned above, (2) is adsorbed by the oxidation catalyst, so the only thing that comes into contact with the reactor is C.
Only O gas. Therefore, it is possible to selectively detect only CO gas, distinguishing it from reducing gas and Ii (combustible gas).

前記感応体としては例えば5n02またはZn073の
金属酸化物半導体が′a当である。これらの金属酸化物
半導体は、C01H2、炭化水素の吸着によって電気抵
抗f1が太きく変化する。特に、11000pp以゛ド
のC度のC01H2に対して敏感に感応する。また、に
述の金属酸化物半導体にPtを含有させると、100℃
以ドの温度でCOに対する感度が向ヒする。感応体はC
Oガスとの接触領域を大きくするため、多孔質焼結体と
して形成するのが望ましい。
The sensitive material is, for example, a metal oxide semiconductor such as 5n02 or Zn073. The electrical resistance f1 of these metal oxide semiconductors changes greatly due to the adsorption of C01H2 and hydrocarbons. In particular, it is sensitive to C01H2 of 11,000 pp or more. Furthermore, when Pt is added to the metal oxide semiconductor described in
Sensitivity to CO increases at temperatures below. The sensitive body is C
In order to increase the area of contact with O gas, it is desirable to form it as a porous sintered body.

次に、酸化触媒としては、Cr2O3,5n02、丁h
OまたはPdCl 2−5 io 2から選択された少
なくとも一種のものが有効である。これらの酸化触媒は
H2の吸着作用が大きい、酸化触媒のH2吸着作用は3
00℃〜400″Cの温度に加熱すると一層強くなる。
Next, as an oxidation catalyst, Cr2O3,5n02,
At least one selected from O or PdCl2-5io2 is effective. These oxidation catalysts have a large H2 adsorption effect, and the H2 adsorption effect of the oxidation catalyst is 3
It becomes even stronger when heated to a temperature of 00°C to 400″C.

従って、酸化触媒は前述の温度範囲となるように、ヒー
タ等を用いて加熱することが望ましい、また、酸化触媒
は感応体と同様に多孔質焼結体とするのが望ましい。
Therefore, it is desirable to heat the oxidation catalyst using a heater or the like so that the temperature falls within the above-mentioned temperature range, and it is also desirable that the oxidation catalyst be made of a porous sintered body like the sensitive body.

実施例 0′51図は本発明に係る一酸化炭素検出素子の斜視図
、第2図は同じくその断面図である0図において、lは
絶縁基板である。この絶縁基板lはアルミナ等のち密質
絶縁材料でなっている。
Embodiment 0'51 is a perspective view of a carbon monoxide detection element according to the present invention, and FIG. 2 is a cross-sectional view thereof. In FIG. This insulating substrate l is made of a dense insulating material such as alumina.

2は絶縁基板lの表面」;に積層して一体化された感応
体であり、5n02またはZnO2笠の金属酸化物半導
体を主成分とする多孔質焼結体で形成されている。感応
体2の相対向する両側面には、Ag。
A sensitive body 2 is laminated and integrated on the surface of the insulating substrate 1, and is formed of a porous sintered body mainly composed of a metal oxide semiconductor such as 5N02 or ZnO2. Both opposing sides of the sensitive body 2 are coated with Ag.

Ag−Pd等でなる゛上極21.22が被着形成されて
いる。
Upper electrodes 21 and 22 made of Ag--Pd or the like are deposited.

3は電気的及び熱的な絶縁層である。この絶縁層3はジ
ルコニア、Sin、アスベスト、に2TiCh。
3 is an electrically and thermally insulating layer. This insulating layer 3 is made of zirconia, Sin, asbestos, and 2TiCh.

S:Op等の比較的ポーラスな絶縁層として、感応体2
の表面を覆うように、その−面」二に一体的に積層され
ている。
As a relatively porous insulating layer such as S:Op, the sensitive body 2
It is integrally laminated on the second side so as to cover the surface of the second side.

4はヒータである。この実施例では、酸化ルテニュウム
笠の抵抗発熱体を、絶縁層3の表面に一体的に積層する
ことによって形成しである。
4 is a heater. In this embodiment, a resistance heating element made of ruthenium oxide cap is integrally laminated on the surface of the insulating layer 3.

41.42はヒータ4の両端に被着形成された電極であ
る。
41 and 42 are electrodes formed on both ends of the heater 4.

5はヒータ4の表面りに層状に一体的に積層して設けら
れた酸化触媒層であり、Cr2O3,SnOハThOま
たはPdCl2−SiO2を主成分とする多孔質焼結体
によ6て形成されている。
Reference numeral 5 denotes an oxidation catalyst layer that is integrally laminated in a layered manner on the surface of the heater 4, and is formed of a porous sintered body mainly composed of Cr2O3, SnO, ThO, or PdCl2-SiO2. ing.

1−記実施例の一酸化炭ぶ検出素子において、還元性ガ
スやt’+(燃性ガス等と共に、COガスがかえられた
場合、酸化触媒5にH2ガスが吸着する。酸化触媒5に
よって吸着されないH2ガス以外のガスは1次に、感応
体2に接触する。感応体2はH2ガス及びCOガスにの
み選択的感度を有するから、これ以外の還元性ガスや0
■燃性ガスが接触しても感度を生じることがない。ここ
で、H2ガスは酸化触媒5の吸着作用によってトラップ
されている。結局、感応体2に接触するのはCOガスだ
けとなり、COガスが感応体2の゛心気抵抗の変化とし
て検出される。
In the carbon monoxide detection element of Example 1-1, when CO gas is exchanged with reducing gas, t'+ (combustible gas, etc.), H2 gas is adsorbed on the oxidation catalyst 5. Gases other than H2 gas that are not adsorbed first come into contact with the sensitive body 2.Since the sensitive body 2 has selective sensitivity only to H2 gas and CO gas, other reducing gases and zero
■No sensitivity occurs even if flammable gas comes into contact with it. Here, the H2 gas is trapped by the adsorption action of the oxidation catalyst 5. In the end, only the CO gas comes into contact with the sensitive body 2, and the CO gas is detected as a change in the aerobic resistance of the sensitive body 2.

第1図及び第2図の実施例の場合、酸化触媒5をヒータ
4によって加熱するようにしであるので、その加熱作用
により酸化触媒5のH2ガス吸着作用が強くなり、高感
度のCOガス検出が11■能である。
In the case of the embodiments shown in FIGS. 1 and 2, the oxidation catalyst 5 is heated by the heater 4, so the heating action strengthens the H2 gas adsorption action of the oxidation catalyst 5, allowing for highly sensitive CO gas detection. is 11 ■ Noh.

感応体2は100℃以ドの温度でCOガスに対する感度
が高くなる。この実施例では、感応体2とヒータ4との
間に、電気的、熱的な絶縁層3を設けであるので、感応
体2の温度を 100℃以下に抑えて高感度化できる。
The sensitivity of the sensitive body 2 to CO gas increases at a temperature of 100° C. or higher. In this embodiment, an electrical and thermal insulating layer 3 is provided between the sensitive body 2 and the heater 4, so that the temperature of the sensitive body 2 can be suppressed to 100° C. or less and high sensitivity can be achieved.

また、絶縁基板l、感応体2、絶縁層3、ヒータ4及び
酸化触媒5を積層して一部品化しであるので、ガスセン
サとして使用するときの取扱いが容易である。
Further, since the insulating substrate 1, the sensitive body 2, the insulating layer 3, the heater 4, and the oxidation catalyst 5 are laminated into a single component, it is easy to handle when used as a gas sensor.

第3図は第1図及び第2図に示した実施例において、C
Oバガス度及びH2ガス濃度を変化させた場合の感応体
2の抵抗(l11+変化率特性図で、横軸にCOガス及
びH2ガスのC度(pps)をとり、縦軸に感応体2の
抵抗4ti変化率(%)とっである、感応体2は5n0
7を−L成分とする金属酸化物半導体でなる多孔質焼結
体とした。第3図の曲線A1〜A5はCOバガス度の抵
抗値変化率特性、曲線B+−BsはH2ガス濃度の抵抗
値変化率特性である0曲線AI及びB1は酸化触媒5と
してCr2O3を用いた場合の特性、曲線A2及びB2
は同じく5n02を用いた場合の特性、曲線A3及びB
3は同じ< ThOを用いた場合の特性、曲線A4及び
B4は同じくPdCl2−5i(hを用いた場合の特性
である6曲線A5及び曲mBsは酸化触媒5を持たない
場合の特性である。各酸化触媒5はヒータ4を動作させ
て約350℃の温度まで加熱した。
FIG. 3 shows that in the embodiment shown in FIGS. 1 and 2, C
The resistance of the sensitive body 2 when changing the O bagasse degree and the H2 gas concentration (l11 + rate of change characteristic diagram), the horizontal axis shows the C degree (pps) of the CO gas and H2 gas, and the vertical axis shows the resistance of the sensitive body 2. The resistance is 4ti change rate (%), and the sensitive body 2 is 5n0.
7 was used as a porous sintered body made of a metal oxide semiconductor containing -L component. Curves A1 to A5 in Fig. 3 are resistance change rate characteristics of CO bagasse degree, curve B+-Bs are resistance change rate characteristics of H2 gas concentration, and curves AI and B1 are when Cr2O3 is used as the oxidation catalyst 5. characteristics, curves A2 and B2
Similarly, the characteristics when using 5n02, curves A3 and B
Curves A4 and B4 are the characteristics when using PdCl2-5i (h). Curves A5 and mBs are the characteristics when the oxidation catalyst 5 is not used. Each oxidation catalyst 5 was heated to a temperature of about 350° C. by operating the heater 4.

第3図に示すように、酸化触媒5をCHO=、5110
2. ThOまたはPdC:12−5iOzで構成した
場合、曲線A1〜A4に示す如く、COガスC度が高く
なるにつれて、はぼそれに比例して、感応体2の抵抗値
変化率が大きくなって行く、これに対して、曲線B1−
84に示す如く、H2ガス濃度が高くなっていっても、
感応体2の抵抗イ1変化率はほぼ一定である。これはH
2ガスが酸化触媒5によって吸着されるからであって、
これによりCOガスC度をH2ガス濃度から分離して検
知することができる。
As shown in FIG. 3, the oxidation catalyst 5 is CHO=,5110
2. When composed of ThO or PdC: 12-5 iOz, as shown in curves A1 to A4, as the degree of CO gas C increases, the rate of change in resistance value of the sensitive body 2 increases approximately in proportion to it. On the other hand, curve B1-
As shown in 84, even if the H2 gas concentration increases,
The rate of change in resistance I1 of the sensitive body 2 is approximately constant. This is H
This is because the two gases are adsorbed by the oxidation catalyst 5,
Thereby, the CO gas C degree can be detected separately from the H2 gas concentration.

しかも、数十ppmの微41.から人体に危険を及ぼす
とされる200ppmのCOバガス度まで、直線的に変
化する特性が得られている。
What's more, it's a few tens of ppm. Characteristics that vary linearly from 200 ppm to 200 ppm CO bagasse content, which is considered dangerous to the human body, have been obtained.

酸化触媒5を持たない場合には1曲線A5と曲!a B
 Sとの比較から明らかなように、H2ガス濃度の抵抗
値変化率特性B−が、COバガス度の抵抗値変化J4I
F性A5と近似した特性となり、COバガス度に対する
感度と、 HzカスC度に対する感度との差がJ1常に
小さくなる。従って、酸化触媒5を持たない場合は、 
H2ガスC度の影響を受けてしまい、COガスをH/ガ
スから分離して検出することができない。
If you do not have oxidation catalyst 5, 1 curve A5 and the song! a B
As is clear from the comparison with S, the resistance value change rate characteristic B- of H2 gas concentration is the same as the resistance value change J4I of CO bagasse degree.
The characteristics are similar to those of F property A5, and the difference between the sensitivity to CO bagasse degree and the sensitivity to Hz gas C degree is always small. Therefore, if the oxidation catalyst 5 is not provided,
The CO gas cannot be detected separately from the H/gas because it is affected by the H2 gas C degree.

第4図は第3図に示した−・酸化炭素検出、h子の時間
応答特性図である6図において、横軸に時間(分)をと
り、縦軸に感応体2の抵抗値(Ω)を取っである。酸化
触媒5はヒータ4を動作させて約350℃の湿度まで加
熱した。この特性図に示すように、200PP層のCO
ガスを流入させた場合、感応体2の抵抗4tiが、約7
〜8分程度で、最低値まで急激に低ドする。そして、C
Oガスの流入を中l二させると約15分経過後1元の抵
抗値に復帰する良好な応答特性が得られる。
Fig. 4 is a time response characteristic diagram of the carbon oxide detection shown in Fig. 3. In Fig. 6, the horizontal axis represents time (minutes), and the vertical axis represents the resistance value (Ω ). The oxidation catalyst 5 was heated to a humidity of about 350° C. by operating the heater 4. As shown in this characteristic diagram, the CO of the 200PP layer
When gas is allowed to flow in, the resistance 4ti of the sensitive body 2 is approximately 7
It drops rapidly to the lowest value in about 8 minutes. And C
When the inflow of O gas is reduced to 12, good response characteristics can be obtained in which the resistance value returns to 1 after about 15 minutes.

発明の効果 以!−述べたように、本発明に係る一酸化炭素検出素r
は、H2及びCOに遠釈的感度を右する金属酸化物゛i
導体でなる感応体と、H2を吸着する酸化触媒とのM【
合せでなるから、微諺の一酸化炭素を。
More than the effects of invention! - As mentioned, the carbon monoxide detector according to the present invention r
are the metal oxides that have esodic sensitivity to H2 and CO.
M[
It's a combination of carbon monoxide and carbon monoxide.

還九性ガスやIIf燃性ガスからメ4別して、?i−の
センサで検出し得る一酸化炭素検出素=j−を提供でき
る。
What are the four different types of flammable gases and IIf flammable gases? It is possible to provide a carbon monoxide detection element =j- that can be detected by the sensor i-.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る一酸化炭素検出素子の外観斜視図
、第2図は同じくその断面図、第3図は第1図及び第2
図に示した未発IjIに係る一酸化炭素検出素子と、酸
化触媒を持たない一酸化炭素検出素子のCOガスC度及
びH2ガスC度−抵抗値変化率特硅図、第4図は本発明
に係る一酸化炭素検出素子の時間応答特性図である。 2・・φ感応体  3番・・絶縁層 4・・・ヒータ  5・・・酸化触媒 第1図 第2図 第3図 ’2 iL、蝉coi九−1− 第4図 1閤C冴)−一―
FIG. 1 is an external perspective view of a carbon monoxide detection element according to the present invention, FIG. 2 is a sectional view thereof, and FIG.
The carbon monoxide detection element related to unemitted IjI shown in the figure, and the carbon monoxide detection element without an oxidation catalyst, CO gas C degree and H2 gas C degree vs. resistance value change rate characteristic diagram, Figure 4 is the book. FIG. 3 is a time response characteristic diagram of the carbon monoxide detection element according to the invention. 2...φ sensitive body 3...Insulating layer 4...Heater 5...Oxidation catalyst -1-

Claims (6)

【特許請求の範囲】[Claims] (1)H_2及びCOに選択的感度を有する金属酸化物
半導体でなる感応体と、H_2を吸着させる酸化触媒と
の組合せを特徴とする一酸化炭素検出素子。
(1) A carbon monoxide detection element characterized by a combination of a sensitive body made of a metal oxide semiconductor that is selectively sensitive to H_2 and CO, and an oxidation catalyst that adsorbs H_2.
(2)前記金属酸化物半導体は、SnO_2またはZn
O_2の何れかを主成分とすることを特徴とする特許請
求の範囲第1項に記載の一酸化炭素検出素子。
(2) The metal oxide semiconductor is SnO_2 or Zn
The carbon monoxide detection element according to claim 1, characterized in that the main component is one of O_2.
(3)前記金属酸化物半導体は、Ptを含有することを
特徴とする特許請求の範囲第1項または第2項に記載の
一酸化炭素検出素子。
(3) The carbon monoxide detection element according to claim 1 or 2, wherein the metal oxide semiconductor contains Pt.
(4)前記酸化触媒は、Cr_2O_3、SnO_2、
ThOまたはPdCl_2−SiO_2から選択された
少なくとも一種でなることを特徴とする特許請求の範囲
第1項、第2項または第3項に記載の一酸化炭素検出素
子。
(4) The oxidation catalyst includes Cr_2O_3, SnO_2,
The carbon monoxide detection element according to claim 1, 2, or 3, characterized in that it is made of at least one selected from ThO or PdCl_2-SiO_2.
(5)前記感応体及び前記酸化触媒は、多孔質焼結体で
なることを特徴とする特許請求の範囲第1項、第2項、
第3項または第4項に記載の一酸化炭素検出素子。
(5) Claims 1 and 2, characterized in that the sensitive body and the oxidation catalyst are made of porous sintered bodies.
The carbon monoxide detection element according to item 3 or 4.
(6)前記酸化触媒を加熱するヒータを有することを特
徴とする特許請求の範囲第1項、第2項、第3項、第4
項または第5項に記載の一酸化炭素検出素子。
(6) Claims 1, 2, 3, and 4 further include a heater that heats the oxidation catalyst.
The carbon monoxide detection element according to item 5 or item 5.
JP9573786A 1986-04-24 1986-04-24 Carbon monoxide detecting element Pending JPS62251648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9573786A JPS62251648A (en) 1986-04-24 1986-04-24 Carbon monoxide detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9573786A JPS62251648A (en) 1986-04-24 1986-04-24 Carbon monoxide detecting element

Publications (1)

Publication Number Publication Date
JPS62251648A true JPS62251648A (en) 1987-11-02

Family

ID=14145795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9573786A Pending JPS62251648A (en) 1986-04-24 1986-04-24 Carbon monoxide detecting element

Country Status (1)

Country Link
JP (1) JPS62251648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466858A (en) * 1990-07-06 1992-03-03 New Cosmos Electric Corp Carbon monoxide gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466858A (en) * 1990-07-06 1992-03-03 New Cosmos Electric Corp Carbon monoxide gas sensor

Similar Documents

Publication Publication Date Title
EP0115182B1 (en) Gas sensor
US5767388A (en) Methane sensor and method for operating a sensor
US4099922A (en) Gas component detection apparatus
US4441981A (en) Gas sensor
JPH07500916A (en) Selective gas detection device
JPS62251648A (en) Carbon monoxide detecting element
JPS6137577B2 (en)
EP0334614A3 (en) Catalytic gas detector
JPH06174674A (en) Semiconductor gas sensor
JPH0220681Y2 (en)
JPH04269650A (en) Oxide semiconductor gas sensor
JPH03289555A (en) Gas sensor
JPH02263145A (en) Semiconductor type gas sensor
JPH07209234A (en) Semiconductor gas sensor
JPS6117297B2 (en)
JPH053974Y2 (en)
RU2096774C1 (en) Sensor determining concentration of gases
KR0179136B1 (en) Gas detecting sensor
JPH04323548A (en) Gas detecting device
JPS587941B2 (en) Tokutei Ino Kangensei Gaso Sentaku Techini Kenshiyutsu Sultame no Fukugogata Gas Kenchisoshi
JPS6326334B2 (en)
KR870001053B1 (en) Co gas detecting apparatus
JPS60114757A (en) Gas detecting bridge
JPH05223769A (en) Nitride oxide gas detector element
JPH06265505A (en) Detecting element for nitrogen oxide gas