JPS62251575A - Sealing pressure controlling method using visco-seal - Google Patents
Sealing pressure controlling method using visco-sealInfo
- Publication number
- JPS62251575A JPS62251575A JP9242986A JP9242986A JPS62251575A JP S62251575 A JPS62251575 A JP S62251575A JP 9242986 A JP9242986 A JP 9242986A JP 9242986 A JP9242986 A JP 9242986A JP S62251575 A JPS62251575 A JP S62251575A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- seal
- visco
- sealant
- opposed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007789 sealing Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims description 13
- 239000000565 sealant Substances 0.000 claims abstract description 37
- 239000012530 fluid Substances 0.000 claims abstract description 29
- 239000007789 gas Substances 0.000 claims 2
- 239000011261 inert gas Substances 0.000 claims 2
- 239000007788 liquid Substances 0.000 abstract description 50
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052700 potassium Inorganic materials 0.000 abstract description 6
- 239000011591 potassium Substances 0.000 abstract description 6
- 238000001816 cooling Methods 0.000 abstract 1
- 230000008859 change Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000013543 active substance Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明は、蒸気タービンあるいはポンプ等の回転軸から
被密封流体の漏れを防ぐ軸シールのうち、化学的に活性
な物質でも使用できるビスコシールの密封圧力を拡大し
、さらに圧力変動を補償するための制御方法に関するも
のである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a shaft seal that prevents leakage of sealed fluid from the rotating shaft of a steam turbine or pump, and which can be used even with chemically active substances. The present invention relates to a control method for increasing the sealing pressure of and further compensating for pressure fluctuations.
従来から°°軸シール”は、例えば、水蒸気タービンの
軸シールの場合は接触式のメカニカルシールや碧気圧を
減じて行く非接触式のラビリンスシールが使われている
。メカニカルシールは接触式であるため、シール圧も大
きく完全密封に近い状態にできるが、蒸気等の被密封流
体の種類によっては、シール材料に腐食を生じるため、
例えば、被密封流体が金属カリウム蒸気のような化学的
に非常に活性な物質の場合には長時間使用できないなど
かなりの制約を受ける。一方、ラビリンスシールは非接
触式のため被密封流体による腐食に関してそれほど厳し
くないが蒸気等の漏れを完全に防ぐことはその構造上で
きない、他方、対向ビスコシールは実用例がほとんどな
く、わずかに高速増殖炉用Naポンプ軸シールや米国の
NA’?Aが宇宙電源発電機に使用することを計画した
ことが知られている程度である。対向ビスコシールは化
学的に非常に活性な物質を被密封流体とする場合にでも
ほぼ“完全な密封”が可能であるが、軸シール長当たり
の密封圧力が小さいことと、軸回転停止時には漏れる欠
点がある。この対向ビスコシールを使用する場合1回転
停止の漏れについてはシールシステムおよびシステム運
転方法によってト分カバーできることが確認されている
。Traditionally, "°°shaft seals" have been used, for example, in the case of steam turbine shaft seals, contact-type mechanical seals and non-contact-type labyrinth seals that reduce atmospheric pressure. Mechanical seals are contact-type seals. Therefore, the sealing pressure is high and a state close to complete sealing can be achieved, but depending on the type of fluid to be sealed, such as steam, the sealing material may corrode.
For example, if the fluid to be sealed is a chemically very active substance such as metallic potassium vapor, there are considerable restrictions such as the inability to use it for a long period of time. On the other hand, since the labyrinth seal is a non-contact type, it is not so severe in terms of corrosion caused by the sealed fluid, but due to its structure, it cannot completely prevent the leakage of steam, etc. On the other hand, the opposed visco seal has few practical examples and has a slightly higher speed. Na pump shaft seal for breeder reactors and US NA'? It is only known that A planned to use it as a space power generator. Opposing visco seals are capable of almost "complete sealing" even when the sealed fluid is a chemically very active substance, but the sealing pressure per shaft seal length is small and leakage occurs when the shaft rotation stops. There are drawbacks. It has been confirmed that when this opposed visco seal is used, leakage caused by one rotation stop can be covered by the seal system and system operating method.
本発明は、上記の対向ビスコシールの密封圧力を実質上
大きくすることと圧力変動に追随することを目的とする
ものである。もともとビスコシールは回転軸と固定部(
ハウジング)との間隙(クリアランス)を小さくするか
1周速度を大きくすることにより密封圧力を大きくする
ことができる。しかし、現実にはその限界があり、それ
ほど大きくできない、上記以外にビスコシール部のポン
プ圧力を大きくして密封圧力を高める方法としてシーラ
ントを一部漏洩させる方法が考えられる。この場合は被
密封流体とシーラントが同一物質であることが必要であ
る。ただし、シーテントが被密封流体と分離できる場合
は同一物質でなくてもよい0本発明はこのようなことが
許される場合に使用可能となる。この方法の利点はシー
テントを被密封流体側に流すことにより、シーラントを
流さない場合に比べて数倍以上の密封圧力がとれるので
軸シール長が短くでき、かつ、カバーガス圧力all!
!は一定圧力に加圧するだけなので、被密封流体の圧力
変動に対応したカバーガス圧力の制御を必要としないこ
と、また、シーラントの流れによってシール部を冷却で
きることが上げられる。The present invention aims to substantially increase the sealing pressure of the opposed visco seal and to follow pressure fluctuations. Originally, Visco Seal had a rotating shaft and a fixed part (
The sealing pressure can be increased by reducing the gap (clearance) with the housing or by increasing the per-peripheral speed. However, in reality, there is a limit to this, and it cannot be increased that much.In addition to the above method, a method of increasing the sealing pressure by increasing the pump pressure of the visco seal part is to partially leak the sealant. In this case, it is necessary that the fluid to be sealed and the sealant are the same substance. However, if the seal tent can be separated from the fluid to be sealed, they may not be made of the same material. The present invention can be used in cases where this is permitted. The advantage of this method is that by flowing the sealant toward the fluid to be sealed, the sealing pressure can be several times higher than when no sealant is flowing, so the shaft seal length can be shortened, and the cover gas pressure all!
! Since the pressure is simply increased to a constant pressure, there is no need to control the cover gas pressure in response to pressure fluctuations of the fluid to be sealed, and the sealing portion can be cooled by the flow of the sealant.
この方法は遮蔽室をほぼ真空にする場合には最も制御が
簡単で、かつ、化学的に非常に活性な流体、例えば、金
属カリウム蒸気タービンの軸シール等に適している。な
お、高温でも十分使用できるのでその応用範囲が広い。This method is easiest to control when the shielded chamber is almost evacuated, and is suitable for chemically very active fluids, such as shaft seals of metallic potassium steam turbines. Furthermore, since it can be used satisfactorily even at high temperatures, its range of applications is wide.
第1図は、カリウム蒸気タービンの回転軸シールシステ
ムにおける対向ビスコシールの密封圧力制御システム例
を示す0図において、左側にタービン(1)、右側に発
電機(図示せず)、この間、回転軸(1B)にそって対
向ビスコシール(ビスコシール(22)(24)を互い
に逆向きネジに切って回転軸上に組み込み、互いにその
ポンプ作用による圧力(ポンプ圧力)がその中央部に加
わるようにしたビスコシールを総称して対向ビスコシー
ルという、またその中央部を対向部(23)という、こ
の対向1’fB (23)は通常ネジを切っていない)
が設けられている。そしてこの対向ビスコシールの発電
機側にメカニカルシール(13)(15)および軸受(
図示せず)がある、対向ビスコシールとメカニカルシー
ル(13)(15)の間に0空間″(20)を設ける(
以後。Figure 1 shows an example of a sealing pressure control system for opposed visco seals in a rotating shaft seal system for a potassium steam turbine. (1B), cut the opposing visco seals (visco seals (22) and (24) with opposite threads and install them on the rotating shaft, so that the pressure (pump pressure) due to the pump action of each is applied to the center part. The Visco seals that are made are collectively called the Opposite Visco Seal, and the central part is called the Opposite part (23).This Opposite 1'fB (23) is usually not threaded)
is provided. Then, mechanical seals (13) (15) and bearings (
A zero space'' (20) is provided between the opposing visco seal and the mechanical seals (13) and (15) (not shown).
After that.
この空間(20)を遮蔽室という)、対向ビスコシール
内はカリウム液がシーラント(3)として満たされ、遮
蔽室(20)側には気液界面(21)が存在するように
しく気液界面(2りの対向部(23)からの長さは液槽
(4)内のシーラント(3)の高さ、すなわち。This space (20) is called a shielding chamber), the opposing visco seal is filled with potassium liquid as a sealant (3), and a gas-liquid interface (21) is created on the shielding chamber (20) side. (The length from the two opposing parts (23) is the height of the sealant (3) in the liquid tank (4), that is.
カリウム液のヘッド(b)と液槽(0内のカバーガス圧
力および遮蔽室(20)の圧力とのバランスによって決
まる)、タービン(1)側にはシーラント(3)が漏洩
するように図の右側ビスコシール(22)に比べ左側(
タービン(1)側)のビスコシール(24)のネジ部を
短くするかまたはクリアランスを大きくする。この漏洩
量は液槽(0内のカバーガス圧力を圧力センサ(29)
で検知し制御器(9)で処理して電磁弁(27)を作動
させ一定圧力になるようにする(この考え方は対向fi
(23)の圧力を一定にする方法である)、また、液
槽(4)内のシーラント(3)の液頭(ヘッド(h))
が一定になるようにシーラント供給系が付加されている
。この液槽(4)内の液面(5)は、例えば、第1図の
A、Hの液面計でその位置を検出して制御器(6)を通
して流1制御弁(7)でシーラント(3)を制御する。The head (b) of the potassium liquid and the liquid tank (determined by the balance between the cover gas pressure in the 0 and the pressure in the shielding chamber (20)), and the turbine (1) side are arranged so that the sealant (3) does not leak. Compared to the right visco seal (22), the left side (
Shorten the threaded part of the visco seal (24) on the turbine (1) side or increase the clearance. This leakage amount is measured by a pressure sensor (29) that measures the cover gas pressure in the liquid tank (0).
It is detected by the controller (9), and the solenoid valve (27) is activated to maintain a constant pressure.
(23)), and the liquid head (head (h)) of the sealant (3) in the liquid tank (4).
A sealant supply system is added to keep the amount constant. The liquid level (5) in this liquid tank (4) is detected, for example, by the liquid level gauges A and H in Fig. 1, and the sealant is applied to the flow 1 control valve (7) through the controller (6). (3).
遮蔽室(20)の圧力は液槽(4)内の圧力と同じにす
れば気液界面(21)の位置はヘッド(h)一定により
変わらない、また遮蔽室(?0)の圧力を独立して一定
圧力に保つようにしても気液界面(21)は液4a(0
内のガス圧カ一定によって変わらない、しかし、この場
合は気液界面(21)の位置はヘッド(h)および遮蔽
室(20)圧力と液槽(0圧力によってバランスする位
置となる。If the pressure in the shielding chamber (20) is made the same as the pressure in the liquid tank (4), the position of the gas-liquid interface (21) will not change because the head (h) is constant, and the pressure in the shielding chamber (?0) can be made independent. Even if the pressure is maintained at a constant level, the gas-liquid interface (21)
However, in this case, the position of the gas-liquid interface (21) is balanced by the head (h) and shielding chamber (20) pressures and the liquid tank (0 pressure).
上記の設定条件(軸回転数、液槽(0内圧力、へ−2ド
(h)ニ一定)では一定流量のシーラント(3)が漏洩
する。しかし、この漏洩量はタービン(被密封流体)側
の圧力変動に順応して変化するので後述(第2図)のよ
うにその限界以下では自分自身で自動的に密封圧力を制
御する結果になる。そのほか(8011)(1B)(2
8)は手動弁、 (12)は減圧2m!弁、 (14)
は潤滑油、 (19)はドレン、(2B)はタービン(
1)側の軸シール部端を示し、シーラント(3)中とく
に流出部分を(25)で示している。Under the above setting conditions (shaft rotation speed, liquid tank (0 internal pressure, constant head (h)), a constant flow rate of sealant (3) leaks. However, this leakage amount is limited to the turbine (sealed fluid). Since the sealing pressure changes according to side pressure fluctuations, it automatically controls the sealing pressure by itself below the limit as described later (Figure 2).Others (8011) (1B) (2
8) is a manual valve, (12) is a pressure reduction of 2m! valve, (14)
is lubricating oil, (19) is drain, (2B) is turbine (
The end of the shaft seal portion on the side 1) is shown, and the outflow portion of the sealant (3) is shown as (25).
第1図において例えば遮蔽室(20)の圧力を真空ポン
プで弓1いてほぼθ気圧とすると、対向ビスコシールの
右側ビスコシール(22)の気液界面(21)の位置は
液槽(4)内の圧力と液fi(ヘー、ド(h))の和が
ビスコシール(22)のポンプ圧と釣り合うところで安
定する。この状態でタービン(1)側の被密封流体の圧
力が上昇すると、左側ビスコシール(24)のシーラン
ト(3)の漏洩が少なくなり、ついに漏洩が止まり気液
界面(図示せず)が生じ、その気液界面が対向部(23
)に至る。したがって対向部(23)に至るまでは右側
ビスコシール(22)の気液界而(21)は安定である
から、この間の被密封流体の圧力変化が許される。また
、タービン(1)側の圧力が低くなり遂に0気圧となる
まで下がると、タービン(1)側へのシーテント(3)
の漏洩量は最大となる。この原理を以下に説明する。In Fig. 1, for example, if the pressure in the shielded chamber (20) is set to approximately θ atmosphere by using a vacuum pump, the position of the gas-liquid interface (21) of the right visco seal (22) of the opposing visco seal is at the liquid tank (4). It becomes stable when the sum of the internal pressure and the liquid fi (he, de (h)) balances the pump pressure of the visco seal (22). In this state, when the pressure of the sealed fluid on the turbine (1) side increases, the leakage of the sealant (3) of the left visco seal (24) decreases, and finally the leakage stops and a gas-liquid interface (not shown) occurs. The gas-liquid interface is the opposing part (23
). Therefore, since the gas-liquid interface (21) of the right visco seal (22) is stable until it reaches the opposing part (23), pressure changes in the fluid to be sealed are allowed during this time. Also, when the pressure on the turbine (1) side becomes low and finally reaches 0 atmospheres, the seat tent (3) on the turbine (1) side
The amount of leakage is maximum. This principle will be explained below.
第2図は縦軸にシーラント漏洩量、横軸にビスコシール
のポンプ圧力をとり、その特性を示したものである0図
ΦN1.N2は軸(IB)の回転数でN、<N、である
、a点は軸回転数N、の場合の漏洩量=Oにおけるポン
プ圧力で通常”締切圧”と呼ばれ、ポンプ圧力がこの圧
力以下のときは気液界面カヒスコシール内にできる。ま
た、シーラント(3)を漏洩させるとそのポンプ圧力は
その漏洩量に比例して大きくなる特性をもっている。い
ま、第1図の対向ビスコシールについて考えると、第1
図の左側ビスコシール(24)にシーラント(3)全
漏洩させ、最初、第2図のb点であったとする。Figure 2 shows the characteristics of the sealant leakage amount on the vertical axis and the pump pressure of the Visco seal on the horizontal axis. N2 is the rotational speed of the shaft (IB), N, <N. Point a is the pump pressure at the shaft rotational speed N, leakage amount = O, which is usually called the "shutoff pressure", and the pump pressure is When the pressure is lower than that, a gas-liquid interface is formed within the Kahisko seal. Furthermore, when the sealant (3) leaks, the pump pressure increases in proportion to the amount of leakage. Now, if we consider the opposed visco seal in Fig. 1, the first
It is assumed that the sealant (3) is completely leaked from the visco seal (24) on the left side of the figure and is initially at point b in Figure 2.
このとき、第1図の各部の圧力バランスがとれていたと
する。ここで被密封流体の圧力(タービン(1)側圧力
)が上昇して来ると、対向部(23)の圧力は一定にし
ているので、左側ビスコシール(24)のポンプ圧力が
小さくならねばならない、第2図において、この圧力変
化をみると、最初、シーラント漏洩lb点に対応するd
点のポンプ圧力は、例えば、e点へ移り、その分だけシ
ーラント漏洩量は減少してe点の圧力に対応するg点に
移る。At this time, it is assumed that the pressures in each part of FIG. 1 are balanced. Here, when the pressure of the sealed fluid (pressure on the turbine (1) side) increases, the pump pressure of the left visco seal (24) must decrease because the pressure in the opposing part (23) is kept constant. , in Fig. 2, when looking at this pressure change, at first d corresponds to the sealant leakage point lb.
For example, the pump pressure at point moves to point e, the amount of sealant leakage decreases by that amount, and moves to point g, which corresponds to the pressure at point e.
このように第1図における対向ビスコシール(7)圧力
バランスは保たれることになる。すなわち。In this way, the pressure balance between the opposing visco seals (7) in FIG. 1 is maintained. Namely.
シーラント漏洩量の変化が、圧力バランスを自動的に調
整する結果となる。しかし、この圧力変化は被密封流体
の圧力が高くなって漏洩量が0となり、第2図のa点に
来ると、気液界面(図示せず)が生じる。箸1図でみる
と、左側ビスコシール(24)に生じ、さらに、圧力が
大きくなり、ついにその気液界面が対向部(23)に達
すると圧力バランスは崩れ、タービン(1)側の被密封
流体は左側ビスコシール(24)をぬけて対向a!!(
23)から液槽(4)へ、そしてまた右側ビスコシール
(22)へもぬけて密封状態が破れる。したがって、こ
の範囲までの圧力1昇が被密封流体の圧力変化として許
される。他方、被密封流体の圧力が小さくなると、第2
図から分かるようにシーラント漏洩量は増え、ポンプ圧
力は大きくなり、その圧力バランスを保つようになるの
でシーラント供給系の8騒が十分であれば被密封流体の
圧力がθ気圧まで下かっても圧力バランスは崩れない、
したがって、この圧力変動範囲はシーラント(3)を漏
洩させない場合に比べてはるかに大きい密封圧力をつく
ることができる。ただし1本発明はシーラント(3)の
供給系または循環系路が必要である。このシーラント(
3)を供給する場合、第1図に示す例では、液槽(4)
内の液f!A(ヘッド(h))を一定に保つための液位
制御器(6)が必要である。この液位センサは第1図〒
はA、Bによって上位、下位を検出する電極棒を図示し
ているが、液位検出はシーラント(3)の種類によって
は他の方法にしなくてはならない。Changes in the amount of sealant leakage result in automatic adjustment of the pressure balance. However, this pressure change causes the pressure of the sealed fluid to increase and the amount of leakage becomes 0, and when it reaches point a in FIG. 2, a gas-liquid interface (not shown) occurs. Looking at Chopsticks 1, the pressure is generated in the left visco seal (24), increases further, and finally when the gas-liquid interface reaches the opposing part (23), the pressure balance collapses and the sealed seal on the turbine (1) side The fluid passes through the left visco seal (24) and flows to the opposite side a! ! (
23) to the liquid tank (4) and also to the right visco seal (22), breaking the seal. Therefore, a pressure increase of 1 up to this range is allowed as a change in the pressure of the sealed fluid. On the other hand, when the pressure of the sealed fluid decreases, the second
As you can see from the figure, the amount of sealant leakage increases, the pump pressure increases, and the pressure balance is maintained, so if the sealant supply system has sufficient noise, the pressure will be balanced even if the pressure of the sealed fluid drops to θ atmosphere. will not collapse,
Therefore, this pressure fluctuation range can create a much greater sealing pressure than when the sealant (3) does not leak. However, the present invention requires a supply system or circulation path for the sealant (3). This sealant (
3), in the example shown in Figure 1, the liquid tank (4)
Liquid inside f! A liquid level controller (6) is required to keep A (head (h)) constant. This liquid level sensor is shown in Figure 1.
1 shows electrode rods for detecting the upper and lower parts by A and B, but liquid level detection may have to be done using other methods depending on the type of sealant (3).
つぎに、液槽(4)および遮蔽室(20)内のカバーガ
スの圧力について述ヘル。Next, the pressure of the cover gas in the liquid tank (4) and the shielding chamber (20) will be described.
第1図において、液槽(4)内の圧力を一定に保つには
、圧力センサ(28)によりその圧力を検出し、その信
号を制御器(8)で判断、処理して電磁弁(27)を作
動させて液槽(0内の圧力を制御する。他方、遮蔽室(
20)がO気圧でなく一定圧力を維持する場合は圧力セ
ンナ(30)によりその圧力を積山して制御器(9)に
よって判断、処理して電磁弁(lO)または電磁弁(1
7)を作動させて遮蔽室(20)の圧力を一定圧に保つ
、このとき液槽(0と遮蔽室(20)内の圧力関係とし
て、この両部の圧力を等しくするか(この方法は図示さ
れていないが圧力制御が1系列になり制御が簡単になる
)、または液槽(4)内の圧力の方を高くするか(この
方法は液槽(4)内のヘッド(h)を低くできる。しか
し。In Fig. 1, in order to keep the pressure in the liquid tank (4) constant, the pressure is detected by a pressure sensor (28), the signal is judged and processed by a controller (8), and a solenoid valve (27) is used to detect the pressure. ) to control the pressure in the liquid tank (0).On the other hand, the shielded chamber (
20) maintains a constant pressure instead of O atmospheric pressure, the pressure is accumulated by the pressure sensor (30), judged and processed by the controller (9), and the solenoid valve (lO) or the solenoid valve (1
7) to maintain the pressure in the shielded chamber (20) at a constant pressure. At this time, the pressure relationship between the liquid tank (0) and the shielded chamber (20) is to make the pressures in both parts equal (this method is (Although not shown in the figure, the pressure control becomes one line, making the control easier), or the pressure in the liquid tank (4) is made higher (this method increases the pressure in the head (h) in the liquid tank (4)). It can be lowered. However.
図のように制御が2系列となってより複雑となる)の方
法がある。いずれにしても右側ビスコシール(22)内
の気液界面(2りが一定位置を保つように液槽(4)お
よび遮蔽室(20)内の圧力を制御しなくてはならない
。As shown in the figure, there is a method in which the control is performed in two series, making it more complicated. In any case, the pressure in the liquid tank (4) and the shielding chamber (20) must be controlled so that the gas-liquid interface (2) in the right visco seal (22) maintains a constant position.
これまでの説明は軸回転数一定の条件で行なったが、軸
回転数が変化した場合、すなわち、大きな負荷変動、運
転の立ち上げおよび停止などの場合はカバーガス圧力を
制御しなければならない、それには第1図の回転数セン
サ(回転計)(35)により、その変動を検出し、これ
を制御器(3)で判断、処理して電磁弁(to)(17
)(27)を作動させ液槽(0および遮蔽室(20)内
のカバーガス圧力を制御し、常に回転数に対応した対向
部(23)の圧力に保持すればよい、ただし気液界面(
21)の位置を一定にする軸回転数と対向部(23)の
圧力関係はビスコシールの形状1寸法、シーラント温度
。The explanation so far has been made under the condition that the shaft rotation speed is constant, but when the shaft rotation speed changes, that is, when there is a large load change, start-up and stop of operation, etc., the cover gas pressure must be controlled. To do this, the rotational speed sensor (tachometer) (35) shown in Fig. 1 detects the fluctuation, and the controller (3) judges and processes this to control the solenoid valve (to) (17).
) (27) to control the cover gas pressure in the liquid tank (0) and the shielding chamber (20), and keep it at the pressure in the opposing part (23) that corresponds to the rotational speed at all times, provided that the gas-liquid interface (
The relationship between the shaft rotation speed that keeps the position of 21) constant and the pressure of the opposing part (23) is determined by the shape and dimensions of the visco seal and the sealant temperature.
気液界面の位置設定等によって一義的に決まるので制御
器(8)にあらかじめ記憶させておく必要がある。Since it is uniquely determined by the position setting of the gas-liquid interface, etc., it is necessary to store it in the controller (8) in advance.
本発明は回転軸シールに関するものでタービン蒸気に限
らず、例えば第1図のタービンケーシング(2)内が液
体で満たされ、その液を撹拌する装置あるいはポンプの
場合でも、前述と同じ方法でこの液を密封することがで
きる。The present invention relates to a rotary shaft seal, and is not limited to turbine steam. For example, the turbine casing (2) in FIG. The liquid can be sealed.
第3図は対向部の圧カ一定の考え方で第1図と“同様の
シーラント(3)を被密封流体側へ流出させる方法の他
の例を書いたものである。この場合は対向部(23)の
圧力変動を圧力センサ(30)により検出して制御器(
9)で判断、処理して電磁ポンプ(32)を作動させそ
の加圧力を一定にする方法である0図においてアキュム
レータ(31)はこの系の圧力ノイズを吸収するもので
ある。この場合は液槽(サービスタンク:34)の界面
のヘッドは第1図と違って一定にする必要がない、 (
33)は手動弁である。Figure 3 shows another example of a method for causing the same sealant (3) to flow out to the sealed fluid side as shown in Figure 1, based on the idea that the pressure at the facing part is constant.In this case, the pressure at the facing part ( 23) is detected by the pressure sensor (30) and the controller (
9), the electromagnetic pump (32) is activated and its pressurizing force is kept constant. In Figure 0, the accumulator (31) absorbs the pressure noise of this system. In this case, the head at the interface of the liquid tank (service tank: 34) does not need to be constant, unlike in Figure 1.
33) is a manual valve.
本発明は、被密封流体と密封流体との圧力差が大さく対
向ビスコシールのポンプ圧のみでは密封できない場合で
も適用できるのでその適用範囲が広いという長所の他に
、カバーガス圧力制御および液槽内のヘッドの調整が比
較的安易であること、シーラントを被密封流体側へ流出
させるのでシール部およびシャフトに伝わる熱の冷却が
容易であるなどの長所がある。The present invention has the advantage that it can be applied even in cases where the pressure difference between the sealed fluid and the sealed fluid is large and sealing cannot be achieved with only the pump pressure of the opposed visco seal, so it has a wide range of application. Advantages include that it is relatively easy to adjust the internal head, and because the sealant flows out to the sealed fluid side, it is easy to cool the heat transmitted to the seal portion and the shaft.
第゛1図は本発明の実施に使用する軸封装置の−例を示
す配管図、第2図はビスコシールの圧力特性を示す説明
図、第3図は軸封装置の他の例を示す配管図である。
(1)タービン (2)タービンケーシング(3)シ
ーテント (4)液槽 (5)液面(6)液位制御
器 (7)流量制御弁(8)(11)(18)(28
)(33)手動弁 (8)制御器(10)(17)(
27)電磁弁 (12)減圧調整弁<13>Cl5)
)カ二力AtシーAt (14)it!l滑油(1
B)M転軸 (18)ドレy (20)遮蔽室(
21)気液界面 (22)右側ビスコシール(23)
対向部 (20左側ビスコシール(25)流出シーラ
ント
(26)タービン側軸シール部端
(29)(30)圧力センサ (31)アキュムレー
タ(32)電磁ポンプ (34)サービスタンク(3
5)回転数センサFig. 1 is a piping diagram showing an example of the shaft sealing device used in carrying out the present invention, Fig. 2 is an explanatory diagram showing the pressure characteristics of the Visco seal, and Fig. 3 shows another example of the shaft sealing device. It is a piping diagram. (1) Turbine (2) Turbine casing (3) Sea tent (4) Liquid tank (5) Liquid level (6) Liquid level controller (7) Flow rate control valve (8) (11) (18) (28
) (33) Manual valve (8) Controller (10) (17) (
27) Solenoid valve (12) Pressure reduction regulating valve <13>Cl5)
) Kaniriki At Sea At (14) it! l Lubricating oil (1
B) M rotation axis (18) Drey (20) Shielding chamber (
21) Gas-liquid interface (22) Right side visco seal (23)
Opposing part (20 Left side visco seal (25) Outflow sealant (26) Turbine side shaft seal end (29) (30) Pressure sensor (31) Accumulator (32) Electromagnetic pump (34) Service tank (3)
5) Rotation speed sensor
Claims (1)
上に組み合わせた粘性シール(以後、対向ビスコシール
という)を用いて流体を密封する場合において、この対
向ビスコシールの一端に被密封流体を配し、他端に必要
に応じて不活性ガスをカバーガス(不活性ガスを必要と
しない場合は空気その他のガスでもよい、あるいは真空
も有り得る)として配し、その中間すなわち対向ビスコ
シール内に密封流体(以後、シーラントという)を他に
設けたシーラント供給系からその中央部(対向部)へ設
定圧力を加えて供給し、対向ビスコシールの被密封流体
側にシーラントを一部漏洩させることにより軸シールの
密封圧力を拡大し、さらに被密封流体の圧力変動をシー
ラント漏洩量が自動的に追随することによって対向部の
圧力を一定に保持するビスコシールを用いた密封圧力制
御方法。When sealing a fluid using a viscous seal (hereinafter referred to as opposed visco seal) that combines visco seals that are threaded in opposite directions on the same rotating shaft, the fluid to be sealed is placed at one end of this opposed visco seal. At the other end, if necessary, place an inert gas as a cover gas (if an inert gas is not required, air or other gas may be used, or a vacuum may be used), and seal in the middle, that is, within the opposing visco seal. Fluid (hereinafter referred to as sealant) is supplied from another sealant supply system to the central part (opposing part) under a set pressure, and a part of the sealant leaks to the sealed fluid side of the opposing visco seal. A sealing pressure control method using a visco seal that expands the sealing pressure of the seal and maintains the pressure of the opposing part constant by automatically following the pressure fluctuations of the sealed fluid with the amount of sealant leakage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9242986A JPS62251575A (en) | 1986-04-23 | 1986-04-23 | Sealing pressure controlling method using visco-seal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9242986A JPS62251575A (en) | 1986-04-23 | 1986-04-23 | Sealing pressure controlling method using visco-seal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62251575A true JPS62251575A (en) | 1987-11-02 |
JPH0258506B2 JPH0258506B2 (en) | 1990-12-07 |
Family
ID=14054193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9242986A Granted JPS62251575A (en) | 1986-04-23 | 1986-04-23 | Sealing pressure controlling method using visco-seal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62251575A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011069267A (en) * | 2009-09-25 | 2011-04-07 | Mitsubishi Heavy Industries Compressor Corp | Compressor |
US9568101B2 (en) | 2012-06-04 | 2017-02-14 | Hoerbiger Kompressortechnik Holding Gmbh | Sealing configuration for sealing a reciprocating piston rod of a piston compressor |
-
1986
- 1986-04-23 JP JP9242986A patent/JPS62251575A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011069267A (en) * | 2009-09-25 | 2011-04-07 | Mitsubishi Heavy Industries Compressor Corp | Compressor |
US9568101B2 (en) | 2012-06-04 | 2017-02-14 | Hoerbiger Kompressortechnik Holding Gmbh | Sealing configuration for sealing a reciprocating piston rod of a piston compressor |
Also Published As
Publication number | Publication date |
---|---|
JPH0258506B2 (en) | 1990-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3724861A (en) | New trapped bushing seal | |
US4010960A (en) | Rotating seal | |
US4078809A (en) | Shaft seal assembly for a rotary machine | |
US5147015A (en) | Seal oil temperature control method and apparatus | |
CN101769379B (en) | Active type adaptive control mechanical sealing device and control method | |
US4722534A (en) | Face seal with automatic face convergence means | |
US4722663A (en) | Seal-off mechanism for rotating turbine shaft | |
US20070172367A1 (en) | Flow restricting devices in pumps | |
US4168936A (en) | Stuffing box | |
KR910008912A (en) | Shaft sealing material cooling method and apparatus | |
US5149249A (en) | Shaft seal assembly, especially for high-pressure turbocompressors | |
US2895751A (en) | Hydrogen seal for dynamoelectric machines | |
US4095806A (en) | Seal arrangement | |
US11333251B2 (en) | Hydraulically controllable mechanical seal | |
US2895750A (en) | Automatic thrust device for hydrogen seal | |
JPS62251575A (en) | Sealing pressure controlling method using visco-seal | |
Salant et al. | Development of an electronically controlled mechanical seal for aerospace applications | |
US20030122323A1 (en) | Seal support systems-automatic re-fill device | |
US4341093A (en) | Device for leading cooling liquid out of rotary electric machine with liquid cooled rotor | |
US4580791A (en) | Variable friction secondary seal for face seals | |
JPH0220803B2 (en) | ||
US3587638A (en) | Coolant coupling head | |
US4069101A (en) | Self-compensating level control for sump suction pumps | |
CN201636324U (en) | Sealing device of active self-adaptive control machine | |
JPH0474590B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |