JPS62251411A - Manufacture of valve lifter for internal combustion engine - Google Patents
Manufacture of valve lifter for internal combustion engineInfo
- Publication number
- JPS62251411A JPS62251411A JP9603786A JP9603786A JPS62251411A JP S62251411 A JPS62251411 A JP S62251411A JP 9603786 A JP9603786 A JP 9603786A JP 9603786 A JP9603786 A JP 9603786A JP S62251411 A JPS62251411 A JP S62251411A
- Authority
- JP
- Japan
- Prior art keywords
- valve lifter
- sintered alloy
- boride
- layer
- camshaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 62
- 239000000956 alloy Substances 0.000 claims abstract description 62
- 239000002245 particle Substances 0.000 claims abstract description 26
- 238000011282 treatment Methods 0.000 claims abstract description 25
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 10
- 238000005498 polishing Methods 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 239000011230 binding agent Substances 0.000 claims description 17
- 229910001105 martensitic stainless steel Inorganic materials 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 11
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 7
- 239000010935 stainless steel Substances 0.000 abstract description 7
- 229910000734 martensite Inorganic materials 0.000 abstract description 2
- 239000012071 phase Substances 0.000 description 25
- 239000000463 material Substances 0.000 description 18
- 238000005255 carburizing Methods 0.000 description 15
- 238000005256 carbonitriding Methods 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 238000005245 sintering Methods 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000010791 quenching Methods 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- 238000005496 tempering Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000010273 cold forging Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Valve-Gear Or Valve Arrangements (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
t9.明の目的]
(産業上の利用分野)
この発明は、自動車用内燃機関の動弁機構部品J#l
−f 4di m :t j’1. A /< Jl/
フ137jJ −L Ijl + X 4 /7’l
$ある。[Detailed Description of the Invention] t9. [Objective of the invention] (Industrial application field) This invention relates to valve train parts J#l of internal combustion engines for automobiles.
−f 4dim :t j'1. A /< Jl/
F137jJ -L Ijl + X 4 /7'l
There is $.
(従来の技術)
近年、il(両の高性能化ならびにメンテナンスフリー
化が進展し、それに伴って内燃機関の動弁機構部品とし
て使用されるパルプリフターのカムシャフトとの摺!1
1部については、要求される摺動特性が一段と厳しさを
増して米ている。(Prior art) In recent years, the high performance and maintenance-free design of IL has progressed, and as a result, the friction between the pulp lifter and the camshaft, which is used as a valve mechanism part of an internal combustion engine, has increased.
For some parts, the required sliding characteristics have become even more stringent.
従来、この種のバルブリフターは、カムシャフトとの摺
!11部を一体で形成した構造を有しているものである
(例えば、Nl5SANサ一ビス周報Iv(和56年l
θ月発行 第446号 第31頁)が、このようなバル
ブリフターのカムシャフトとの摺動部に用いられる材料
としては、JISSCM材やSCr材などのような機械
構造用合金鋼の表面に侵炭後焼入れ焼戻し処理を施した
ものや、炭化物分散型鉄系焼結合金薄板をバルブリフタ
ー本体と一体化したものが使用されていた。Conventionally, this type of valve lifter has no sliding contact with the camshaft! It has a structure in which 11 parts are integrally formed (for example, Nl5SAN service bulletin IV (Japanese 56th year l)
θ Monthly issue No. 446, p. 31), the materials used for the sliding parts of such valve lifters with the camshaft are those that corrode the surface of machine structural alloy steels such as JISSCM materials and SCr materials. Those that were subjected to charcoal quenching and tempering treatment, or those that integrated a carbide-dispersed iron-based sintered alloy thin plate with the valve lifter body were used.
(発IJIJが解決しようとする聞届点)しかしながら
、従来のバルブリフターでは、1〕分自身の耐摩耗性が
1−分満足のいくものでなかったり、相手材であるカム
シャフトへの攻撃性が大きかったりするという問題点が
残っていた。(The problem that IJIJ is trying to solve) However, with conventional valve lifters, the wear resistance of the valve lifter itself is not satisfactory or the camshaft is aggressive to the mating material. There remained the problem that the
(発明の目的)
この発明は、このような従来の問題点にかんがみてなさ
れたもので、自分自身の耐摩J[性に優れていると共に
、相手材であるカムシャフトへの攻撃性も小さい摺動部
(冠部)を持ち、カムシャフトとの摺動部(冠部)以外
の所望部分は表面硬化処理されているため耐摩耗性に優
れたものとなっている内燃機関用バルブリフターを提供
することを目的としている。(Purpose of the Invention) This invention was made in view of these conventional problems. We provide a valve lifter for internal combustion engines that has a moving part (crown part) and has excellent wear resistance because the desired parts other than the part that slides with the camshaft (crown part) are surface hardened. It is intended to.
[発明の構成]
(問題点を解決するだめの1段)
この発明による内燃機四用バルブリフターの製造方法は
、当該バルブリフターのカムシャフトとの摺動部を、マ
ルテンサイト系ステンレス鋼系の結合相中にFeを含む
M o 、 W 、 Cr 、 T i 。[Structure of the Invention] (First Step to Solve the Problems) The method of manufacturing a valve lifter for four internal combustion engines according to the present invention is such that the sliding part of the valve lifter with the camshaft is joined to martensitic stainless steel. Mo, W, Cr, and Ti containing Fe in the phase.
V、Coなどの硼化物形成元素の−・挿具北の複硼化物
からなる硬賀粒偵、より望ましくは粒径が10gm以ド
の1I31!質粒子−がより9!ましくは重量比で40
〜58%均一に分散した組織を41する焼結合金として
、8該複硼化物系焼結合金と、より望ましくは機械構造
用(合金)鋼製のバルブリフタ一本体とを一体化させ、
次いで表面硬化処理、より9!ましくは浸炭処理あるい
は浸炭窒化処理と焼入れ焼戻し処理とを組み合わせた表
面硬化処理を施した後、カムシャフトとの摺動部をなす
+iij記複硼化物系焼結合金部分の表面硬化層、L記
のより望ましい場合において浸iR層あるいは浸炭窒化
層を除去するとともに表面研磨を行って、より望ましく
は表面粗ざRmaxl、2pm以下となるようにしたこ
とを特徴としており、バルブリフターのカムシャフトと
の摺動部をL記のように複硼化物からなる硬質粒イーが
均一・に分散した組織を有する焼結合金とすることによ
り、複硼化物のもつ役れた耐摩J[i性となじみ性およ
びステンレス鋼系結合相と複硼化物との強固な結合力を
最大限に活用して、Iij記問題点の解決を図るように
したことを特徴としている。Kouga grains consisting of complex borides of boride-forming elements such as V and Co, more preferably 1I31 with a grain size of 10 gm or more! Quality particles - more than 9! Preferably 40 in weight ratio
As a sintered alloy having a structure uniformly dispersed by ~58%, the complex boride-based sintered alloy is more preferably integrated with a valve lifter body made of mechanical structural (alloy) steel,
Next, surface hardening treatment, 9! Preferably, after carrying out a surface hardening treatment that combines carburizing treatment or carbonitriding treatment and quenching and tempering treatment, the surface hardening layer of the complex boride-based sintered alloy portion described in +iiij, which forms the sliding part with the camshaft, L. In the more desirable case described above, the soaked iR layer or the carbonitrided layer is removed and the surface is polished so that the surface roughness Rmaxl is more preferably 2 pm or less. By making the sliding part of the sintered alloy a sintered alloy having a structure in which hard grains E made of complex boride are uniformly dispersed as shown in L, the wear resistance J The present invention is characterized in that it attempts to solve the problems listed in item Iij by making full use of the strong bonding strength between the stainless steel binder phase and the complex boride.
以下、この発明についてさらに詳細に説明する。This invention will be explained in more detail below.
この発明による内燃機関用バルブリフターの製造方法に
おける前記パルプリフターの摺動部に用いる焼結合金は
、ステンレス鋼系の結合相中に複硼化物からなる硬質粒
子が均・に分散した組織を有するものである。この場合
、前記FIP賀粒子粒子。In the method for manufacturing a valve lifter for an internal combustion engine according to the present invention, the sintered alloy used for the sliding part of the pulp lifter has a structure in which hard particles made of complex boride are uniformly dispersed in a stainless steel binder phase. It is something. In this case, the FIP particles.
Feを含むM o 、 W 、 Cr 、 T i 、
V 、 G oなどの硼化物形成元素のうちいずれか
1挿具りの複硼化物によって形成されているものである
。Mo containing Fe, W, Cr, T i,
It is formed from a complex boride containing any one of boride-forming elements such as V and Go.
そして、L記した複硼化物は、MxNyBz(M、Nは
金属)などのいろいろな形態のものがあるが、特にMo
2FeB2型、 W F e B型およびW7FeBP
型の複硼化物が主体となる場合が、抗折力および硬さが
安定的に高くなることからより好ましい、ここで、Mo
2FeB2型。There are various forms of complex borides, such as MxNyBz (M and N are metals), but especially Mo.
2FeB2 type, WFeB type and W7FeBP
It is more preferable that the mold is mainly made of complex boride because the transverse rupture strength and hardness become stably high.
2FeB type 2.
W F e B型あるいはW2FeB2型の複硼化物に
ついては、MoとWは相互に、またFeがCr。For complex borides of W Fe B type or W2FeB2 type, Mo and W are mutual and Fe is Cr.
Ni、Coと部分的に置換した形でも同じく良好f+パ
一り嘉1トーヒ、−ノ;1番−−−ここで、硼化物形成
元素としてFe、MO。Partial substitution with Ni and Co also gives good results.Fe and MO are used as boride-forming elements.
W 、 Cr 、 T i 、 V 、 Coなどを選
定した理由について述べる。The reason for selecting W, Cr, Ti, V, Co, etc. will be described.
FeはこのFeを含む複硼化物が上のに高い硬度と靭性
を示すこと、CrやNiなどの適量添加によって結合相
をマルテンサイト系ステンレス鋼系として優れた耐食性
を示すこと、Feを主体とする複硼化物は工業的に容易
に得やすくかつ安価であることなどから、この発明に係
るバルブリフターの摺動部に用いる焼結合金においては
、1耐摩耗性、耐食性などの特性の許す範囲内でできる
だけ多く含むことがより好ましい。Fe is characterized by the fact that this Fe-containing complex boride exhibits higher hardness and toughness, and by adding appropriate amounts of Cr and Ni, the binder phase is made of martensitic stainless steel and exhibits excellent corrosion resistance. Since complex borides are industrially easily obtainable and inexpensive, the sintered alloy used for the sliding part of the valve lifter according to the present invention has the following properties: 1. It is more preferable to include as much as possible within the range.
Mo、Wは周期律表でVia族の元素であり。Mo and W are elements of the Via group in the periodic table.
いずれも高硬度な複硼化物を形成し、特に前述したMo
2Fen2型、 W F e B型およびW、FeB2
型の複硼化物を形成させるために必要な元素である。ま
た、Mo、Wは結合相の抗折力、耐摩耗性および耐食性
の向tにも顕著な効果がある。All of them form highly hard complex borides, especially the above-mentioned Mo
2Fen2 type, W Fe B type and W, FeB2
This is an element necessary to form a type of complex boride. Furthermore, Mo and W have a remarkable effect on the transverse rupture strength, wear resistance, and corrosion resistance of the binder phase.
Cr イ)u定な複硼化物を形成する5−老であり。Cr a) It is a 5-year old compound that forms a definite complex boride.
特にCrを硬質粒子に添加した場合に当該硬質粒子の耐
食性を著しく改りすることができる。また、Crは結合
相においてFeと結びつき、結合相をステンレス鋼系と
して耐食性の向りを図るためにもぜひとも添加したい元
素である。In particular, when Cr is added to hard particles, the corrosion resistance of the hard particles can be significantly improved. Further, Cr is an element that is strongly desired to be added in order to combine with Fe in the binder phase and improve the corrosion resistance of the binder phase based on stainless steel.
Tiは周期律表で1lla族、■は周期律表でVa族の
元素であり、いずれも前述したMO2FeB2型、 W
F e B型およびW2FeB2型の複硼化物のMO
もしくはWと置換され、かつ・部が結合相中で合金化さ
れて、硬度を向Eさせるばかりでなく、液相焼結時の結
晶粒の粗大化を防止する効果を持つ、なお、Tiと同じ
1ira族に属するZr、Hfや、■と同じVa族に属
するNb。Ti is an element of group 1lla in the periodic table, and ■ is an element of group Va in the periodic table, both of which are the aforementioned MO2FeB2 type and W.
MO of complex borides of F e B type and W2FeB2 type
Alternatively, it is substituted with W, and is alloyed in the binder phase, which not only increases the hardness but also has the effect of preventing coarsening of crystal grains during liquid phase sintering. Zr and Hf belong to the same 1ira group, and Nb belongs to the same Va group as ■.
Taなども、それぞれTi、Vと同様の効果が期待でき
る。Ta and the like can also be expected to have the same effects as Ti and V, respectively.
COは安定な複硼化物を形成する元素であって、硬質粒
子に添加することにより耐摩耗性を改善する効果をテえ
る。このCoは特に前述したようにMo2FeB2型、
W F e B型およびW2FeB2型の複硼化物の
Feの−・部と置換した形の時にその効果がwJ′Aで
ある。CO is an element that forms a stable complex boride, and when added to hard particles, it has the effect of improving wear resistance. In particular, as mentioned above, this Co is Mo2FeB2 type,
The effect is wJ'A when Fe is substituted with the -- part of W Fe B type and W2FeB2 type complex borides.
・力、以り述べてきた元粛と結びついて複硼化物を形成
するBの添加:11としては、このB添加11Yが少な
すぎる場合1例えば3屯1詐%未満の場合には、硬質粒
子−の割合が少なすぎ、例えば硬質粒tの;I、11合
が重量比で40%未満となって、耐摩耗性が不足し、L
記B添加量多すぎる場合1例えば4.8屯着%を超える
場合は、結合相の割合が不足し、例えば硬質粒子の割合
が重量比で5°8%を超えることにより、抗折力や衝撃
値が低ドしてしまうだけでなく、相手材であるカムシャ
フトの摩耗量を増大させてしまうので、B添加址は3〜
4.8重量%とすることがとくに好ましく、また、硬質
粒子−の割合は重量比で40〜58%とすることがとく
に好ましく、硬質粒トの割合をとくに好ましくは前記の
範囲となるようにした時に。・Addition of B which combines with the above-mentioned Gensu to form a complex boride: As for 11, if this B addition 11Y is too small, 1 For example, if it is less than 3 ton 1%, hard particles - is too small, for example, the weight ratio of ;I, 11 of hard particles t is less than 40%, resulting in insufficient wear resistance and L
Note B: When the amount added is too large 1 For example, if it exceeds 4.8%, the proportion of the binder phase is insufficient, and the proportion of hard particles exceeds 5°8% by weight, resulting in a decrease in transverse rupture strength. Not only will the impact value be lowered, but it will also increase the amount of wear on the camshaft, which is the mating material, so adding B should be
It is particularly preferable that the proportion of hard particles be 4.8% by weight, and it is particularly preferable that the proportion of hard particles be 40 to 58% by weight, and it is especially preferable that the proportion of hard particles be within the above range. When I did.
耐摩耗性となじみ性および抗折力や衝撃値とのバランス
がとれていることから、バルブリフターカムシャフトと
の摺動部の特性として最も好ましいものとなる。Since it has a good balance between wear resistance, conformability, transverse rupture strength, and impact value, it is the most preferable characteristic for the sliding part of the valve lifter camshaft.
一方、複硼化物からなる硬質粒子の粒径としては、大き
すぎる状態、例えばlOILmt−超えるような状態で
は複硼化物の凝集が起きて分布が不拘・となり、硬さの
ばらつきも増大する。その結果、抗折力や衝撃値のよう
な機械的特性だけではなく耐摩耗性も低下するため、複
硼化物からなる硬質粒子の粒径としては10終m以ドが
とくに好ましい。On the other hand, if the particle size of the hard particles made of complex boride is too large, for example, in a state exceeding lOILmt-, the complex boride will aggregate, resulting in an unrestricted distribution and increasing variations in hardness. As a result, not only mechanical properties such as transverse rupture strength and impact value but also abrasion resistance deteriorate, so that the particle size of the hard particles made of complex boride is particularly preferably 10 mm or less.
この発明に係るバルブリフターの摺動部を形成する焼結
合金の特徴の一つは、結合相がステンレス鋼系から成っ
ているところにある。このステンレス鋼系のマトリック
スは硬質相である複硼化物との結合力が強く、また耐食
性も高いだけでなく、Co基やN12Jliの結合相に
比較して非常に安価であるという大きな利点を有する。One of the characteristics of the sintered alloy forming the sliding part of the valve lifter according to the present invention is that the bonding phase is made of stainless steel. This stainless steel matrix has a strong bond with the hard phase, complex boride, and not only has high corrosion resistance, but also has the great advantage of being extremely inexpensive compared to Co-based or N12Jli bonded phases. .
また、ステンレス鋼系のなかでも結合相としてはマルテ
ンサイト系のステンレス鋼系のものが摺動部材として特
に優れた特性を有する。これは、結合相がオーステナイ
ト系やフェライト系のステンレス鋼系の場合は結合相の
凝着性が増大し、その結果として相り材ならびに自分自
身の摩耗量が増加してしまうのに対して、マルテンサイ
ト系ステンレス鋼系の結合相の場合は凝着性が低く、優
れたなじみ性を示すためである。また、結合相へのNi
含含有に9いては、これが多くなりすぎてオーステナイ
ト系になってしまうと前述したように凝着性が増大して
しまうため好ましくないが、マルテンサイト系となる範
囲内であればNi含含有が多いほど結合相の耐食性が向
トするため好ましい。Furthermore, among stainless steels, martensitic stainless steels have particularly excellent properties as a sliding member as a binder phase. This is because when the binder phase is austenitic or ferritic stainless steel, the adhesiveness of the binder phase increases, and as a result, the amount of wear on the interfering material and itself increases. This is because the martensitic stainless steel binder phase has low adhesion and exhibits excellent conformability. In addition, Ni to the bonding phase
If the content is too much and becomes austenitic, the adhesion will increase as mentioned above, which is undesirable. The larger the amount, the better the corrosion resistance of the binder phase, which is preferable.
さらに、前記摺動部を形成する結合合金の硬さとしては
、HRA80以りであることがとくに好ましい、これは
、HRA80に満たない硬さでは局部的なスカッフィン
グを生じ、これが進展して自分自身および相手材両者の
摩耗量が著しく増大してしまうためである。一方、硬さ
が大きくなりすぎ、例えばHRA86を超えると、相り
材であるカムシャフトの摩耗量を増大させてしまうため
、硬さのL限としてはHRA86とするのがとくに好ま
しい。Furthermore, it is particularly preferable that the hardness of the bonding alloy forming the sliding part is HRA 80 or higher. This is because if the hardness is less than HRA 80, local scuffing will occur, and this will progress and cause self-scruffing. This is because the amount of wear on both the mating materials increases significantly. On the other hand, if the hardness becomes too large, for example exceeding HRA86, the amount of wear of the camshaft, which is a compensating material, will increase, so it is particularly preferable to set the hardness to HRA86 as the L limit.
さらにまた、前記摺動部を形成する焼結合金の抗折力は
、これが175kgf/mm’未満であるとピッティン
グが生じやすくなるとともに摩耗量も増大する傾向があ
ることから、抗折力は175kgf/mm2以りとする
のがとくに好ましい、そして、この抗折力が175kg
f/mm’未満の時においてピッティングや摩耗量の増
加する傾向は、W!j動部にがかる面圧が高い時はどW
J:Aである。Furthermore, if the transverse rupture strength of the sintered alloy forming the sliding part is less than 175 kgf/mm', pitting tends to occur and the amount of wear tends to increase. It is particularly preferable that the transverse rupture force is 175 kgf/mm2 or more, and this transverse rupture force is 175 kgf/mm2 or more.
When the value is less than f/mm', pitting and wear tend to increase. What to do when the surface pressure on the moving parts is high?
J:A.
さらにまた、前記摺動部のカムシャフトと接する表面の
粗さが大きすぎると相f材であるカムシャフトの摩耗量
を増大させてしまうことから、表面粗さはRmax l
、24m以下とすることがとくに好ましい。Furthermore, if the roughness of the surface of the sliding part in contact with the camshaft is too large, the amount of wear on the camshaft, which is the phase f material, will increase, so the surface roughness should be Rmax l.
, 24 m or less is particularly preferable.
前述したマルテンサイト系ステンレス鋼系の結合相中に
複硼化物からなる硬質粒子が均一に分散した焼結合金を
バルブリフタ一本体と一体化させるには、この焼結合金
を薄板状として前記バルブリフタ一本体と一体化させる
ようにするのが好適であり、前記焼結合金薄板と一体化
するバルブリフタ一本体としては、冷間鍛造可濠な鋼1
例えば機械構造用(合金)n4とすることがとくに好ま
しい。In order to integrate the above-mentioned sintered alloy in which hard particles made of complex boride are uniformly dispersed in the martensitic stainless steel binder phase with the valve lifter body, this sintered alloy is formed into a thin plate and is used in the valve lifter body. It is preferable that the valve lifter is integrated with the main body, and the valve lifter main body that is integrated with the sintered metal thin plate is made of cold forged moatable steel 1.
For example, it is particularly preferable to use (alloy) n4 for mechanical structures.
これは、バルブリフタ一本体の粗材を製造するr法とし
ては、冷間鍛造により加T膚iii粗材とする方法が、
材料歩留り、生産速度の面から最も適していることのほ
か、バルブリフタ一本体の前記焼結合金薄板と接する部
分にはある程度以りの硬さが要求れるためである。すな
わち、バルブリフタ一本体の焼結合金薄板と接する部分
の硬さが低いと、使用中にriii記接する部分におい
て局部的な座屈が生じてしまい、これが前記焼結合金薄
板のクラックの原因となったり、さらにはくり返し応力
が働くことにより座屈が進展してバルブリッターとして
の許容形状を超えてしまい、バルブ作動に支障をきたし
てしまうことになる。そこで、このような座屈を生じさ
せないために必要な前記バルブリフタ一本体の前記焼結
合金薄板と接する部分における硬さは、バルブリフター
にかかる面圧9萌記焼結合金薄板の厚さ、硬さ、抗折力
等により変化するが、バルブリフタ一本体が機械構造用
(合金)鋼であれば、冷間鍛造が可能であると同時に、
後述する浸炭あるいは浸炭窒化後の熱処理で実用りの問
題のない硬さが安定的に得られる。This is because the R method for manufacturing the raw material for the valve lifter body is a method of cold forging to form the rough material.
This is because, in addition to being the most suitable in terms of material yield and production speed, a certain degree of hardness is required for the portion of the valve lifter body that comes into contact with the sintered alloy thin plate. In other words, if the hardness of the part of the valve lifter main body that contacts the sintered alloy thin plate is low, local buckling will occur at the part that contacts the sintered alloy thin plate during use, and this will cause cracks in the sintered alloy thin plate. Furthermore, due to repeated stress, buckling progresses and the shape exceeds the allowable shape for a valve liter, causing problems in valve operation. Therefore, the hardness of the portion of the valve lifter main body in contact with the sintered alloy thin plate that is necessary to prevent such buckling is determined by the surface pressure applied to the valve lifter, the thickness of the sintered alloy thin plate, and the hardness. Although it varies depending on transverse rupture force, etc., if the valve lifter body is made of machine structural (alloy) steel, cold forging is possible, and at the same time,
By heat treatment after carburizing or carbonitriding, which will be described later, it is possible to stably obtain hardness that does not pose problems in practical use.
また2前記バルブリフタ一本体と一体化させるためによ
り好適には薄板状とした硼化物系焼結合金薄板の厚さと
しては、これが薄すぎる場合、例えば0.2mm未満の
場合にはち該焼結合金薄板にがかる面圧が高いとバルブ
リフタ一本体の弾性変形によりカムシャフトの摩耗量が
増大したりあるいは使用中に焼結合金薄板に微細なりラ
ックが生じたりするので好ましくなく、一方、厚すぎる
場合1例えば0.8mmを超えるような場合にはコスト
が高くなるばかりで耐摩耗性の面では特に効果がないこ
とから、0.2〜0.8mmの厚さとすることがとくに
好ましい。In addition, if the thickness of the boride-based sintered alloy thin plate, which is preferably made into a thin plate in order to be integrated with the valve lifter main body, is too thin, for example, if it is less than 0.2 mm, then the sintered alloy If the surface pressure applied to the thin plate is too high, the amount of wear on the camshaft will increase due to elastic deformation of the valve lifter body, or fine cracks will occur in the sintered alloy thin plate during use, which is undesirable.On the other hand, if the plate is too thick, 1 For example, if the thickness exceeds 0.8 mm, the cost will increase and there will be no particular effect in terms of wear resistance, so it is particularly preferable to set the thickness to 0.2 to 0.8 mm.
この硼化物系焼結合金薄板と7ヘルプリフタ一本体との
・体化は以下の方法で行うことができる。The boride-based sintered alloy thin plate and the 7-help lifter body can be integrated by the following method.
すなわち、硼化物系焼結合金薄板の成形体をバルブリフ
ター大体に釦λ合h 4+f= ’Hb 、 +fii
;’+!、バルブリフタ一本体の融点よりも低い温度
で加熱し、前記硼化物系焼結合金薄板の成形体を液相焼
結させると同時にバルブリフタ一本体と−・体化させる
。この液相焼結の際の温度は、硼化物系焼結合金薄板の
組成により異なるが、一般には1150〜1350℃で
ある。That is, a molded body of a boride-based sintered alloy thin plate is fitted around a valve lifter with a button λh4+f='Hb, +fii
;'+! , heating at a temperature lower than the melting point of the valve lifter body to liquid-phase sinter the formed body of the boride-based sintered alloy thin plate and at the same time unite it with the valve lifter body. The temperature during this liquid phase sintering varies depending on the composition of the boride-based sintered alloy thin plate, but is generally 1150 to 1350°C.
ところで、この種のバルブリフターは、カムシャフトと
の摺動部以外にも、例えばバルブリフタ一本体の外周面
や内部のプランジャーとの摺動面にもある程度の耐摩耗
性が要求されており、機械構造用(合金)鋼のままでは
摩耗量が多くなったり、凝着を生じたりすることがある
ため、表面硬化処理を施して耐摩耗性を向丘させる必要
がある。By the way, this type of valve lifter is required to have a certain degree of wear resistance not only on the part that slides on the camshaft, but also on the outer circumferential surface of the valve lifter body and the sliding surface on the internal plunger. If the mechanical structural (alloy) steel is used as it is, it may cause increased wear or adhesion, so it is necessary to perform surface hardening treatment to improve wear resistance.
この表面硬化処理には各種のr法があるが、バルブリフ
ターの要求特性ならびに実際の生産における効率や安定
性のことを考慮すると、ガスによる浸炭あるいは浸炭窒
化処理が最も好ましい。There are various R methods for this surface hardening treatment, but gas carburizing or carbonitriding is the most preferred in consideration of the required characteristics of the valve lifter as well as efficiency and stability in actual production.
これは、ガスによる窒化処理は後述する熱処理後の仕に
研磨後でもある程度の硬化層深さを残そうとすると極め
て長時間の処理が必要となり、コスト的にも高くなって
しまい、また塩浴を用いる浸炭や浸炭窒化では、公害の
問題があるほか、バルブリフターが複雑な形状をしてい
ることから付着した塩浴を完全に取り去るのに7間がか
かるだけでなく、極めて一部ではあるが塩浴成分が残っ
てバルブリフターを腐食させてしまうようなことも生じ
るためあまり好ましくない。This is because gas nitriding requires an extremely long treatment time to leave a certain degree of hardened layer depth even after polishing after heat treatment, which will be described later. In carburizing and carbonitriding, there are problems with pollution, and because the valve lifter has a complicated shape, it not only takes 7 hours to completely remove the adhered salt bath, but also only a small portion of the salt bath is removed. However, this is not very preferable because the salt bath components may remain and corrode the valve lifter.
また、油圧式のバルブリフターは高い油圧を内部から受
けるだけでなく、機te hより軽量(薄肉化)である
ことが要求されていることから1表面硬化処理後に焼入
れ焼戻し処理を施して強度を極力高めるようにすること
がとくに望ましく、この焼入れ焼戻し条件としては、通
常の焼入性を保証した構造用鋼鋼材(H鋼)の処理条件
で良い。In addition, hydraulic valve lifters not only receive high hydraulic pressure from the inside, but also are required to be lighter (thinner) than other machines, so after surface hardening, quenching and tempering are applied to increase strength. It is particularly desirable to increase the hardness as much as possible, and the quenching and tempering conditions may be those for structural steel (H steel) that guarantees normal hardenability.
この焼入れ焼戻し処理後、仕りげ研磨することにより前
記表面硬化処理と熱処理による−を注型を矯正する。こ
の仕上げ研磨代としては1通常カムシャフトとの摺動部
(リフター冠面)は0.15〜0.2mm、リフター外
周面は径で0.2〜0.4mm程度である。After this quenching and tempering treatment, finishing polishing is performed to correct the damage caused by the surface hardening treatment and heat treatment. The finishing polishing allowance is usually 0.15 to 0.2 mm for the sliding part with the camshaft (lifter crown surface), and about 0.2 to 0.4 mm in diameter for the lifter outer peripheral surface.
ここで、カムシャフトとの摺動部の焼結合金部分の浸炭
あるいは浸炭窒化層深さが0.3mmのバルブリフター
について、熱処理歪を除去するため前記焼結合金部分の
表面から0.15mm研磨したものと、0.5mm研磨
して浸炭あるいは浸炭窒化処理部を冗全に取り除いたも
のとをそれぞれ実車に組み込んで耐久試験を行ったとこ
ろ、当初の我々の予想に反し0.5mmωF磨して浸炭
あるいは浸)Rf化影?J部を完全に取り除いたものの
方がはるかに庁耗量が少なくなることがわかった。この
理由を種々検討した結果、浸炭あるいはN)R’M化時
にカーボンあるいは窒素がステンレス鋼類似の結合相中
に拡散することにより、炭化物あるいは窒化物を過剰に
析出し、その結果として複硼化物を結合させている結合
相の割合が少なくなって結合力が低ドし、その部分が高
い面圧で摺動を受けることにより硬質粒子の脱落が起さ
やすくなり、摩耗が促進されることが’Ml!Flた。Here, for a valve lifter in which the carburized or carbonitrided layer depth of the sintered alloy part of the sliding part with the camshaft is 0.3 mm, the surface of the sintered alloy part is polished by 0.15 mm to remove heat treatment distortion. When we conducted a durability test on a vehicle with one that was polished to 0.5 mm and one that had the carburized or carbonitrided parts redundantly removed, we found that, contrary to our initial expectations, it was polished by 0.5 mm ωF. Carburizing or soaking) Rf effect? It was found that the amount of wear was much smaller when the J part was completely removed. As a result of various investigations into the reasons for this, we found that carbon or nitrogen diffuses into a binder phase similar to stainless steel during carburizing or N)R'M, resulting in excessive precipitation of carbides or nitrides, resulting in the formation of complex borides. The proportion of the binder phase that binds the parts decreases, resulting in a lower bonding force, and when that part is subjected to sliding under high surface pressure, hard particles are more likely to fall off, accelerating wear. 'Ml! Flt.
以りのことから1表面硬化処理1例えば浸炭あるいは浸
炭窒化処理によるバルブリフターのカムシャフトとの摺
動部の耐摩耗性の低下を防ぐためには、8処理後該カム
シヤフトとの摺動部の表面硬化層、例えば浸炭あるいは
浸炭窒化層を研削簿により取り除いてやる必要がある。From the above, in order to prevent a decrease in wear resistance of the sliding part of the valve lifter with the camshaft due to surface hardening treatment 1, for example, carburizing or carbonitriding treatment, the surface of the sliding part with the camshaft must be Hardened layers, such as carburized or carbonitrided layers, must be removed by grinding.
このバルブリフターのカムシャフトとの摺動部の浸炭あ
るいは浸炭窒化層の厚さは、熱処理後に行う仕ヒ加r代
以内であれば、仕り加り時に必然的に取り除かれるため
、必要以りに研削除去せずに済み5時間的にも資源的に
も節約になるので好都合である。しかし、 1iij記
バルブリフターのカムシャフトとの摺動部の浸炭あるい
は浸炭窒化層をあまり薄くすると、耐J?!jU性が要
求されるバルブリフタ一本体の外周面子の浸炭あるいは
浸炭窒化層も薄くなり、熱処理後のす注型矯正のための
仕り加■時にせっかくの侵)又あるいは浸炭窒化層が取
り除かれてしまい、耐摩耗性不足となってしまう。If the thickness of the carburized or carbonitrided layer on the sliding part of the valve lifter with the camshaft is within the machining allowance after heat treatment, it will inevitably be removed during machining. This is advantageous because there is no need to remove the abrasive material, which saves time and resources. However, if the carburized or carbonitrided layer on the sliding part of the valve lifter mentioned in 1iii. ! The carburized or carbonitrided layer on the outer peripheral surface of the valve lifter body, which requires high U properties, becomes thinner, and the carbonitrided layer may be removed during preparation for casting straightening after heat treatment. , resulting in insufficient wear resistance.
そこで本発明者らは、バルブリフターのカムの材質と、
浸炭あるいは浸炭窒化処理条件とを変化させて種々の検
+74を行った結果、硼化物系焼結合金部分の什l二加
丁前の浸炭あるいは浸炭窒化層の厚さが0.05〜0.
15mmの範囲であれば、仕り加[時に必要以Eにバル
ブリフターのカムシャフトとの摺動部を研削除去する必
要はなく、またバルブリフター外周部等の耐摩耗性が要
求される他の部分は、仕り加r後も浸炭あるいは浸炭窒
化層が残り、耐摩耗性について1−分要求性能を満足す
ることが判明した。Therefore, the inventors investigated the material of the cam of the valve lifter,
As a result of various tests conducted while changing the carburizing or carbonitriding treatment conditions, the thickness of the carburized or carbonitrided layer before cutting of the boride-based sintered alloy part was 0.05 to 0.
If it is within the range of 15 mm, there is no need to polish or remove the sliding part of the valve lifter with the camshaft more than necessary, and other parts where wear resistance is required, such as the outer periphery of the valve lifter. It was found that a carburized or carbonitrided layer remained even after finishing, and the wear resistance satisfied the 1-minute performance requirement.
これは、カムシャフトとの摺!り1部を形成する硼化物
系焼結合金とバルブリフタ一本体を形成する機械構造用
(合金)鋼とでは、浸)Rあるいは浸炭窒化層の形成速
度に差があり、同一処理条件では機械構造用(合金)、
鋼の方が4〜20倍程度厚い浸1Rあるいは浸炭窒化層
が形成されるため、バルブリフター外周部等では熱処理
後の仕1;加丁を行った後でも(前述したように外周面
の仕1―加工代は径で0.2〜0.4mm程度)1分な
厚さの!J LLI * ス1,11+表S+!、息f
J A−&v%h()l二ノr: l f 1.%
ス4− )h 慴*、る。This is the friction with the camshaft! There is a difference in the rate of formation of the immersion R or carbonitrided layer between the boride-based sintered alloy that forms part of the valve lifter and the machine structural (alloy) steel that forms the valve lifter body. For (alloy),
Steel forms an immersion 1R or carbonitrided layer that is about 4 to 20 times thicker, so on the outer periphery of the valve lifter, the finish 1 after heat treatment; 1 - Processing allowance is about 0.2 to 0.4 mm in diameter) 1 minute thick! J LLI * S1,11+Table S+! , breath f
J A-&v%h()l2norr:l f1. %
S4- )h 慴*,ru.
しかし、前記焼結合金部分の仕L)JuJi前の浸炭あ
るいは浸炭窒化層の厚さが小さすぎる場合1例えば0.
05mm未満の場合は、前記バルブリフター外周部等の
耐摩耗性が要求される部分の浸炭あるいは浸炭窒化層の
厚さが薄すぎて、仕七加−[時に当該浸炭あるいは浸炭
窒化層が取り除かれてしまい、耐摩耗性不足となるため
好ましくない。However, if the thickness of the carburized or carbonitrided layer before JuJi of the sintered alloy part is too small, for example 0.
If the thickness is less than 0.5 mm, the thickness of the carburized or carbonitrided layer in areas where wear resistance is required, such as the outer periphery of the valve lifter, is too thin, and the carburized or carbonitrided layer is sometimes removed. This is not preferable because it results in insufficient wear resistance.
反対に、前記焼結合金部分の仕ヒ加玉前の浸炭あるいは
浸炭窒化層の厚さが大きすぎる場合、例えば0.15m
mを超える場合には、仕上加工時の当、該焼結合金部分
の研削にが増えるだけで、他の部分の耐摩耗性には特に
好影響をり°・えないことから好ましくない。On the other hand, if the thickness of the carburized or carbonitrided layer before the sintered alloy part is too thick, for example 0.15 m.
If it exceeds m, it is not preferable because it only increases the amount of grinding of the sintered alloy part during finishing and does not have a particularly favorable effect on the wear resistance of other parts.
そして、浸炭あるいは浸炭窒化処理条件は、機械構造用
(合金)鋼に・般的に用いられている条件でよいが、処
理温度については処理時間を短くするという観点から、
浸炭では900〜930℃、浸炭窒化では850〜88
0℃程度がより好ましい。The carburizing or carbonitriding treatment conditions may be those generally used for machine structural (alloy) steel, but the treatment temperature may be changed from the viewpoint of shortening the treatment time.
900-930℃ for carburizing, 850-88℃ for carbonitriding
About 0°C is more preferable.
(′実施例) 以ド、この発明の′実施例について説明する。('Example) Embodiments of the present invention will now be described.
まず、添付図に示すバルブリフター1のバルブリフタ一
本体2のに部とド部を機械構造用合金鋼であるJIS
30M415材を素材どして別々に冷間鍛造すること
により加[前粗材を作る0次に、それぞれの加[前粗材
を切削により概略形状に整えた後、バルブリフタ一本体
2のに部側の冠面に硼化物系焼結合金薄板3の成形体を
セットする。First, the ni and do parts of the valve lifter body 2 of the valve lifter 1 shown in the attached diagram are made of JIS alloy steel for mechanical structure.
30M415 material is made into raw materials and cold forged separately to create the pre-rough material.Next, each processed material is cut into an approximate shape by cutting, and then the parts of the valve lifter body 2 are made. A molded body of boride-based sintered alloy thin plate 3 is set on the side crown surface.
この硼化物系焼結合金薄板3の成形体は、ポロン源とし
て水またはガスアトマイズによって作製したFe−Cr
−B系合金粉末を用い、この粉末とFe、Mo、W、C
r、Ti、V、Co、Ni了の金属粉末、もしくはこれ
ら2挿具りを含む合金粉末と炭素粉末とを第1表の化学
組成となるように調整混合し、これらの混合粉末を振動
ボールミル笠を用いて有機溶媒中で湿式粉砕した後、乾
燥、造粒を行い、さらに加圧力1500〜2000kg
f/cm2で成形して同じく第1表に示すような成形体
密度比45〜50%とし、さらにこれを真空中1100
’Oで仮焼成した後す」削加丁により0.8mmの厚さ
とした。This molded body of the boride-based sintered alloy thin plate 3 is made of Fe-Cr produced by water or gas atomization as a poron source.
- Using B-based alloy powder, this powder and Fe, Mo, W, C
Metal powders of R, Ti, V, Co, and Ni, or alloy powders containing these two, and carbon powder are adjusted and mixed to have the chemical composition shown in Table 1, and these mixed powders are milled in a vibrating ball mill. After wet pulverization in an organic solvent using a hat, drying and granulation are performed, and a pressing force of 1500 to 2000 kg is applied.
f/cm2 to obtain a compact density ratio of 45 to 50% as shown in Table 1, and further molded at 1100% in vacuum.
After pre-firing with 'O', the thickness was made to 0.8 mm using a cutting knife.
次に、バルブリフタ一本体2の1一部側の冠面にE記仮
焼成後切削加丁した硼化物系焼結合金薄板3の仮焼成体
をセットした状態で真空炉中で加熱し、前記硼化物系焼
結合金薄板3の成形体を第1表に示す焼結温度で液相焼
結させると同時に、バルブリフタ一本体2のL部側冠面
部と冶金的結合させることによって、第2表に示す仕様
の硼化物なお、ljl 、、L!硼化物系焼結合金−し
板3の成形体の液相焼結条ヂ1は、その化学組成等にも
よるが、1150〜l 3500C!で15〜90分加
熱がとくに好ましい。すなわち、焼結温度が1150°
C未満では焼結が1・分進行せず、空孔の多い焼結体と
なり、1350°C?:超えると結晶粒の粗大化が起り
、抗折力の低ドを生じるためである。また、焼結時間が
15分未満であると前記硼化物系焼結合金f、b板3と
バルブリフタ一本体2との冶金的結合が1−分でなく、
90分を超えても強度の向丘が認められないことによる
。Next, a pre-sintered body of a boride-based sintered alloy thin plate 3 which has been pre-sintered and cut as described in E is set on the crown surface of one part side of the valve lifter main body 2, and is heated in a vacuum furnace. By liquid-phase sintering the formed body of the boride-based sintered alloy thin plate 3 at the sintering temperature shown in Table 1 and at the same time metallurgically bonding it to the L side crown surface of the valve lifter main body 2, In addition, for boride with the specifications shown in ljl,,L! The liquid-phase sintered strip 1 of the molded body of the boride-based sintered alloy plate 3 has a temperature of 1150 to 3500C, depending on its chemical composition, etc. Heating for 15 to 90 minutes is particularly preferred. That is, the sintering temperature is 1150°
At temperatures below C, sintering does not proceed for 1 minute, resulting in a sintered body with many pores, and 1350°C? : If it exceeds this, the crystal grains will become coarser, resulting in a low transverse rupture strength. Moreover, if the sintering time is less than 15 minutes, the metallurgical bond between the boride-based sintered alloy f, b plate 3 and the valve lifter body 2 will not last for 1 minute,
This is due to the fact that even after 90 minutes, no strong bulge was observed.
このように、第2表に示した仕様の硼化物系焼結合金薄
板3を−・体化したバルブリフタ一本体2のに部側と、
冷間鍛造後9J削加■二した状IEのバルブリフタ一本
体2のド部側とを組み合わせて境界部を溶接により接合
した後、溶接後の凹凸および溶接による・r注型をとる
ため+Ifび切削加りを施して浸炭あるいは浸炭窒化処
理面粗材とする。In this way, a valve lifter incorporating a thin boride-based sintered alloy sheet 3 having the specifications shown in Table 2 was installed on the side of the main body 2, and
9J cutting after cold forging ■ After combining the two-shaped IE valve lifter and the do part side of the main body 2 and joining the boundary part by welding, +If to remove the unevenness after welding and the welding/r casting. Cutting is performed to make a carburized or carbonitrided surface roughening material.
次に、前記組材に対して浸炭あるいは浸炭窒化処理を施
す。この場合の浸炭あるいは浸炭窒化処理条件は、ガス
浸炭あるいはガス浸iR窒化の場合に、浸炭処理温度は
930°C,U炭窒化処理温度は880′Cとし、処理
時間を変化させて硼化物系焼結合金(薄板3)部分の浸
炭あるいは浸炭窒化層の厚さが第2表に示すように0.
03mm、0.07mm、0.10mm、0.13mm
、0.15mm、0.30mmとなるようにした。Next, the assembled material is subjected to carburizing or carbonitriding treatment. In this case, the carburizing or carbonitriding treatment conditions are: gas carburizing or gas iR nitriding, the carburizing temperature is 930°C, the U carbonitriding temperature is 880'C, and the treatment time is changed to As shown in Table 2, the thickness of the carburized or carbonitrided layer of the sintered alloy (thin plate 3) is 0.
03mm, 0.07mm, 0.10mm, 0.13mm
, 0.15 mm, and 0.30 mm.
次に、浸1にあるいは浸炭窒化処理後850〜880℃
から油冷して焼入れし、さらに150〜200℃から空
冷することにより焼戻し処理を行う。Next, 850-880℃ after immersion 1 or carbonitriding treatment.
Tempering treatment is performed by oil cooling and quenching, and then air cooling from 150 to 200°C.
その後、外径→冠面→内径の順で研府することにより仕
り加工を行ってバルブリフタ一本体2を製作した。この
際の仕」二研磨代としては、第2表に示すように、冠面
(カムシャフトとの摺動8fりについては0.15mm
(ただし、N006を除く)、外周および内周について
は径で0.3mm必要であった。また、冠面部の浸炭あ
るいは浸度窒化層が0.3mmのものについては仕り研
磨化0 、15mm (No、 l l)のほか、仕
り研磨化0 、40mm (No、 6)として浸炭あ
るいは浸炭窒化層のすべてを除去したものも試作した。Thereafter, the valve lifter main body 2 was manufactured by grinding in the order of outer diameter → crown surface → inner diameter. As shown in Table 2, the polishing allowance in this case is 0.15 mm for the crown surface (8 degrees of sliding with the camshaft).
(However, excluding N006), the diameter of the outer circumference and inner circumference was required to be 0.3 mm. In addition, for those with a carburized or immersed nitrided layer of 0.3 mm on the crown surface, in addition to final polishing of 0, 15 mm (No, l l), final polishing of 0, 40 mm (No, 6), carburizing or carbonitriding. A prototype was also produced in which all of the layers were removed.
このようにして仕に加[が終丁したバルブリフタ一本体
2と、別に製作したアウタプランジャ4、インナプラン
ジャ5.ストッパ6、リターンスプリング7、ポール8
.ポールスプリング9゜リテーナ10を組付けて油圧式
のバルブリフター1とし、実際のエンジンに組み込んで
第3表に示す条件で耐久評価を行った。この結果を第4
表に第3表 バルブリフターの酎摩耗性評価条件第1表
、第2表および第4表より明らかなように、この実施例
において、 No、 1〜6のバルブリフター1は、
硬?を粒子−の割合が少ないNo、 7のパルプリフタ
ー、硬質粒子割合が多いNo、 8のパルプリフター、
硬質粒子−の粒径が大きいNo、 9のバルブリッター
、冠面部の表面粗さが大であるNo。The valve lifter main body 2, which has been assembled in this way, and the separately manufactured outer plunger 4, inner plunger 5. Stopper 6, return spring 7, pole 8
.. A 9° pole spring retainer 10 was assembled to form a hydraulic valve lifter 1, which was assembled into an actual engine and subjected to durability evaluation under the conditions shown in Table 3. This result is the fourth
Table 3: Valve Lifter Abrasion Evaluation Conditions As is clear from Tables 1, 2 and 4, in this example, valve lifters No. 1 to 6 had the following conditions:
Hard? No. 7 pulp lifter with a small proportion of particles, No. 8 pulp lifter with a large proportion of hard particles,
No. 9 has a large particle size of hard particles, No. 9 has a bulb litter, and No. has a large surface roughness on the crown surface.
10のパルプリフター、冠面部の表面に侵炭窒化層が残
存しているNo、llのパルプリフター、結合相がフェ
ライト系ステンレス鋼系であるNo、 13のパルプ
リフターおよび結合相がオーステナイト系ステンレス鋼
系であるNo、14のパルプリフターに比べて、バルブ
リフター十カムシャフト摩)Lt、H,がかなり少ない
ものとなっており、自分[1身の耐摩Jli性に優れて
いるとともに相丁材に対する攻撃性の小さい特性を有す
るものであることが確かめられた。また、仕り加r前の
浸lに層深さが小さすぎるNo、12のパルプリフター
のように、リフタ一本体2とアウタープランジャ4との
摺動部Jj?!JLが大きくなるという不具合もなかっ
た。No. 10 pulp lifter, No. 1 pulp lifter with a carbonitrided layer remaining on the surface of the crown surface, No. 1 pulp lifter, No. 1 pulp lifter where the bonding phase is ferritic stainless steel, No. 13 pulp lifter and the bonding phase is austenitic stainless steel. Compared to the No. 14 pulp lifter, the valve lifter has significantly less camshaft friction (Lt, H), and has excellent wear resistance and resistance to matching materials. It was confirmed that it has less aggressive characteristics. In addition, as in pulp lifter No. 12, where the layer depth is too small in the immersion before finishing, the sliding part between the lifter main body 2 and the outer plunger 4 may be damaged. ! There was no problem with the JL becoming larger.
3′Nに示した条件で耐摩耗性評価を行った結果を第5
表に示す。The results of the wear resistance evaluation under the conditions shown in 3'N are shown in the fifth section.
Shown in the table.
第5表 本発明例および従来例の
各パルプリフターによる摩耗量比較
第5表に示すように、従来例のパルプリフターに比較し
てこの発明によるパルプリフター(No。Table 5 Comparison of wear amount by each pulp lifter of the present invention and the conventional example As shown in Table 5, the pulp lifter of the present invention (No.
1.1の〃耗j龜か少なくなっていることがわかる。It can be seen that the wear and tear of 1.1 has decreased.
なお、以I−の実施例においてはガソリンエンジン川の
バルブリフターについて説明してきたが。Incidentally, in the following embodiments, a valve lifter for a gasoline engine has been described.
この発明により製造されるバルブリフターは、他のエン
ジン仕様のバルブリフターにももちろん適用可能である
。The valve lifter manufactured according to the present invention can of course be applied to valve lifters for other engine specifications.
L15i!!明の効果]
以1−説用してきたように、この発明による内燃機関用
バルブリフターの”A 遣方υ、によれば、カムシャフ
トとの摺動部を、マルテンサイト系ステンレス鋼系の結
合相中にFeを含むMo、W。L15i! ! 1. As explained above, according to method A of the valve lifter for an internal combustion engine according to the present invention, the sliding part with the camshaft is made of martensitic stainless steel. Mo, W containing Fe in the phase.
Cr、Ti、V、Coなどの硼化物形成元素の−・挿具
1−の複硼化物からなる硬質粒子−が均・に分散した焼
結合金として、当該複硼化物系焼結合金とバルブリフタ
一本体とを一体化させ1表面硬化処理を施した後、カム
シャフトとの摺動部をなす前記複硼化物系焼結合金部分
の表面硬化層を除去するとともに表面研磨するようにし
たものであるから、(―化物系焼結合金表面に形成され
た表面硬化層の悪影響を排除して、当該硼化物系焼結合
金のもつ特有の優れた耐摩耗性およびなじみ性を最大限
に活用することがi+J能となり2口分子1身の耐摩耗
性に優れているとj(に、相丁材であるカムシャフトへ
の攻撃性の小さい摺動1−ifl(冠部)をもち、さら
にはカムシャフトとの摺動部(冠部)以外の外径部分等
は表面硬化処理されているため、この部分での耐摩耗性
にも優れた内燃機関用バルブリフターを提供することが
できるという非常に優れた効果がもたらされる。As a sintered alloy in which boride-forming elements such as Cr, Ti, V, Co, etc. - hard particles made of the complex boride of the insert 1 - are evenly dispersed, the complex boride-based sintered alloy and the valve lifter are used. After integrating the main body and subjecting it to a surface hardening treatment, the surface hardening layer of the complex boride sintered alloy part that forms the sliding part with the camshaft is removed and the surface is polished. (- Eliminate the adverse effects of the surface hardening layer formed on the surface of the boride-based sintered alloy, and make full use of the excellent wear resistance and conformability unique to the boride-based sintered alloy. This means i + J function, which means that the two mouth molecules have excellent wear resistance. Since the outer diameter parts other than the sliding part (crown part) with the camshaft are surface hardened, we are able to provide a valve lifter for internal combustion engines that has excellent wear resistance in this part. has excellent effects.
図面は、この発明の実施例において製作された内燃機関
用バルブリフターの断面説明図である。
1・・・バルブリフター、
2・・・バルブリフタ一本体、
3・・・硼化物系焼結合金(薄板)。The drawing is an explanatory cross-sectional view of a valve lifter for an internal combustion engine manufactured in an embodiment of the present invention. 1...Valve lifter, 2...Valve lifter body, 3...Boride-based sintered alloy (thin plate).
Claims (1)
テンレス鋼系の結合相中にFeを含むMo、W、Cr、
Ti、V、Coなどの硼化物形成元素の一種以上の複硼
化物からなる硬質粒子が均一に分散した焼結合金として
、当該複硼化物系焼結合金とバルブリフター本体とを一
体化させ、表面硬化処理を施した後、カムシャフトとの
摺動部をなす前記複硼化物系焼結合金部分の表面硬化層
を除去するとともに表面研磨することを特徴とする内燃
機関用バルブリフターの製造方法。(1) The sliding part with the camshaft is made of martensitic stainless steel with Fe containing Fe in the binder phase, W, Cr, etc.
Integrating the complex boride-based sintered alloy and the valve lifter body into a sintered alloy in which hard particles made of one or more complex borides of boride-forming elements such as Ti, V, and Co are uniformly dispersed; A method for producing a valve lifter for an internal combustion engine, which comprises performing a surface hardening treatment, then removing the surface hardening layer of the complex boride sintered alloy portion that forms the sliding part with the camshaft, and polishing the surface. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9603786A JPS62251411A (en) | 1986-04-24 | 1986-04-24 | Manufacture of valve lifter for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9603786A JPS62251411A (en) | 1986-04-24 | 1986-04-24 | Manufacture of valve lifter for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62251411A true JPS62251411A (en) | 1987-11-02 |
Family
ID=14154279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9603786A Pending JPS62251411A (en) | 1986-04-24 | 1986-04-24 | Manufacture of valve lifter for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62251411A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2363186A (en) * | 2000-05-30 | 2001-12-12 | Denso Corp | Valve apparatus |
-
1986
- 1986-04-24 JP JP9603786A patent/JPS62251411A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2363186A (en) * | 2000-05-30 | 2001-12-12 | Denso Corp | Valve apparatus |
US6526949B2 (en) | 2000-05-30 | 2003-03-04 | Denso Corporation | Valve apparatus |
GB2363186B (en) * | 2000-05-30 | 2004-02-18 | Denso Corp | Valve apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3444452B1 (en) | High performance iron-based alloys for engine valvetrain applications and methods of making and use thereof | |
JP3191665B2 (en) | Metal sintered body composite material and method for producing the same | |
JP4183346B2 (en) | Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same | |
JPH0210311B2 (en) | ||
JPS62211355A (en) | Wear-resisting ferrous sintered alloy | |
JP6929313B2 (en) | Iron-based sintered alloy for high-temperature wear resistance | |
JPH09195013A (en) | Wear resistant sintered alloy and its production | |
CN203515710U (en) | Valve system used for controlling charge exchange in explosive motor | |
JPS62243905A (en) | Rocker arm for internal combustion engine | |
JP2001295915A (en) | Sintered sprocket for silent chain and method of manufacturing the same | |
JP4335189B2 (en) | Combining valve and valve seat for internal combustion engine | |
JP4301507B2 (en) | Sintered sprocket for silent chain and manufacturing method thereof | |
JP2000355726A (en) | Alloy steel powder compacting stock and alloy steel powder worked body | |
JPS62251411A (en) | Manufacture of valve lifter for internal combustion engine | |
KR102180531B1 (en) | Sabrication method of valve-seat using sintered steel alloy for wear resistance at high temperatures | |
JPS6164804A (en) | Sliding member for valve system and its production | |
US20030097902A1 (en) | Cam member and camshaft having same | |
US20030136475A1 (en) | Powder metallurgy produced valve body and valve fitted with said valve body | |
JP6842345B2 (en) | Abrasion-resistant iron-based sintered alloy manufacturing method | |
JP2018178208A (en) | Iron-based sintered alloy-made valve sheet for internal combustion engine and manufacturing method therefor | |
JPH08246109A (en) | Fuel injection valve device excellent in durability and its production | |
JP3777079B2 (en) | Camshaft | |
JP2001240948A (en) | Cam shaft | |
JP3187975B2 (en) | Sintered alloy for sliding members with excellent scuffing and wear resistance | |
JP3440008B2 (en) | Sintered member |