JPS6225063B2 - - Google Patents

Info

Publication number
JPS6225063B2
JPS6225063B2 JP499682A JP499682A JPS6225063B2 JP S6225063 B2 JPS6225063 B2 JP S6225063B2 JP 499682 A JP499682 A JP 499682A JP 499682 A JP499682 A JP 499682A JP S6225063 B2 JPS6225063 B2 JP S6225063B2
Authority
JP
Japan
Prior art keywords
wax
mold
model
manufacturing
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP499682A
Other languages
Japanese (ja)
Other versions
JPS58122150A (en
Inventor
Seiji Watabiki
Noboru Terunuma
Shogo Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP499682A priority Critical patent/JPS58122150A/en
Publication of JPS58122150A publication Critical patent/JPS58122150A/en
Publication of JPS6225063B2 publication Critical patent/JPS6225063B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はロストワツクス精密鋳造用のワツクス
模型の製造方法に関する。 ロストワツクス精密鋳造で使用される模型は一
般にリキツド、セミソリツド及びソリツドの状態
で、金型のキヤビテイ内へ圧力注入した後、冷却
凝固させて成形される。圧力注入法としては射出
成形機が使用される。 この方法で発生する模型不良の多くは成形条件
の設定、金型設計等により解消することができ
る。しかしながら、表面引けとねじれ変形による
模型不良を解消することが困難である。これらの
不良の原因は溶融ワツクスの冷却、凝固収縮によ
るものである。すなわち金型キヤビテイ内へ溶融
ワツクスを圧力注入するゲート部が凝固した後、
内部収縮が進むと、内圧低下をもたらし、外穀強
度が弱いときはへこみ、いわゆる表面引けが生じ
る。表面引けは肉厚部で大きく、薄肉の場合は小
さいので、肉厚変化の大きい成形品では肉厚部と
薄肉部の凝固速度が一定でないのでねじれ変化が
起り易い。 本発明の目的は、表面引け及びねじれ変形が少
ない精密鋳造用ワツクス模型の製造方法を提供す
ることにある。 本発明は、金型のキヤビテイ内に粉末状のワツ
クスを充填後、金型を加熱して金型内面近傍の粉
末状ワツクスを溶融させ、次いで、金型を冷却し
て精密鋳造用ワツクス模型を製造するものであ
る。 以下、本発明を図面に基づいて更に詳細に説明
する。 第1図において、金型1のキヤビテイ内にワツ
クス充填口2から粉末状のワツクス3が充填され
る。ここで粉末状ワツクス3粒子径は小さい方が
望ましい。粒子径が大きいと溶融速度が遅くな
り、模型成形時間が長くなるためである。キヤビ
テイ内全部に粉末状ワツクス3を充填した後、金
型1を加熱して金型1の内面近傍の粉末状ワツク
スを溶融させて液相4とする。金型1の加熱は金
型1の肉厚部に流体流通路5を設け、この流体流
通路5内に加熱媒体を流入させる方法を採用する
ことができる。加熱媒体としては、エチレングリ
コール水溶液、2価又は3価のアルコール水溶
液、比較的沸点の高いタービン油類を用いること
ができる。 粉末状ワツクス3の溶融によつて生じる液相4
の厚さは、2〜5mmが望ましい。液相4の厚みが
2〜5mmであると、液相部が冷却、凝固収縮した
ときの凝固層部は内部収縮が小さく、内圧低下も
ほとんどないので、表面引けが生じない。さら
に、ワツクスを溶融させた後の凝固層の厚みをほ
ぼ一定にして、模型を成形できるので模型に急激
な肉厚の変化があつても、各部の冷却速度をほぼ
均一にすることができる。このため模型内部に残
留応力が生じないので、ねじれ変形が発生するこ
とはない。但し液相4の厚み、即ち凝固層の厚み
が2mm以下では模型の強度が弱く、金型より模型
を取り出すとき模型が破壊するおそれがある。液
相4が5mm以上になると、冷却、凝固収縮により
生じる内部収縮が大きくなる。このため内圧低下
が大きくなつて表面引けが生じる。また液相4の
厚みが不均一になつて、各部の冷却速度が一定で
なくなるので、模型内部に残留応力が生じ、ねじ
れ変形を発生する。 粉末状ワツクスを溶融して液相4を形成した
後、流体圧をかけた状態で金型1を冷却すること
ができる。通常のワツクスの場合、ワツクスの液
相面を金型内面に密着させ、かつ液相4の内面側
からも流体によつて冷却することによつて、キヤ
ビテイ形状に対応した強固なシエルを形成するた
めに金型1の冷却時に流体圧をかけることが望ま
しい。ただし、ワツクスの組成を選定することに
よつて、シエルの形成が金型1の内面からキヤビ
テイ内側へ次第に行われるので必ずしも流体圧を
かける必要がない。キヤビテイ内に流体圧をかけ
る方法には、気体の圧入法、液体の注入法があ
る。気体としては空気または窒素、アルゴンガス
等の不活性ガスを用いることができる。このよう
な気体によつてキヤビテイ内圧を高める場合、ガ
ス吹込み圧力は0.2〜10Kg/cm2とすることが望ま
しい。ガス吹込み圧力が0.2Kg/cm2以下では金型
内面近傍で形成されたワツクスの凝固層を金型内
面に押しつける力が弱く、特に上型においては溶
融ワツクス層が鋳型内面より垂れてしまい、金型
キヤビテイ形状どおりに模型を成形することがで
きない。ガス圧10Kg/cm2以上でも模型を成形する
ことはできるが、高い内圧に耐え得る丈夫な金型
を作らねばならない。内圧が高いと金型を固定す
る特殊なプレス装置も必要となり、模型の製造コ
ストが高くなる欠点が生じる。また10Kg/cm2以上
では未溶融の固体粒子が金型内面の方へ押しつけ
られる。この力で金型内面近傍に生じた軟かいワ
ツクスの凝固層が破壊され、破壊されたところか
ら固体粒子が露出し、平滑な表面を有する模型を
作ることができない。液体の注入法において、液
体としては水等のワツクスを溶解しないものであ
れば使用することができる。特に液体の場合、キ
ヤビテイ内圧を高めると同時にワツクスの液相4
を内側から冷却する役割をも果すことになる。 次いで金型1を適当な冷媒体で冷却し、金型温
度をワツクスの融点以下に下げる。冷媒体として
は、金型温度をワツクスの融点以下に下げるに十
分な低温度に維持できる限り、その種類を問わな
い。冷媒体として具体的にはドライアイス、液体
窒素、水、永、油等を挙げることができる。 キヤビテイ内に流体を吹込み、または注入する
位置は5mm以上の厚さを有する金型の部分が望ま
しく、更にこの部分でその金型を用いて鋳物を製
造するとき押湯部に相当する個所とすることがよ
り望ましい。5mm以下の厚さを有する金型の部分
では、充填された粉末状ワツクスがほとんど溶融
するため、粉末状のワツクスの間隙を介して流体
を吹込み、または注入することができない。さら
に流体に吹込み、または注入位置は、模型成形後
ワツクスで補修することになるが、鋳物を製造し
たとき前記補修部は目標とする寸法精度が得られ
ないので機械加工を必要とする。しかし押湯部以
外の位置では機械加工が許されない場合が多い。
したがつて押湯部に相当する個所を流体の吹込
み、または注入位置とするのがよい。 次いで金型1を開いてワツクス模型を取り出
し、そのまま中実のワツクス模型として使用する
ことができ、また取り出したワツクス模型のガス
吹込口から未溶融の粉末状ワツクスを除去し、中
空模型として使用することができる。中空模型と
する場合、模型の材料費を節約することができ、
また模型重量が軽いので模型組立て時及び造型時
のハンドリングが容易である。 実施例 市販の模型用ワツクスシート(0.1〜0.2mm厚
み)を0.5〜1.0mm角に切断して粉末状ワツクスを
得た。次いで金型に振動(振動:1.5mm、振動
数:3000(VPM)を与えながら前記粉末状のワ
ツクスを金型のキヤビテイ内に充填した。次に金
型の肉厚部内に設けた液体の循環流通路に80℃の
エチレングリコール水溶液を流して金型を加熱
し、流し始めて5分経過後、鋳物を製造するとき
押湯部に相当する位置に設けたワツクス充填口よ
り3Kg/cm2の圧縮空気を吹込み、金型のキヤビテ
イ内圧が3Kg/cm2に到達後、液の循環を止めかつ
内圧を保持したまま直ちにドライアイスで金型を
冷却し、金型内面近傍部の溶融ワツクス層を凝固
させて模型を成形した。金型より取り出し、第2
図〜第5図に示す形状の模型を成形した。第2図
および第3図中、6はワツクス充填口兼ガス吹込
口に相当する。次に模型を温度25℃±2℃、湿度
50%±5%で管理した部屋に静置し、3時間経過
した後表面引けとねじれ変形を測定した。 表面引けは第5図の腹側5A(肉厚:20mm)を
電気マイクロメータ(精度:1/1000mm)を用いて
測定した。ねじれ変形は立体ギロチンゲージを用
い、ギロチンゲージと模型のなす間隙を専用のギ
ヤツプゲージ(精度:1/100mm)を用いて測定し
た。 第1表は第5図の腹側5Aの表面引けの大きさ
を示し、第2表はねじれ変形の大きさを第4図の
翼アール部4Aの内側への移動距離で示したもの
である。
The present invention relates to a method for manufacturing a wax model for lost wax precision casting. The models used in lost wax precision casting are generally in the form of liquid, semi-solid, or solid, which is pressure-injected into the cavity of a mold, and then cooled and solidified to form the mold. An injection molding machine is used for the pressure injection method. Many of the model defects that occur with this method can be eliminated by setting molding conditions, mold design, etc. However, it is difficult to eliminate model defects caused by surface shrinkage and torsional deformation. The cause of these defects is the cooling and solidification shrinkage of the molten wax. In other words, after the gate part that pressure-injects molten wax into the mold cavity solidifies,
As internal shrinkage progresses, internal pressure decreases, and when the outer grain strength is weak, dents occur, so-called surface shrinkage. Surface shrinkage is large in thick parts and small in thin parts, so in molded products with large changes in wall thickness, twisting changes are likely to occur because the solidification rate between thick and thin parts is not constant. An object of the present invention is to provide a method for manufacturing a wax model for precision casting with less surface shrinkage and torsional deformation. In the present invention, after filling the cavity of a mold with powdered wax, the mold is heated to melt the powdered wax near the inner surface of the mold, and then the mold is cooled to form a wax model for precision casting. It is manufactured. Hereinafter, the present invention will be explained in more detail based on the drawings. In FIG. 1, powdered wax 3 is filled into the cavity of a mold 1 through a wax filling port 2. As shown in FIG. Here, it is desirable that the particle size of the powdered wax 3 is smaller. This is because if the particle size is large, the melting rate will be slow and the model forming time will be long. After filling the entire cavity with powdered wax 3, the mold 1 is heated to melt the powdered wax near the inner surface of the mold 1 and turn it into a liquid phase 4. The mold 1 can be heated by providing a fluid flow passage 5 in the thick part of the mold 1 and flowing a heating medium into the fluid flow passage 5. As the heating medium, ethylene glycol aqueous solution, divalent or trivalent alcohol aqueous solution, and turbine oils having a relatively high boiling point can be used. Liquid phase 4 produced by melting powdered wax 3
The thickness is preferably 2 to 5 mm. When the thickness of the liquid phase 4 is 2 to 5 mm, when the liquid phase portion is cooled and solidified and shrunk, the solidified layer portion has a small internal shrinkage and there is almost no decrease in internal pressure, so that no surface shrinkage occurs. Furthermore, since the model can be molded with a substantially constant thickness of the solidified layer after melting the wax, even if there is a sudden change in wall thickness of the model, the cooling rate of each part can be made substantially uniform. Therefore, no residual stress is generated inside the model, so no torsional deformation occurs. However, if the thickness of the liquid phase 4, that is, the thickness of the solidified layer, is less than 2 mm, the strength of the model will be weak, and there is a risk that the model will break when taken out from the mold. When the liquid phase 4 exceeds 5 mm, internal shrinkage caused by cooling and solidification shrinkage increases. As a result, the internal pressure decreases significantly and surface shrinkage occurs. Further, the thickness of the liquid phase 4 becomes non-uniform, and the cooling rate of each part becomes non-uniform, so that residual stress is generated inside the model, causing torsional deformation. After melting the powdered wax to form the liquid phase 4, the mold 1 can be cooled while applying fluid pressure. In the case of normal wax, a strong shell corresponding to the cavity shape is formed by bringing the liquid phase surface of the wax into close contact with the inner surface of the mold and cooling the liquid phase 4 from the inner surface side with fluid as well. Therefore, it is desirable to apply fluid pressure when cooling the mold 1. However, by selecting the composition of the wax, the shell is gradually formed from the inner surface of the mold 1 to the inner side of the cavity, so it is not necessarily necessary to apply fluid pressure. Methods of applying fluid pressure into the cavity include a gas injection method and a liquid injection method. As the gas, air or an inert gas such as nitrogen or argon gas can be used. When increasing the cavity internal pressure with such a gas, the gas blowing pressure is preferably 0.2 to 10 kg/cm 2 . If the gas blowing pressure is less than 0.2 kg/cm 2 , the force that presses the solidified layer of wax formed near the inner surface of the mold against the inner surface of the mold is weak, and the molten wax layer will drip from the inner surface of the mold, especially in the upper mold. The model cannot be molded according to the shape of the mold cavity. Although it is possible to mold a model with a gas pressure of 10 kg/cm 2 or more, it is necessary to create a strong mold that can withstand the high internal pressure. If the internal pressure is high, a special press device is required to fix the mold, which has the disadvantage of increasing the manufacturing cost of the model. Moreover, at 10 kg/cm 2 or more, unmelted solid particles are pressed toward the inner surface of the mold. This force destroys the solidified layer of soft wax that has formed near the inner surface of the mold, exposing solid particles from the destroyed area, making it impossible to create a model with a smooth surface. In the liquid injection method, any liquid such as water that does not dissolve wax can be used. Particularly in the case of liquid, the liquid phase 4 of the wax is increased at the same time as increasing the cavity internal pressure.
It also plays a role in cooling the body from the inside. Next, the mold 1 is cooled with a suitable cooling medium to lower the mold temperature to below the melting point of the wax. Any type of cooling medium may be used as long as it can maintain a temperature low enough to lower the mold temperature below the melting point of the wax. Specific examples of the cooling medium include dry ice, liquid nitrogen, water, permanent coolant, and oil. The position where fluid is blown or injected into the cavity is preferably a part of the mold with a thickness of 5 mm or more, and furthermore, this part is the part that corresponds to the riser part when producing castings using the mold. It is more desirable to do so. In the parts of the mold having a thickness of 5 mm or less, the filled powdered wax is mostly melted, so that it is not possible to blow or inject fluid through the gaps in the powdered wax. Furthermore, the position where the fluid is blown or injected is repaired with wax after the model is formed, but the repaired portion cannot achieve the target dimensional accuracy when the casting is manufactured, so machining is required. However, machining is often not allowed at positions other than the feeder section.
Therefore, it is preferable to use a location corresponding to the feeder portion as a fluid injection or injection position. Next, the mold 1 is opened and the wax model is taken out, which can be used as a solid wax model as it is, or the unmelted powdered wax can be removed from the gas inlet of the taken out wax model and used as a hollow model. be able to. When using a hollow model, the material cost of the model can be saved,
Furthermore, since the model is light in weight, it is easy to handle during model assembly and molding. Example A commercially available wax sheet for modeling (0.1 to 0.2 mm thick) was cut into 0.5 to 1.0 mm squares to obtain powdered wax. Next, the powdered wax was filled into the cavity of the mold while applying vibration (vibration: 1.5 mm, frequency: 3000 (VPM)) to the mold.Next, the liquid circulation provided in the thick part of the mold was applied. The mold is heated by pouring an 80℃ ethylene glycol aqueous solution into the flow path, and after 5 minutes have elapsed, the wax is compressed to 3 kg/cm 2 from the wax filling port, which is located at a position corresponding to the riser part when manufacturing castings. After air is blown into the mold cavity and the internal pressure reaches 3 kg/cm 2 , the liquid circulation is stopped and the mold is immediately cooled with dry ice while maintaining the internal pressure to remove the molten wax layer near the inner surface of the mold. The model was formed by solidification.The model was removed from the mold and the second
A model having the shape shown in FIGS. 5 to 5 was molded. In FIGS. 2 and 3, 6 corresponds to a wax filling port and a gas blowing port. Next, the model was placed at a temperature of 25℃±2℃ and humidity.
It was left standing in a room controlled at 50% ± 5%, and after 3 hours, surface shrinkage and torsional deformation were measured. Surface shrinkage was measured on the ventral side 5A (thickness: 20 mm) in Figure 5 using an electric micrometer (accuracy: 1/1000 mm). Torsional deformation was measured using a three-dimensional guillotine gauge, and the gap between the guillotine gauge and the model was measured using a dedicated gap gauge (accuracy: 1/100 mm). Table 1 shows the magnitude of surface shrinkage on the ventral side 5A in Figure 5, and Table 2 shows the magnitude of torsional deformation in terms of the distance moved inward of the wing radius portion 4A in Figure 4. .

【表】【table】

【表】 第1表及び第2表中の従来例は現在最もポピユ
ラーな精密鋳造用模型の成形法である射出成形法
で成形した模型について、発明と同じ方法で測定
した結果である。成形条件は射出温度は60℃で、
射出圧力は20Kg/cm2である。 実施例は表面引けでは従来例の1/3であり、ね
じれ変形の大きさは従来例の1/4以下である。ま
た上記実施例と同様のことを元圧150Kg/cm2のN2
ガスを用いて、吹付け圧力0.2Kg/cm2と10Kg/cm2
の場合について行い、上記実施例とほぼ同様の結
果を得た。 以上のように本発明によれば、肉厚変化が大き
く複雑形状の場合にも表面引けやねじれ変形の少
ないワツクス模型を成形することができる。した
がつて三次元曲面を有する複雑形状で、かつ寸法
精度の厳しいガスタービン翼等の模型成形方法に
極めて有効である。
[Table] The conventional examples in Tables 1 and 2 are the results of measurements made using the same method as the invention on models molded by injection molding, which is currently the most popular molding method for precision casting models. The molding conditions are injection temperature 60℃,
Injection pressure is 20Kg/ cm2 . The surface shrinkage of the embodiment is 1/3 of that of the conventional example, and the magnitude of torsional deformation is less than 1/4 of that of the conventional example. In addition, the same thing as in the above example was carried out using N 2 at an original pressure of 150 kg/cm 2.
Using gas, blowing pressure 0.2Kg/ cm2 and 10Kg/ cm2
The experiment was carried out for the case of , and almost the same results as in the above example were obtained. As described above, according to the present invention, it is possible to mold a wax model with little surface shrinkage or torsional deformation even in the case of a complex shape with large wall thickness changes. Therefore, it is extremely effective for molding models of gas turbine blades, etc., which have complex shapes with three-dimensional curved surfaces and require strict dimensional accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を示す説明図、第2図は
本発明によつて得られるワツクス模型の形状を示
す正面図、第3図は第2図の側面図、第4図は第
1図のA−A線による断面図、第5図は第1図の
B−B線による断面図である。 1……金型、2……ワツクス充填口、3……粉
末状ワツクス、4……液相(ワツクス溶融層)、
5……流体流通路。
FIG. 1 is an explanatory diagram showing the principle of the present invention, FIG. 2 is a front view showing the shape of a wax model obtained by the present invention, FIG. 3 is a side view of FIG. 2, and FIG. 5 is a sectional view taken along line AA in the figure, and FIG. 5 is a sectional view taken along line BB in FIG. 1... Mold, 2... Wax filling port, 3... Powdered wax, 4... Liquid phase (wax molten layer),
5...Fluid flow path.

Claims (1)

【特許請求の範囲】 1 金型のキヤビテイ内に粉末状のワツクスを充
填後、金型を加熱して金型内面近傍の粉末状ワツ
クスを溶融させ、次いで金型を冷却することを特
徴とする精密鋳造用ワツクス模型の製造方法。 2 金型の冷却時にキヤビテイ内に流体圧をかけ
る特許請求の範囲第1項記載の精密鋳造用ワツク
ス模型の製造方法。 3 流体圧が、ガス圧である特許請求の範囲第1
項記載の精密鋳造用ワツクス模型の製造方法。 4 金型内面近傍の粉末状ワツクスを溶融させた
後、未溶融ワツクスをキヤビテイ外に取り出す特
許請求の範囲第1項記載の精密鋳造用ワツクス模
型の製造方法。 5 粉末状ワツクスの充填口及び流体導入口が、
鋳物製造時の押湯に相当する模型の位置である特
許請求の範囲第1項記載の精密鋳造用ワツクス模
型の製造方法。 6 ガス圧が0.2Kg/cm2〜10Kg/cm2である特許請
求の範囲第3項記載の精密鋳造用ワツクス模型の
製造方法。
[Claims] 1. After filling the cavity of the mold with powdered wax, the mold is heated to melt the powdered wax near the inner surface of the mold, and then the mold is cooled. A method for manufacturing wax models for precision casting. 2. A method for manufacturing a wax model for precision casting according to claim 1, wherein fluid pressure is applied within the cavity during cooling of the mold. 3 Claim 1 in which the fluid pressure is gas pressure
A method for manufacturing a wax model for precision casting as described in . 4. The method for manufacturing a wax model for precision casting according to claim 1, wherein after melting the powdered wax near the inner surface of the mold, unmelted wax is taken out of the cavity. 5 The powder wax filling port and fluid inlet port are
The method for manufacturing a wax model for precision casting according to claim 1, wherein the position of the model corresponds to a feeder during casting production. 6. The method for manufacturing a wax model for precision casting according to claim 3, wherein the gas pressure is 0.2 Kg/cm 2 to 10 Kg/cm 2 .
JP499682A 1982-01-18 1982-01-18 Production of wax pattern for precision casting Granted JPS58122150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP499682A JPS58122150A (en) 1982-01-18 1982-01-18 Production of wax pattern for precision casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP499682A JPS58122150A (en) 1982-01-18 1982-01-18 Production of wax pattern for precision casting

Publications (2)

Publication Number Publication Date
JPS58122150A JPS58122150A (en) 1983-07-20
JPS6225063B2 true JPS6225063B2 (en) 1987-06-01

Family

ID=11599200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP499682A Granted JPS58122150A (en) 1982-01-18 1982-01-18 Production of wax pattern for precision casting

Country Status (1)

Country Link
JP (1) JPS58122150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376670U (en) * 1989-11-30 1991-07-31
WO2004113401A1 (en) * 2003-06-23 2004-12-29 Mitsui Chemicals, Inc. Polyethylene wax, lost wax composition for precision casting containing same, and method for forming model for precision casting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105945221A (en) * 2016-06-01 2016-09-21 洛阳双瑞精铸钛业有限公司 Preparation method of large-scale titanium alloy wax mold for precision casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376670U (en) * 1989-11-30 1991-07-31
WO2004113401A1 (en) * 2003-06-23 2004-12-29 Mitsui Chemicals, Inc. Polyethylene wax, lost wax composition for precision casting containing same, and method for forming model for precision casting

Also Published As

Publication number Publication date
JPS58122150A (en) 1983-07-20

Similar Documents

Publication Publication Date Title
US4289191A (en) Injection molding thermoplastic patterns having ceramic cores
CN106424562A (en) Precision investment casting method eliminating shrinkage cavities and porosity defects
CN107042284A (en) A kind of device for sand coated iron mould method for producing steel-casting
US5072770A (en) Investment casting process
US3446265A (en) Process for making permanently backed shell molds
JPS5732869A (en) Pressure casting method
JPS6225063B2 (en)
CN101284301A (en) Precise manufacture steps of spiral rotor of compressor
US1956907A (en) Method of casting
US3283376A (en) Method of investment casting of ball bearings
US2495276A (en) Process for making multipiece molds
JPH0462118A (en) Method for molding of hollow resin molded item
JPH03189065A (en) Integrated structure of special steel and cast iron and manufacture thereof
US3404724A (en) Method of casting in a shell molding
JPS63203323A (en) Mold and its production for foamed resin and molding method for foamed resin
JPS5910459A (en) Precise casting method
JPH06278139A (en) Method and device for manufacturing simple mold
JPH03182313A (en) Manufacture of mold
JPS58122149A (en) Production of wax pattern for precision casting
JPS6142447A (en) Manufacture of simple die
WO2007051434A1 (en) A method of manufacture of metal castings by gravity casting using after-pressure and casting mould for implementing this method
US3409069A (en) Method of casting steel in a shell mold
US1299655A (en) Metal casting and the method or art of making same.
JPS63115665A (en) Plaster mold for low pressure casting of metallic die for molding and vulcanizing of tire
US2890506A (en) Cast insert for die