JPS58122150A - Production of wax pattern for precision casting - Google Patents
Production of wax pattern for precision castingInfo
- Publication number
- JPS58122150A JPS58122150A JP499682A JP499682A JPS58122150A JP S58122150 A JPS58122150 A JP S58122150A JP 499682 A JP499682 A JP 499682A JP 499682 A JP499682 A JP 499682A JP S58122150 A JPS58122150 A JP S58122150A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- wax
- model
- cavity
- precision casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C7/00—Patterns; Manufacture thereof so far as not provided for in other classes
- B22C7/02—Lost patterns
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はロストワックス精密鋳造用のワックス模IJ1
の製造方法に関する。Detailed Description of the Invention The present invention is a wax model IJ1 for lost wax precision casting.
Relating to a manufacturing method.
ロストワックス精密鋳造で使用される模型は一般にリキ
ッド、セミソリッド及びソリッドの状態で、金型の中ヤ
ピティ内へ圧力注入した後、冷却凝固させて成形される
。圧力注入法としては射出成形機が使用される。The models used in lost wax precision casting are generally in the form of liquid, semi-solid, or solid, which is pressure-injected into the inside of a mold, then cooled and solidified to form the mold. An injection molding machine is used for the pressure injection method.
この方法で発生する模型不良の多くは成形条件の設定、
金型設計等圧よシ解消することができる。Many of the model defects that occur with this method are due to the setting of molding conditions.
Mold design can eliminate pressure problems.
しかしながら、表面引けとねじれ変形による模型不jL
t解消することが困難である。これらの不良の原因は溶
融ワックスの冷却、凝固収縮によるものである。すなわ
ち金部キャビティ内へ溶融ワックスを圧力注入するゲー
ト部が凝固した後、内部収縮が進むと、内圧低下をもた
らし、外殻強度が弱いときはへこみ、いわゆる表面引け
が生じる。However, the model failure due to surface shrinkage and torsional deformation
t is difficult to eliminate. These defects are caused by cooling and solidification shrinkage of the molten wax. That is, after the gate portion for pressure-injecting molten wax into the metal cavity solidifies, internal contraction progresses, resulting in a decrease in internal pressure, and when the outer shell strength is weak, a dent occurs, or so-called surface shrinkage.
表面引けは肉厚部で大きく、薄肉の場合は小さいので、
肉厚変化の大きい成形品では肉厚部と薄肉部の凝固速度
が一定でないのでねじれ変化が起り易い。Surface shrinkage is large in thick parts and small in thin parts, so
In molded products with large wall thickness changes, twisting changes are likely to occur because the solidification rate between thick and thin parts is not constant.
本発明の目的は、表面引は及びねじれ変形i少ない精密
鋳造用ワックス模型の製造方法を提供するととKある。An object of the present invention is to provide a method for manufacturing a wax model for precision casting with less surface tension and torsional deformation.
本発明は、金型のキャビティ内に粉末状のワックスを充
填後、金型を加熱して金型内面近傍の粉末状ワックスを
溶融させ、次いで、金型を冷却して精密鋳造用ワックス
横置を製造するものである。In the present invention, after filling the cavity of the mold with powdered wax, the mold is heated to melt the powdered wax near the inner surface of the mold, and then the mold is cooled and the wax for precision casting is placed horizontally. It manufactures.
以下、本発明を図面に基づいて更に詳細に説明する。Hereinafter, the present invention will be explained in more detail based on the drawings.
第1図において、金型1のキャビティ内にワックス充填
口2から粉末状のワックス3が充填される。ここで粉末
状ワックス3粒子径は小さい方が望ましい。粒子径が大
きいと溶融速度が遅くな夛、模型成形時間が長くなるた
めである。キャビティ内全部に粉末状ワックス3を充填
した後、金型1溶融させて液相4とする。金型1の加熱
は金型1の肉厚部Kftft通流通路設け、この流体流
通路5内に加熱媒体を流入させる方法を採用することが
できる。加熱媒体としては、エチレングリコール水溶液
、2価又は3価のアルコール水溶液、比較的沸点の高い
タービン油類を用いることができる。In FIG. 1, powdered wax 3 is filled into a cavity of a mold 1 through a wax filling port 2. As shown in FIG. Here, it is desirable that the particle diameter of the powdered wax 3 is smaller. This is because if the particle size is large, the melting rate will be slow and the model forming time will be long. After filling the entire cavity with powdered wax 3, the mold 1 is melted to form a liquid phase 4. The mold 1 can be heated by providing a flow passage in the thick wall part Kftft of the mold 1 and flowing a heating medium into the fluid flow passage 5. As the heating medium, ethylene glycol aqueous solution, divalent or trivalent alcohol aqueous solution, and turbine oils having a relatively high boiling point can be used.
粉末状ワックス3の溶融によって生じる液相4の厚さは
、2〜5mが望鷹しい。液相4の厚みが2〜5mmであ
ると、液相部が冷却、凝固収縮したときの凝固層部は内
部収縮が小さく、内圧低下もほとんどないので、表面引
けが生じない。さらに、ワックスを溶融させた後の凝固
層の厚みをほぼ一定べして、棋をを成形できるので模型
に急激な肉厚の変化があっても、各部の冷却速度をほぼ
均一にする・ことができる。このため模型内部に残留応
力が生じないので、ねじれ変形が発生することはない。The thickness of the liquid phase 4 produced by melting the powdered wax 3 is preferably 2 to 5 m. When the thickness of the liquid phase 4 is 2 to 5 mm, when the liquid phase portion is cooled and solidified and shrunk, the solidified layer portion has a small internal shrinkage and there is almost no decrease in internal pressure, so that no surface shrinkage occurs. Furthermore, the thickness of the solidified layer after melting the wax can be kept almost constant to mold the chess, so even if there are sudden changes in the thickness of the model, the cooling rate of each part can be made almost uniform. can. Therefore, no residual stress is generated inside the model, so no torsional deformation occurs.
但し液相4の厚み、即ち凝固層の厚みが2−以下では模
型の強度が弱く、金製よシ装置を取シ出すとき模型が破
壊するおそれがある。液相4が5s1以上になると、冷
却、凝固収縮によシ生じる内部収縮が大きくなる。この
ため内圧低下が大きくなって表面引けが生じる。tた液
相4の厚みが不均一になって、各部の冷却速度が一定で
なくなるので、模型内部に残留応力が生じ、ねじれ変形
を発生する。However, if the thickness of the liquid phase 4, that is, the thickness of the solidified layer, is less than 2 mm, the strength of the model will be weak, and there is a risk that the model will be destroyed when the metal welding device is removed. When the liquid phase 4 becomes 5s1 or more, internal shrinkage caused by cooling and solidification shrinkage increases. As a result, the internal pressure decreases significantly and surface shrinkage occurs. Since the thickness of the liquid phase 4 becomes non-uniform and the cooling rate of each part is not constant, residual stress is generated inside the model and twisting deformation occurs.
粉末状ワックスを溶融して液相4を形成した後、流体圧
をかけた状態で金型lを冷却することができる。通常の
ワックスの場合、ワックスO液相面を金型内面に密着さ
せ、かつ液相4の内面側からも流体によって冷却するこ
とKよって、キャビティ形状に対応した強固なシェルを
形成するために金型1の冷却時に流体圧をかけることが
望ましい。After melting the powdered wax to form the liquid phase 4, the mold l can be cooled while applying fluid pressure. In the case of normal wax, the wax O liquid phase surface is brought into close contact with the inner surface of the mold, and the liquid phase 4 is also cooled by fluid from the inner surface side, so that a strong shell corresponding to the cavity shape can be formed. It is desirable to apply fluid pressure when cooling the mold 1.
ただし、ワックスの組成を選定することによって、シェ
ルの形成が金Illの内面からキャビティ内側へ次第に
行われるので必ずしも流体圧をかける必要がない。キャ
ビティ内に流体圧をかける方法には、気体の圧入法、液
体の注入法がある。気体としては空気または窒素、アル
ゴンガス等の不活性ガスを用いることができる。このよ
うな気体によってキャビティ内圧を高める場合、ガス吹
込み圧力は0.2〜10 Kg/ cttt”とするこ
とがfflましい。However, by selecting the composition of the wax, the shell is gradually formed from the inner surface of the gold Ill to the inside of the cavity, so it is not necessarily necessary to apply fluid pressure. Methods of applying fluid pressure into the cavity include a gas injection method and a liquid injection method. As the gas, air or an inert gas such as nitrogen or argon gas can be used. When increasing the cavity internal pressure with such a gas, it is preferable that the gas blowing pressure be 0.2 to 10 kg/cttt.
ガス吹込み圧力が0.2Kg/cm”以下では金型内面
近傍で形成されたワックスの凝固層を金型内面に押しつ
ける力が弱く、特に上型においては溶融ワックス層が鋳
型内面よ〕喬れてしまい、金型キャビティ形状どお、9
に模型を成形することができない。ガス圧10Kg/1
M!以上でも模型を成形することはできるが、高い内圧
に耐え得る丈夫な金型を作らねばならない。内圧が高い
と金型を固定する特殊なプレス装置も必要とな〕、模型
の製造コストが高”くなる欠点が生じる。tた10Kg
/m”以上では未溶融の固体粒子が金型内面の方へ押し
つけられる。この力で金型内面近傍に生じた軟かいワッ
クスの凝固層が破壊され、破壊され九ところから固体粒
子が露出し、平滑な表面を有する模型を作ることができ
ない。液体の注入法において、液体としては水等のワッ
クスを溶解しないものであれば使用することができる。When the gas blowing pressure is less than 0.2 Kg/cm, the force that presses the solidified layer of wax formed near the inner surface of the mold against the inner surface of the mold is weak, and the molten wax layer swells from the inner surface of the mold, especially in the upper mold. Due to the mold cavity shape, 9
It is not possible to mold the model. Gas pressure 10Kg/1
M! Although it is possible to mold a model using the above, it is necessary to create a durable mold that can withstand high internal pressure. If the internal pressure is high, a special press device is required to fix the mold, which has the disadvantage of increasing the manufacturing cost of the model.
/m" or more, the unmelted solid particles are forced toward the inner surface of the mold. This force destroys the solidified layer of soft wax that has formed near the inner surface of the mold, and the solid particles are exposed from 9 places. , it is not possible to create a model with a smooth surface.In the liquid injection method, any liquid such as water that does not dissolve the wax can be used as the liquid.
4Gに液体の場合、キャビティ内圧を高めると同時にワ
ックスの液相4を内側から冷却する役割をも果すことに
なる。If 4G is a liquid, it will serve to increase the cavity internal pressure and at the same time cool the liquid phase 4 of wax from the inside.
次いで金型1を遍蟲な冷媒体で冷却し、金星温度をワッ
クスの融点以下に下げる。冷媒体としては、金型11度
をワックスの融点以下に下げるに十分な低温度に維持で
きる限p、その種類を問わない。冷媒体として異体的に
はドライアイス、液体窒素、水、氷、油等を挙げること
ができる。Next, the mold 1 is cooled with a uniform cooling medium to lower the Venusian temperature to below the melting point of the wax. Any type of cooling medium may be used as long as it can maintain the temperature of the mold at a temperature low enough to lower the temperature of the mold to 11 degrees below the melting point of the wax. Examples of the cooling medium include dry ice, liquid nitrogen, water, ice, and oil.
キャビティ内に流体を吹込み、または注入する位置は5
■以上の厚さを有する金型の部分が望ましく、更にこの
部分でその金型を用いて鋳物を製造するとき押湯部に相
当する個所とすることがより望ましい。5閣以下の厚さ
を有する金型の部分では、充填され九粉末状ワックスが
ほとんど溶融するため、粉末状のワックスの閾−を介し
て流体を吹込み、または注入することができない。さら
に流体の吹込み、または注入位置は、構盤成形後ワック
スで補修することになるが、鋳物tjll!遺したとき
前記補修部は目標とする寸法精度が得られないので機械
加工を必要とする。しかし押湯部以外の位置では機械加
工が許されない場合が多い。The position where fluid is blown or injected into the cavity is 5.
A part of the mold having a thickness of 2 or more is desirable, and it is more desirable that this part corresponds to the riser part when the mold is used to manufacture a casting. In the parts of the mold having a thickness of less than 5 mm, it is not possible to blow or inject fluid through the threshold of powdered wax because the filled powdered wax is almost melted. Furthermore, the injection or injection position of the fluid will be repaired with wax after the structure is formed, but it will be difficult to inject the fluid into the casting. If the repaired portion is left intact, the target dimensional accuracy cannot be achieved and machining is required. However, machining is often not allowed at positions other than the feeder section.
したがって押湯部に相当する個所を流体の吹込み、また
は注入位置とするのがよい。Therefore, it is preferable to use a location corresponding to the feeder portion as the fluid injection or injection position.
次いで金mlを開いてワックス模型を取り出し、そのま
ま中実のワックス模型として使用することができ、また
取シ出したワックス模型のガス吹込口から未溶融の粉末
状ワックスを除去し、中空模型として使用することもで
きる。中空模型とする場合、模型の材料費を節約するこ
とができ、また模型重量が軽いので横皺組立て時及び造
蓋時のハンドリングが容易である。Next, open the gold ml and take out the wax model, which can be used as a solid wax model as it is, or remove the unmelted powdered wax from the gas inlet of the removed wax model and use it as a hollow model. You can also. When a hollow model is used, the material cost of the model can be saved, and since the weight of the model is light, it is easy to handle when assembling the horizontal wrinkles and making the lid.
実施例
市販の模型用ワックスシー)(0,1〜0.2■厚み)
を0.5〜LO+w角に切断して粉末状ワックスを得た
。次いで金蓋に振動し振幅二1.5mv振動数:300
0(VPM)を与えながら前記粉末状のワックスを金型
のキャビティ内に充填した。次に金蓋の肉厚部内に設け
た液体の循環流通路に80Cのエチレングリコール水溶
液を流して金型を加熱し、流し始めて5分経過後、鋳物
を製造するとき押湯部に相当する位置に設けたワックス
充填口よF) 3 Kf/ cut ”の圧縮空気を吹
込み、金蓋のキャビティ内圧が3Kf、/m”に到達後
、液の循mを止めかつ内圧を保持し九まま直ちにドライ
アイスで金をを冷却し、金型内面近傍部の溶融ワックス
層を凝固させて模型を成形した。金型よシ取シ出し、第
2図〜第5図に示す形状の模型を成形した。第2図およ
び第3図中、6はワックス充填口兼ガス吹入口に相当す
る。次に模型ta度25c±2c。Example: Commercially available wax sheath for models) (0.1 to 0.2 mm thick)
was cut into 0.5 to LO+w angles to obtain powdered wax. Next, the metal lid vibrates with an amplitude of 2 1.5 mV and a frequency of 300.
The powdered wax was filled into the cavity of the mold while giving 0 (VPM). Next, an 80C ethylene glycol aqueous solution is poured into the liquid circulation path provided in the thick wall of the metal lid to heat the mold, and after 5 minutes have passed, the mold is placed at a position corresponding to the riser part when manufacturing castings. Blow in compressed air at a rate of 3 Kf/cut into the wax filling port provided in the wax filling port, and when the internal pressure of the metal lid cavity reaches 3 Kf/m, stop the circulation of the liquid and maintain the internal pressure. A model was formed by cooling the gold with dry ice and solidifying the molten wax layer near the inner surface of the mold. The mold was removed and a model having the shape shown in FIGS. 2 to 5 was molded. In FIGS. 2 and 3, 6 corresponds to a wax filling port and gas inlet. Next, the model ta degree is 25c±2c.
湿度50%±5%で管理した部屋に静置し、3時間経過
した後表面引けとねじれ変形を測定した。It was left standing in a room controlled at a humidity of 50%±5%, and after 3 hours, surface shrinkage and torsional deformation were measured.
表面引けは第5図の腹側5A(肉厚:20■)を電気マ
イクロメータ(精[:1/1000鴫)t−用いて測定
した。ねじれ変形は立体ギロチンゲージを用い、ギロチ
ンゲージと模型のなす間隙を専用のギャップゲージ(精
度:1/100鱈)ヲ用いて測定した。The surface shrinkage was measured on the ventral side 5A (thickness: 20 cm) in FIG. 5 using an electric micrometer (precision: 1/1000). Torsional deformation was measured using a three-dimensional guillotine gauge, and the gap between the guillotine gauge and the model was measured using a dedicated gap gauge (accuracy: 1/100 scale).
第1表は第5図の腹側5Aの表面引けの大きさを示し、
第2表はねじれ変形の大睡さを第4図の翼アール部4A
の内側への移動距離で示した−のである。Table 1 shows the size of the surface shrinkage on the ventral side 5A in Figure 5,
Table 2 shows the degree of torsional deformation at the wing radius section 4A in Figure 4.
- is shown by the distance moved inward.
第1表
第2表
第1表及び第2表中の従来例は現在蛾もポピユラーな精
密鋳造用横置の成形法である射出成形法で成形した模型
について、発明と同じ方法で測定した結果である。成形
条件は射出温度は60Cで、射出圧力は20に4/cm
”である。Table 1 Table 2 The conventional examples in Tables 1 and 2 are the results of measurements made using the same method as the invention on models molded by injection molding, which is a horizontal molding method for precision casting that is currently popular. It is. The molding conditions are injection temperature 60C and injection pressure 20 to 4/cm.
” is.
記実施例と同様のことを元圧150Kg/cm”のN8
ガスを用いて、吹付は圧力α2 Kg / cm ”と
10 Kg/cm”の場合について行い、上記実施例と
ほぼ同様の結果を得た。The same thing as in the above example was carried out using N8 at an original pressure of 150 kg/cm.
Using gas, spraying was carried out at pressures α2 Kg/cm and 10 Kg/cm, and almost the same results as in the above example were obtained.
以上のように本発明によれば、肉厚変化が大きく複雑形
状の場合にも表面引けやねじれ変形の少ないワックス構
盤を成形することができる。したがって三次元曲面を有
する複雑形状で、かつ寸法精度の厳しいガスタービン員
等の模飄成形方法に極めて有効である。As described above, according to the present invention, it is possible to mold a wax structure with little surface shrinkage or torsional deformation even in the case of a complex shape with a large change in wall thickness. Therefore, it is extremely effective for molding a gas turbine member, etc., which has a complicated shape with a three-dimensional curved surface and requires strict dimensional accuracy.
第1図は本発明の原理を示す説明図、第2図は本発明に
よって得られるワックス模型の形状を示す正面図、lI
I、3図は第2図の側面図、第4図は第1図のA−Ai
llKよる断面図、第5図は第1図のB−B@による断
面図である。Figure 1 is an explanatory diagram showing the principle of the present invention, Figure 2 is a front view showing the shape of a wax model obtained by the present invention,
I, Figure 3 is a side view of Figure 2, Figure 4 is A-Ai of Figure 1.
5 is a sectional view taken along line BB@ in FIG. 1.
Claims (1)
金型を加熱して金型内面近傍の粉末状ワックスを溶融さ
せ、次いで金型を冷却することを特徴とする精密鋳造用
ワックス模型の製造方法。 z 金型の冷却時にキャビティ内に流体圧をかける特許
請求の範8第1項記載の精密鋳造用ワックス模をの製造
方法。 3、流体圧が、ガス圧である特許請求の範囲第1項記載
の精密鋳造用ワックス模型の製造方法。 4、金型内面近傍の粉末状ワックスを溶融させた後、未
溶融ワックスをキャビテイ外に取り出す特許請求の範囲
第1項記載の精密鋳造用ワックス模型の製造方法。 5、粉末状ワックスの充填口及び流体導入口が、鋳物製
造時の押湯に相当する模−〇位置である特許請求の範囲
第1項記載の精密鋳造用ワックス模型の製造方法。 a ガス圧25E 0.2 Kg/ cm” 〜10
K17cm” ”?’ある特許請求の範囲第3項記載の
精密鋳造用ワックス模型の製造方法。[Claims] 1. After filling the cavity of the mold with powdered wax,
A method for manufacturing a wax model for precision casting, characterized by heating a mold to melt powdered wax near the inner surface of the mold, and then cooling the mold. z A method for manufacturing a wax pattern for precision casting according to claim 8, wherein fluid pressure is applied within the cavity during cooling of the mold. 3. The method for manufacturing a wax model for precision casting according to claim 1, wherein the fluid pressure is gas pressure. 4. The method for manufacturing a wax model for precision casting according to claim 1, wherein after melting the powdered wax near the inner surface of the mold, unmelted wax is taken out of the cavity. 5. The method for manufacturing a wax model for precision casting according to claim 1, wherein the filling port for powdered wax and the fluid inlet port are at the model-○ position corresponding to a feeder during casting manufacturing. a Gas pressure 25E 0.2 Kg/cm” ~10
K17cm""? 'A method for manufacturing a wax model for precision casting according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP499682A JPS58122150A (en) | 1982-01-18 | 1982-01-18 | Production of wax pattern for precision casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP499682A JPS58122150A (en) | 1982-01-18 | 1982-01-18 | Production of wax pattern for precision casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58122150A true JPS58122150A (en) | 1983-07-20 |
JPS6225063B2 JPS6225063B2 (en) | 1987-06-01 |
Family
ID=11599200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP499682A Granted JPS58122150A (en) | 1982-01-18 | 1982-01-18 | Production of wax pattern for precision casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58122150A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105945221A (en) * | 2016-06-01 | 2016-09-21 | 洛阳双瑞精铸钛业有限公司 | Preparation method of large-scale titanium alloy wax mold for precision casting |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0376670U (en) * | 1989-11-30 | 1991-07-31 | ||
GB2418669B (en) * | 2003-06-23 | 2008-05-21 | Mitsui Chemicals Inc | Polyethylene wax, lost wax composition for precision casting containing same, and method for forming model for precision casting |
-
1982
- 1982-01-18 JP JP499682A patent/JPS58122150A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105945221A (en) * | 2016-06-01 | 2016-09-21 | 洛阳双瑞精铸钛业有限公司 | Preparation method of large-scale titanium alloy wax mold for precision casting |
Also Published As
Publication number | Publication date |
---|---|
JPS6225063B2 (en) | 1987-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5072770A (en) | Investment casting process | |
US4742863A (en) | Mold for sand casting varying thickness articles | |
US4674553A (en) | Method for sand casting varying thickness articles | |
JPS5732869A (en) | Pressure casting method | |
JPS58122150A (en) | Production of wax pattern for precision casting | |
US1238789A (en) | Method or art of making commercial castings. | |
GB1371572A (en) | Method of manufacturing an article constructed from two separate metal parts such as an article of jewellery | |
US1956907A (en) | Method of casting | |
CN101284301A (en) | Precise manufacture steps of spiral rotor of compressor | |
US3283376A (en) | Method of investment casting of ball bearings | |
US2495276A (en) | Process for making multipiece molds | |
JPH07155897A (en) | Mold structure and casting method | |
JPH0462118A (en) | Method for molding of hollow resin molded item | |
JPH03189065A (en) | Integrated structure of special steel and cast iron and manufacture thereof | |
JPS58122149A (en) | Production of wax pattern for precision casting | |
JPS63203323A (en) | Mold and its production for foamed resin and molding method for foamed resin | |
JPS603960A (en) | Production of castings incorporating cooling water passage | |
JPS63115665A (en) | Plaster mold for low pressure casting of metallic die for molding and vulcanizing of tire | |
JPS5910459A (en) | Precise casting method | |
JPH0136767B2 (en) | ||
US1819444A (en) | Method of molding plastic | |
JPH06278139A (en) | Method and device for manufacturing simple mold | |
WO2007051434A1 (en) | A method of manufacture of metal castings by gravity casting using after-pressure and casting mould for implementing this method | |
SU1103934A1 (en) | Method of manufacturing casting moulds by vacuum shaping | |
US1295277A (en) | Method of casting glass-molds. |