JPS62250167A - Method and apparatus for pulse molecular ray vapor deposition - Google Patents

Method and apparatus for pulse molecular ray vapor deposition

Info

Publication number
JPS62250167A
JPS62250167A JP9256886A JP9256886A JPS62250167A JP S62250167 A JPS62250167 A JP S62250167A JP 9256886 A JP9256886 A JP 9256886A JP 9256886 A JP9256886 A JP 9256886A JP S62250167 A JPS62250167 A JP S62250167A
Authority
JP
Japan
Prior art keywords
vapor
evaporation
substrate
vapor deposition
onto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9256886A
Other languages
Japanese (ja)
Other versions
JPH031379B2 (en
Inventor
Shoichi Nozoe
野副 尚一
Nobuyuki Nishinomiya
伸幸 西宮
Kimiyuki Jinno
神野 公行
Hitoshi Sato
均 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9256886A priority Critical patent/JPS62250167A/en
Publication of JPS62250167A publication Critical patent/JPS62250167A/en
Publication of JPH031379B2 publication Critical patent/JPH031379B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To control vapor-depositing conditions for a thin film of vapor depositing material with high accuracy by injecting a gaseous raw material for vapor deposition in an impulsive state onto a substrate surface at the time of depositing the thin film of a metallic oxide, etc., onto the substrate surface by a vacuum deposition device. CONSTITUTION:The Ti vapors generated by electron ray heating vapor sources 11, 12 using Ti as vapor source are deposited by evaporation onto the quartz substrate 19 by opening shutters 16, 17 at the time of heating the substrate 19 in a vacuum vessel 13 by a heater 18 and forming the thin film of TiO2, etc., onto the surface thereof. The gaseous O2 from a pulse molecular ray generator 1 is then impulsively injected onto the surface of the substrate 19 to oxide the Ti and to form the thin film of TiO2. The generator 1 injects the gas such as O2 introduced from a pipeline 9 under a high pressure impulsively from an ejection port 3 by the impulsive contraction of a high speed ejection gas shutting device 4 consisting of a piezo-electric element using a pulse voltage generator 5. The thickness of the TiO2 film on the substrate 19 can be controlled by adjusting the opening and closing of shutters 16, 17 by rock crystal type film thickness gages 14, 15.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は改良された真空蒸着方法およびその装置に関し
、より詳細には蒸着材の気体をパルス状に真空蒸着装置
に供給する真空蒸着方法とその装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an improved vacuum evaporation method and apparatus, and more particularly to a vacuum evaporation method and its method for supplying a vapor of a evaporation material to a vacuum evaporation apparatus in a pulsed manner. Regarding equipment.

〔従来技術〕[Prior art]

従来、化成蒸着法と呼ばれる蒸着方法では、−3−に 10=lOTorr程度の比較的圧力の高い蒸着材の気
体を蒸着装置中の蒸着容器中に導入して、または導入し
ながら減圧下で被蒸着材に蒸着材を蒸着していた。
Conventionally, in a vapor deposition method called chemical conversion vapor deposition, a vapor deposition material gas having a relatively high pressure of about 10 Torr is introduced into a vapor deposition container in a vapor deposition apparatus, or is evaporated under reduced pressure while being introduced. The evaporation material was deposited on the evaporation material.

ところが、かかる化成蒸着方法では、蒸着材の気体の蒸
着容器への導入および停止に時間がかかり、蒸着条件の
精密な制御が困難であった。
However, in such a chemical vapor deposition method, it takes time to introduce and stop the vapor of the vapor deposition material into the vapor deposition container, and it is difficult to precisely control the vapor deposition conditions.

しかも蒸着材気体の導入によって蒸着容器の平均的真空
度が低下するので、蒸着膜をその都度分析することが不
可能であった。
Moreover, since the average degree of vacuum in the vapor deposition container is lowered by introducing the vapor deposition material gas, it has been impossible to analyze the vapor deposited film each time.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の欠点を解消し、蒸着材の気体流の真
空蒸着装置への供給を高速で遮断することができ、蒸着
条件の精密な制御が可能であり、しかも蒸着中の蒸着膜
を其の場で分析することができる蒸着方法とその装置を
提供することを目的とするものである。
The present invention solves the above-mentioned conventional drawbacks, can quickly cut off the supply of the vapor deposition material gas flow to the vacuum evaporation apparatus, enables precise control of the evaporation conditions, and also allows the deposition film to be controlled during evaporation. The purpose of the present invention is to provide a vapor deposition method and apparatus that can perform on-site analysis.

〔発明の構成〕[Structure of the invention]

上記目的を達成する本発明のパルス分子線蒸着方法は、
真空蒸着装置内の被蒸着材上に蒸着材の気体流をパルス
状で噴射させて該被蒸着材に前記蒸着材を蒸着させるこ
とを特徴とするものである。
The pulsed molecular beam evaporation method of the present invention achieves the above object,
The method is characterized in that the vapor deposition material is deposited on the material to be deposited by injecting a gas flow of the vapor deposition material in a pulsed manner onto the material to be deposited in the vacuum evaporation apparatus.

また本発明のパルス分子線蒸着装置は、パルス分子線発
生装置と真空蒸着装置との組合せからなり、該パルス分
子線発生装置が蒸着材の気体を収容する容器と、該容器
の噴出口の内側に設けた噴出気体流の高速遮断手段、お
よび該手段と連結したパルス電圧発生源とからなること
を特徴とするものである。
Further, the pulsed molecular beam evaporation apparatus of the present invention is composed of a combination of a pulsed molecular beam generation apparatus and a vacuum evaporation apparatus, and the pulsed molecular beam generation apparatus includes a container containing a vapor of a vapor deposition material, and an inner side of the ejection port of the container. The device is characterized in that it comprises a high-speed cutoff means for the ejected gas flow, and a pulse voltage generation source connected to the means.

まず、本発明のパルス分子線蒸着装置を図面にもとづき
説明する。
First, the pulsed molecular beam evaporation apparatus of the present invention will be explained based on the drawings.

第1図は本発明において真空蒸着装置と組合されるパル
ス分子線発生装置の態様を示す。
FIG. 1 shows an embodiment of a pulsed molecular beam generator that is combined with a vacuum evaporation apparatus in the present invention.

パルス分子線発生装置1は蒸着材の気体を収容する容器
2と、この容器2に形成された気体流噴出口3の内側に
設けた噴出気体流の高速遮断手段4、およびこの高速遮
断手段4と連結したパルス電圧発生源5とから構成され
、容器2内には通常では10気圧以下の蒸着材気体が収
容され、この気体2は弁8および管路9を経て導入され
る。
The pulsed molecular beam generator 1 includes a container 2 containing a vapor of a deposition material, a high-speed cutoff means 4 for the ejected gas flow provided inside a gas flow nozzle 3 formed in the container 2, and this high-speed cutoff means 4. The container 2 normally contains a vapor deposition material gas of 10 atmospheres or less, and this gas 2 is introduced through a valve 8 and a pipe 9.

ここで本発明における気体流とは、通常の気体の流れの
他に、気相の中を移動することが可能なあらゆる形態の
もの、例えば金属蒸気、金属クラスター、超微粒子、イ
オンのようなものの流れをも含むものである。
Here, the gas flow in the present invention refers to not only normal gas flow but also all forms of things that can move in the gas phase, such as metal vapor, metal clusters, ultrafine particles, and ions. It also includes flow.

従って、この意味において本発明は分子線に限定される
ものではなく、広い範囲の気相中のビームを対象とする
ものである。
Therefore, in this sense, the present invention is not limited to molecular beams, but is directed to beams in a wide range of gas phases.

噴出気体流の高速遮断手段4は、例えば圧電体素子6、
または電磁ソレノイド素子、或いはこれらと同等の作用
を有する素子と、この素子6の先端に接着された気体流
噴出口閉鎖部材7とから形成されている。
The high-speed blocking means 4 for the ejected gas flow includes, for example, a piezoelectric element 6,
Alternatively, it is formed from an electromagnetic solenoid element, or an element having an equivalent function, and a gas flow outlet closing member 7 bonded to the tip of this element 6.

気体噴出口閉鎖部材7は、高硬度材料、例えばタングス
テンカーバイドあるいは樹脂、例えばパイトンからなり
、気体噴出口3に接する側は表面が平滑に研摩されてい
る。
The gas outlet closing member 7 is made of a highly hard material, such as tungsten carbide, or a resin, such as pyton, and the surface thereof in contact with the gas outlet 3 is polished smooth.

この閉鎖部材7は、通常は容器2内に収容された蒸着材
の気体によって噴出口3に押し付けられていて、噴出口
3からの蒸着材気体の漏洩を防いでいる。
This closing member 7 is normally pressed against the spout 3 by the vapor of the vapor deposition material contained in the container 2, and prevents the vapor deposition material gas from leaking from the spout 3.

パルス電圧発生源5からは、圧電体素子6に80〜14
0vのパルス電圧が印加され、圧電体素子6は収縮して
、容器2に収容されていた蒸着材気体が噴出口3から噴
出する。
From the pulse voltage generation source 5, a voltage of 80 to 14 is applied to the piezoelectric element 6.
A pulse voltage of 0 V is applied, the piezoelectric element 6 contracts, and the vapor deposition material gas contained in the container 2 is ejected from the ejection port 3.

パルス電圧の印加が中止すると、圧電体素子6の形状が
元に復し、閉鎖部材7が再び噴出口3に接して噴出口3
が閉鎖される。
When the application of the pulse voltage is stopped, the shape of the piezoelectric element 6 is restored to its original shape, and the closing member 7 comes into contact with the jet nozzle 3 again and closes the jet nozzle 3.
will be closed.

このように圧電体素子6へのパルス電圧の印加、中止が
繰り返されることによって蒸着材気体が噴出口3からパ
ルス状に噴出される。
By repeating application and termination of the pulse voltage to the piezoelectric element 6 in this manner, the vapor deposition material gas is ejected from the ejection port 3 in a pulsed manner.

容器2の外壁には、蒸着材からの輻射熱による圧電体素
子6の性能低下を防止するために冷却機構、たとえば冷
却剤の循環管が取り付けられている。
A cooling mechanism, such as a coolant circulation pipe, is attached to the outer wall of the container 2 in order to prevent performance deterioration of the piezoelectric element 6 due to radiant heat from the vapor deposition material.

噴出口3からパルス状に噴出した蒸着材気体は、パルス
分子線発生装置が組合された真空蒸着装置(図示せず)
に導かれ、被蒸着材に照射され、以後は通常の蒸着装置
におけると同様の過程に従って被蒸着材に蒸着される。
The vapor deposition material gas ejected in a pulsed manner from the ejection port 3 is transferred to a vacuum vapor deposition device (not shown) combined with a pulsed molecular beam generator.
The vapor is guided to the material to be vapor-deposited and irradiated onto the material to be vapor-deposited, and thereafter the material is vapor-deposited by following the same process as in a normal vapor deposition apparatus.

ここで本発明において、パルス分子線発生装置と組み合
される真空蒸着装置は特に限定されるものではなく、・
例えば通常の真空蒸着装置の外に、クラスターイオンビ
ーム装置、クヌーセンセルを用いた蒸着装置、イオン化
蒸着装置、イオンスパッタリング装置、マグネトロンス
パッタリング装置等を挙げることができる。
Here, in the present invention, the vacuum evaporation device combined with the pulsed molecular beam generator is not particularly limited;
For example, in addition to a normal vacuum evaporation apparatus, a cluster ion beam apparatus, a evaporation apparatus using a Knudsen cell, an ionization evaporation apparatus, an ion sputtering apparatus, a magnetron sputtering apparatus, etc. can be mentioned.

−回のパルスによって被蒸着材に照射される蒸着材気体
の量は、圧電体素子に印加されるパルス電圧の持続時間
Δt、容器2内に導入される蒸着材気体の圧力およびパ
ルスの回数によって変えることができる。
The amount of vapor deposition material gas irradiated onto the material to be vaporized by the pulses is determined by the duration Δt of the pulse voltage applied to the piezoelectric element, the pressure of the vapor deposition material gas introduced into the container 2, and the number of pulses. It can be changed.

また本発明においては、上述したパルス分子線発生装置
のみでも被蒸着材上に蒸着材のvr#膜を形成させるこ
とができるが、パルス分子線発生装置で形成された蒸着
材気体流を、他の如何なる蒸着材気体発生装置で形成さ
れた気体流と組み合せて使用することもできる。
In addition, in the present invention, although it is possible to form the vr# film of the evaporation material on the material to be evaporated using only the above-mentioned pulsed molecular beam generation device, the evaporation material gas flow formed by the pulsed molecular beam generation device can be It can also be used in combination with a gas flow generated by any deposition material gas generator.

この場合には、パルス分子線発生装置で発生した気体流
を、他の蒸着材気体流発生装置からの気体流と合併して
、または交互に被蒸着材に供給することにより蒸着が行
われる。
In this case, evaporation is performed by supplying the gas flow generated by the pulsed molecular beam generator to the material to be evaporated, either in combination with the gas flow from other evaporation material gas flow generators, or alternately.

更に、前記パルス分子線発生装置は、2台以上を同時に
同一の蒸着装置に組み込むことも可能である。
Furthermore, two or more of the pulsed molecular beam generators can be incorporated into the same vapor deposition apparatus at the same time.

この場合には、2台以上のパルス分子線発生装置を同時
に、または交互に作動させて蒸着が行なわれる。
In this case, vapor deposition is performed by operating two or more pulsed molecular beam generators simultaneously or alternately.

更にまた、前記パルス分子線発生装置からのパルス状気
体流を電子、イオンまたは光によって活性化して被蒸着
材への蒸着を促進することもできる。
Furthermore, the pulsed gas flow from the pulsed molecular beam generator can be activated by electrons, ions, or light to promote deposition on the material to be deposited.

次に本発明のパルス分子線蒸着装置の機能を、パルス分
子線発生装置が電子線加熱蒸着源を有する真空蒸着装置
と組合された場合について説明する。
Next, the functions of the pulsed molecular beam evaporation apparatus of the present invention will be described in the case where the pulsed molecular beam generation apparatus is combined with a vacuum evaporation apparatus having an electron beam heating evaporation source.

第2図においては、パルス分子線発生装置lが2基の電
子線加熱蒸着源11および12と組合わされて真空蒸着
装置13が形成されてている。
In FIG. 2, a pulsed molecular beam generator 1 is combined with two electron beam heating evaporation sources 11 and 12 to form a vacuum evaporation apparatus 13.

電子線加熱蒸着源11.12は、それぞれ水晶式膜厚計
14.15により蒸着速度をコントロールすることが可
能であり、所定の膜厚に達したときにシャッター機構1
6.17によりそれぞれ独立に蒸発源からのビームを遮
断することが可能である。
The electron beam heating evaporation sources 11 and 12 can each control the evaporation speed using a crystal film thickness meter 14 and 15, and when a predetermined film thickness is reached, the shutter mechanism 1 is activated.
6.17, it is possible to block the beams from the evaporation sources independently.

このようにして、電子線加熱蒸着源11.12により生
成したビームを、加熱装置18により所定の温度に保持
された被蒸着材19、たとえば蒸着基板に照射して蒸着
を行う。
In this manner, the beams generated by the electron beam heating evaporation sources 11 and 12 are irradiated onto the material to be evaporated 19, such as the evaporation substrate, which is maintained at a predetermined temperature by the heating device 18, to perform evaporation.

一方、パルス分子線発生袋W1で発生したパルス状の蒸
着材気体を蒸着源11.12からのビームと同時に、ま
たは蒸着源11.12からのビームで蒸着を行わせた後
にパルス分子線発生装置lからのパルス状気体流を所定
回数噴射させる操作を蒸着基板19上の全膜厚が所定の
値に達するまで交互に繰り返す。
On the other hand, the pulsed evaporation material gas generated in the pulsed molecular beam generating bag W1 is evaporated simultaneously with the beam from the evaporation source 11.12, or after the evaporation is performed with the beam from the evaporation source 11.12, the pulsed molecular beam generator The operation of ejecting the pulsed gas flow from 1 a predetermined number of times is alternately repeated until the total film thickness on the deposition substrate 19 reaches a predetermined value.

なお、蒸着基板19上の膜厚、組成および構造は高速電
子線回折装置20および21によって、蒸着膜表面から
の解析パターンを時々刻々解析することにより知ること
ができる。
The thickness, composition, and structure of the film on the vapor deposition substrate 19 can be determined by momentarily analyzing the analysis pattern from the surface of the vapor deposition film using high-speed electron diffraction devices 20 and 21.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、気体噴出流の高速遮
断手段によってパルス状の蒸着材気体流が形成され、こ
の気体流が真空蒸着装置に供給されるので、真空蒸着装
置全体の真空雰囲気を太き(変化させることがな(、被
蒸着材近傍のガス圧のみを高速制御できる。
As described above, according to the present invention, a pulsed evaporation material gas flow is formed by the high-speed gas jet cutoff means, and this gas flow is supplied to the vacuum evaporation apparatus, so that the entire vacuum evaporation apparatus has a vacuum atmosphere. By making the pressure thicker (without changing it), only the gas pressure near the material to be evaporated can be controlled at high speed.

また、真空度は、高速電子線回折装置や質量分析計を作
動させるのに十分な真空度に保つことが可能であり、薄
膜作製中に蒸着膜をその場で分析することができる。
Further, the degree of vacuum can be maintained at a degree sufficient to operate a high-speed electron beam diffraction device or a mass spectrometer, and a deposited film can be analyzed on the spot during thin film production.

従って、組成および構造がよく制御された薄膜を被蒸着
材上に形成することができる。
Therefore, a thin film whose composition and structure are well controlled can be formed on the material to be deposited.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

〔実施例〕〔Example〕

第2図に示したパルス分子線蒸着装置を用いて酸化チタ
ンの薄膜を基板上に形成した。
A thin film of titanium oxide was formed on a substrate using the pulsed molecular beam evaporation apparatus shown in FIG.

電子線加熱蒸着源11.12で発生したチタニウム蒸気
を、蒸着速度0.5人/seeで、700℃に保持した
石英基板19上に2.25人蒸着し、しかる後にパルス
分子線発生装置1の背圧に酸素ガスを0.34気圧導入
してパルス状気体流をパルス印加電圧120V、パルス
巾3 m5ecの条件でN回、基板19上に噴射させた
Titanium vapor generated by the electron beam heating evaporation source 11.12 is evaporated by 2.25 people onto a quartz substrate 19 maintained at 700°C at a deposition rate of 0.5 people/see, and then the pulsed molecular beam generator 1 Oxygen gas was introduced at a back pressure of 0.34 atm, and a pulsed gas flow was injected onto the substrate 19 N times under conditions of a pulse applied voltage of 120 V and a pulse width of 3 m5 ec.

このサイクルを600回繰り返して下記第1表に示した
酸化チタンの薄膜を得た。
This cycle was repeated 600 times to obtain titanium oxide thin films shown in Table 1 below.

第1表 酸化チタンの組成は、X線回折法によって、それぞれ単
−相であることを確認した。
The compositions of the titanium oxides in Table 1 were confirmed to be single-phase by X-ray diffraction.

パルス分子線発生袋fflからのパルス状気体流は、半
値巾3 tt+setで真空蒸着装置13内に噴射され
、噴射終了後、10m5ecll内に真空蒸着装置の容
器内真空度はベースの真空度に戻った。
The pulsed gas flow from the pulsed molecular beam generating bag ffl is injected into the vacuum evaporation device 13 with a half-width of 3 tt+set, and after the injection ends, the degree of vacuum in the container of the vacuum evaporation device returns to the base vacuum within 10 m5 ecl. Ta.

しかも、パルス分子線発生装置からのパルス状酸素流は
、方向性を有する分子線ビームとしして基#i!19上
に噴射されるので、真空蒸着装置の容器内の平均的真空
度を低く抑えたまま、基板上での実効的気体分圧を上げ
ることが可能である。
Moreover, the pulsed oxygen flow from the pulsed molecular beam generator is treated as a molecular beam with directionality based on #i! Since the gas is injected onto the substrate 19, it is possible to increase the effective gas partial pressure on the substrate while keeping the average degree of vacuum in the container of the vacuum evaporation apparatus low.

また、第2図では、2基の電子線加熱蒸着源11、12
と、シャッター機構16.17との併用によって、多層
vIt膜の作製が可能であるが、2台以上のパルス分子
線発生装置を用いることによりTiO/TiNのような
多層N膜を作製することができる。
In addition, in FIG. 2, two electron beam heating evaporation sources 11 and 12 are shown.
It is possible to fabricate a multilayer VIt film by using this in combination with a shutter mechanism 16.17, but it is also possible to fabricate a multilayer N film such as TiO/TiN by using two or more pulsed molecular beam generators. can.

この場合、窒素源としては、N2ガスを用いることがで
きるが、場合によっては、N2ビームをイオン化するこ
とによって反応を促進させることもできる。
In this case, N2 gas can be used as the nitrogen source, but depending on the case, the reaction can also be promoted by ionizing the N2 beam.

従来の、気体をガス導入バルブによって蒸着装置の容器
内に導入する方法では、高速で雰囲気ガスを交換または
排気することが困難であったので、繰り返し周期の多い
多層構造膜を作製することは、はとんど不可能であった
With the conventional method of introducing gas into the container of a vapor deposition apparatus using a gas introduction valve, it was difficult to exchange or exhaust the atmospheric gas at high speed. was almost impossible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のパルス分子製蒸着装置に使用されるパ
ルス分子線発生装置の態様を示す概要説明図、第2図は
本発明のパルス分子線蒸着装置の説明図である。 l・・・パルス分子線発生装置、2・・・蒸着材気体収
容装置、3・・・噴出口、4・・・噴出気体流高速遮断
手段、6・・・パルス電圧発生源。 特許出願人 工業技術院長   等々力   達第1図 第2図
FIG. 1 is a schematic explanatory view showing an aspect of a pulsed molecular beam generator used in the pulsed molecular beam vapor deposition apparatus of the present invention, and FIG. 2 is an explanatory view of the pulsed molecular beam vapor deposition apparatus of the present invention. 1... Pulse molecular beam generator, 2... Evaporation material gas storage device, 3... Jetting port, 4... Jetting gas flow high-speed blocking means, 6... Pulse voltage generating source. Patent applicant: Director of the Agency of Industrial Science and Technology Tatsu Todoroki Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、真空蒸着装置内の被蒸着材上に蒸着材の気体流をパ
ルス状で噴射させて該被蒸着材に前記蒸着材を蒸着させ
ることを特徴とするパルス分子線蒸着方法。 2、パルス分子線発生装置と真空蒸着装置との組合せか
らなり、該パルス分子線発生装置が蒸着材の気体を収容
する容器と、該容器の噴出口の内側に設けた噴出気体流
の高速遮断手段、および該手段と連結したパルス電圧発
生源とからなることを特徴とするパルス分子線蒸着装置
[Claims] 1. Pulsed molecular beam evaporation, characterized in that a gas flow of the evaporation material is injected in a pulsed manner onto the material to be evaporated in a vacuum evaporation apparatus to deposit the evaporation material onto the material to be evaporated. Method. 2. Consisting of a combination of a pulsed molecular beam generator and a vacuum evaporation device, the pulsed molecular beam generator includes a container containing the vapor of the evaporation material, and a high-speed interruption of the ejected gas flow provided inside the ejection port of the container. A pulsed molecular beam evaporation apparatus comprising: means; and a pulsed voltage generation source connected to the means.
JP9256886A 1986-04-22 1986-04-22 Method and apparatus for pulse molecular ray vapor deposition Granted JPS62250167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9256886A JPS62250167A (en) 1986-04-22 1986-04-22 Method and apparatus for pulse molecular ray vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9256886A JPS62250167A (en) 1986-04-22 1986-04-22 Method and apparatus for pulse molecular ray vapor deposition

Publications (2)

Publication Number Publication Date
JPS62250167A true JPS62250167A (en) 1987-10-31
JPH031379B2 JPH031379B2 (en) 1991-01-10

Family

ID=14058028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9256886A Granted JPS62250167A (en) 1986-04-22 1986-04-22 Method and apparatus for pulse molecular ray vapor deposition

Country Status (1)

Country Link
JP (1) JPS62250167A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771810A1 (en) * 1997-11-28 1999-06-04 Sgs Thomson Microelectronics Monitoring procedure for application of deposit by evaporation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771810A1 (en) * 1997-11-28 1999-06-04 Sgs Thomson Microelectronics Monitoring procedure for application of deposit by evaporation

Also Published As

Publication number Publication date
JPH031379B2 (en) 1991-01-10

Similar Documents

Publication Publication Date Title
JP2662321B2 (en) Surface treatment method using ultra-slow cluster ion beam
Scheibe et al. DLC film deposition by laser-arc and study of properties
US4657774A (en) Method for thin film formation
Lichtenwalner et al. Investigation of the ablated flux characteristics during pulsed laser ablation deposition of multicomponent oxides
Gonzalo et al. Pressure effects during pulsed-laser deposition of barium titanate thin films
JPS63270458A (en) Device for forming compound thin film
Gonzalo et al. Li deficiencies in LiNbO 3 films prepared by pulsed laser deposition in a buffer gas
JPS62250167A (en) Method and apparatus for pulse molecular ray vapor deposition
Amano Direct ion beam deposition for thin film formation
US3373050A (en) Deflecting particles in vacuum coating process
Nozoye et al. Reactive evaporation of titanium oxide films with controlled Ti/O ratio
JPS61210615A (en) Thin film formation equipment
JP2548387B2 (en) Liquid crystal alignment film manufacturing equipment
JPS61186472A (en) Apparatus for producing non-crystalline film deposited by evaporation
US4582728A (en) Process for preparing a titanium carbide film
JPH05166726A (en) Manufacture of compound thin film
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface
JP4408505B2 (en) Method and apparatus for forming diamond-like carbon film
Nenadović et al. Photodeposition sputtering of titanium and TiN thin films
KR970005159B1 (en) Equipment of manufacturing thin fim
JPH0590253A (en) Insulating film forming method and device
JPS63166960A (en) Formation of thin sio2 film
JPH0331472A (en) Formation of multicomponent compound film
Kidder Jr et al. Diamondlike carbon films sputter deposited with an electron cyclotron resonance reactor
Nenadović Atomic collision on surfaces and material implementation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term