JPS62250090A - Coke dry quenching furnace - Google Patents
Coke dry quenching furnaceInfo
- Publication number
- JPS62250090A JPS62250090A JP9127286A JP9127286A JPS62250090A JP S62250090 A JPS62250090 A JP S62250090A JP 9127286 A JP9127286 A JP 9127286A JP 9127286 A JP9127286 A JP 9127286A JP S62250090 A JPS62250090 A JP S62250090A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- furnace
- wall
- coke
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000571 coke Substances 0.000 title claims abstract description 49
- 238000010791 quenching Methods 0.000 title 1
- 230000000171 quenching effect Effects 0.000 title 1
- 238000005192 partition Methods 0.000 claims abstract description 31
- 238000001816 cooling Methods 0.000 claims description 8
- 238000007664 blowing Methods 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 91
- 239000011261 inert gas Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000428 dust Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Coke Industry (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、コークス炉から窯出しされた赤熱コークス
を不活性ガスにより消火するだめのコークス乾式消火炉
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a dry coke fire extinguishing furnace for extinguishing red hot coke discharged from a coke oven using an inert gas.
近年、製鉄所においてコークス炉から窯出しされた赤熱
コークスの消火設備として、環境汚染のおそれがなく、
しかも廃熱を有効に利用することができるコークス乾式
消火炉が採用されつつある。In recent years, it has been used as extinguishing equipment for red-hot coke discharged from coke ovens at steel plants, as there is no risk of environmental pollution.
Moreover, coke dry fire extinguishing furnaces, which can effectively utilize waste heat, are being adopted.
第3図は、従来のコークス乾式消火炉の概略垂直断面図
である。第3図に示すように、竪形の消火炉本体1は、
頂部に設けられた赤熱コークスの装入口2と、ホッパー
状の底部4に設けられた不活性ガス吹込み口3と、下部
に設けられたP−)5および切出し装置6A、6Bとか
らなっており、その内部は、赤熱コークスを滞留させる
だめの上半部のプレチャンバAと、赤熱コークスを消火
冷却するだめの冷却室Bとからなっている。FIG. 3 is a schematic vertical sectional view of a conventional coke dry fire extinguishing furnace. As shown in FIG. 3, the vertical fire extinguishing furnace main body 1 is
It consists of a red hot coke charging port 2 provided at the top, an inert gas blowing port 3 provided at the hopper-shaped bottom 4, and a P-) 5 and cutting devices 6A and 6B provided at the bottom. The interior of the chamber consists of a pre-chamber A, which is the upper half of the chamber in which the red-hot coke is retained, and a cooling chamber B, which is the chamber in which the red-hot coke is extinguished and cooled.
冷却室Bの下部中心位置にはディス) IJピユータ7
が設けられており、冷却室Bの上端付近には、円周方向
に等間隔に多数の直方形状のガス排出孔8が設けられ、
ガス排出孔8の各々は、プレチャンバA部分の炉壁IA
内に形成された環状チャンバ9に連結されている。At the center of the bottom of cooling chamber B is a disk) IJ computer 7
Near the upper end of the cooling chamber B, a large number of rectangular gas discharge holes 8 are provided at equal intervals in the circumferential direction.
Each of the gas exhaust holes 8 is connected to the furnace wall IA of the prechamber A portion.
It is connected to an annular chamber 9 formed within.
装入口2を通ってプレチャンバAおよび冷却室B内に装
入された赤熱コークスは、不活性ガス吹込口3を通って
吹き込まれる不活性ガスによって消火される。消火され
たコークスは、f −) 5を開くことによって、切出
装置6A、6Bから排出される。。The red-hot coke charged into the prechamber A and the cooling chamber B through the charging port 2 is extinguished by the inert gas blown through the inert gas inlet 3. The extinguished coke is discharged from the cutting devices 6A, 6B by opening f-)5. .
一方、矢印で示すようにガス排出孔8を通ってチャンバ
9に排出された高温の排ガスは、煙道10を通って除塵
器11に導かれ、除塵器11を通ったガスは、熱交換器
12において水と熱交換して冷却された後、サイクロン
13を経てブロワ14により再びガス吹込み口3に圧送
され、冷却室B内に吹き込まれる。On the other hand, as shown by the arrow, high-temperature exhaust gas discharged into the chamber 9 through the gas discharge hole 8 is led to the dust remover 11 through the flue 10, and the gas that has passed through the dust remover 11 is transferred to the heat exchanger. After being cooled by heat exchange with water in step 12, the gas passes through the cyclone 13, is forced to the gas blowing port 3 again by the blower 14, and is blown into the cooling chamber B.
近時、消火能力の向上を図るために、乾式消火炉を大型
化することが行なわれている。乾式消火炉を大型化すれ
ば、消火能力は、概ね炉の横断面積即ち炉の直径の2乗
に比例して大きくなる。この場合、直方形状のガス排出
孔8の横断面積を太きくしなければならない。ガス排出
孔8の横断面積を大きくするためには、ガス排出孔8の
水平辺は、炉の直径に一次比例した長さしか広げること
ができないので、ガス排出孔8の垂直辺を長くしなけれ
ばならない。しかしながら、このようにしてガス排出孔
8の横断面積を犬にし、これを流れるガスの平均流速を
従来と同じように彦したのみでは、ガス排出孔8内に排
ガスと共にコークスが吸引されてガス排出孔8内に堆積
しそしてガス排出 3一
孔8を閉塞し、操業不能となる問題が生ずる。また、従
来よりも小断面積の消火炉で従来と同じ量の不活性ガス
を吹き込む場合も同様な問題が生ずる。Recently, dry fire extinguishing furnaces have been made larger in order to improve their fire extinguishing ability. When a dry fire extinguishing furnace is made larger, its fire extinguishing capacity increases approximately in proportion to the square of the cross-sectional area of the furnace, that is, the diameter of the furnace. In this case, the cross-sectional area of the rectangular gas discharge hole 8 must be increased. In order to increase the cross-sectional area of the gas exhaust hole 8, the horizontal side of the gas exhaust hole 8 can only be increased by a length that is linearly proportional to the diameter of the furnace, so the vertical side of the gas exhaust hole 8 must be made longer. Must be. However, if the cross-sectional area of the gas exhaust hole 8 is made narrow in this way and the average flow velocity of the gas flowing through it is increased as in the past, coke will be sucked into the gas exhaust hole 8 along with the exhaust gas, and the gas will be discharged. The problem arises that the gas deposits in the holes 8 and blocks the gas discharge 3 and the holes 8, making it impossible to operate. Further, a similar problem occurs when the same amount of inert gas as before is blown into a fire extinguishing furnace having a smaller cross-sectional area than before.
第4図は、従来の消火炉のガス排出孔部分の拡大垂直断
面図である。第4図に示すように、ガス排出孔8の開口
端8aは、築炉上比較釣魚な斜面とせざるを得ないため
、コークス17がガス排出孔8内に流入し、その入口部
分に第4図に示すように断面三角状に堆積する。この結
果、堆積層を上向きに矢印のように通過するガスの流速
は極めて不均一となり、三角形の頂点aに高速の上向き
ガス流が生ずる。このような上向きガス流が、コークス
の吹き上げによる閉塞の原因になっている。FIG. 4 is an enlarged vertical cross-sectional view of a gas discharge hole portion of a conventional fire-extinguishing furnace. As shown in FIG. 4, since the opening end 8a of the gas discharge hole 8 has to be formed into a relatively sloped slope for furnace construction, the coke 17 flows into the gas discharge hole 8, and a fourth As shown in the figure, it is deposited in a triangular cross section. As a result, the flow velocity of the gas passing upward through the deposited layer in the direction of the arrow becomes extremely non-uniform, and a high-speed upward gas flow is generated at the apex a of the triangle. This upward gas flow causes blockages due to coke blowing up.
上述のような問題を解決するために、第6図に部分垂直
断面図で示すように、ガス排出孔8に仕切り、壁15を
設け、ガス排出孔8を上部排出孔8cと下部排出孔8d
との上下に2分割し、ガス排出孔8内への粒状コークス
の流れ込み量を減らすことが、例えば実開昭59−44
5号により知られ−4=
ている。In order to solve the above-mentioned problems, as shown in a partial vertical cross-sectional view in FIG.
For example, it is possible to reduce the amount of granular coke flowing into the gas discharge hole 8 by dividing it into upper and lower halves.
Known by No. 5 -4=.
しかしながら、上述した従来技術では仕切り壁15がガ
ス排出孔8の高さ方向全長にわたって設けられており、
このために設備費が嵩む等の問題があった。However, in the prior art described above, the partition wall 15 is provided over the entire length of the gas discharge hole 8 in the height direction.
This caused problems such as increased equipment costs.
従って、この発明の目的は、コークス乾式消火炉におい
て赤熱コークスを消火する際に、ガス排出孔内に粒状コ
ークスが吹き上げてガス排出孔を閉塞することのないコ
ークス乾式消火炉を提供することにある。Therefore, an object of the present invention is to provide a coke dry fire extinguishing furnace in which granular coke does not blow up into the gas exhaust hole and block the gas exhaust hole when extinguishing red hot coke in the coke dry fire extinguishing furnace. .
本発明者は、上述した問題を解決し、ガス排出孔内にコ
ークスが流れこみ、ガス排出孔を閉塞することのないコ
ークス乾式消火炉を開発すべく鋭意研究を重ねた。本発
明者は、先ず従来のガス排出孔を流れる排ガスの流速分
布について調べた。The present inventor has conducted extensive research in order to solve the above-mentioned problems and develop a coke dry fire extinguishing furnace in which coke does not flow into the gas exhaust hole and block the gas exhaust hole. The inventor first investigated the flow velocity distribution of exhaust gas flowing through a conventional gas exhaust hole.
その結果、次のことがわかった。即ち、ガス排出孔8の
開口端8aを含も入口部分に流入するコークスは、第5
図に点a + b + Cを結ぶ線で示すように三角形
状とならざるを得ない。従って、三角形の頂部a点の部
分の排ガスの吸引速度は極めて早く(計算上は無限大)
その他方側す点の部分の排ガスの吸引速度は遅い。第5
図において点線のカーブは、ガス排出孔8のa点からb
点に至る間における排ガスの流速である。As a result, we found the following. That is, the coke flowing into the inlet portion including the open end 8a of the gas discharge hole 8 is
As shown by the line connecting points a + b + C in the figure, it has no choice but to form a triangle. Therefore, the exhaust gas suction speed at point a at the top of the triangle is extremely fast (calculated to be infinite).
The exhaust gas suction speed at the other side point is slow. Fifth
In the figure, the dotted curve is from point a to point b of the gas discharge hole 8.
This is the flow velocity of the exhaust gas while reaching the point.
そこで、第2図に示すように、ガス排出孔8のa点から
b点に至る距離のほぼ半分即ち約4の位置に仕切り壁1
5を設け、ガス排出孔8を上部排出孔8cと下部排出孔
8dとに2分した場合の排ガスの吸引速度について調べ
た。その結果、第2図に排ガスの流速を点線のカーブで
示したように、排ガスの最大流速は、仕切り壁15を設
けない場合の調 に小さくなり、従って、同じ排出孔断
面積で排ガスの量を約40%増加し得ることがわかった
。更に、上述のような効果をあげるためには、ガス排出
孔8および仕切り壁15の傾斜角度、仕切り壁15の高
さ、上部排出孔8cおよび下部排出孔8dの開口面積等
が重要であることがわかった。Therefore, as shown in FIG.
5 was provided and the gas exhaust hole 8 was divided into two into an upper exhaust hole 8c and a lower exhaust hole 8d, and the exhaust gas suction speed was investigated. As a result, as shown by the dotted curve in Figure 2, the maximum flow velocity of exhaust gas becomes as small as it would be without the partition wall 15, and therefore the amount of exhaust gas can be reduced with the same cross-sectional area of the exhaust hole. It has been found that the amount can be increased by about 40%. Furthermore, in order to achieve the above effects, the inclination angle of the gas exhaust hole 8 and the partition wall 15, the height of the partition wall 15, the opening area of the upper exhaust hole 8c and the lower exhaust hole 8d, etc. are important. I understand.
この発明は、上述の知見に基いてなされたものであって
、プレチャンバの壁部内に環状チャンバが形成され、冷
却室の上端壁内に円周方向に等間隔に多数のガス排出孔
が設けられ、前記多数のガス排出孔の各々の下部は、仕
切り壁により上下に少なくとも2段に仕切られて上部排
出孔と下部排出孔とが形成されており、前記多数のガス
排出孔の各々は、前記環状チャンバに連結されているコ
ークス乾式消火炉において、前記ガス排出孔の炉内に面
する開口端の傾斜角度は、その下端から炉心に向けた水
平線に対し60〜80であり、前記ガス排出孔の下部孔
壁の傾斜角度は、その下端から炉の外壁に向けた水平線
に対し45〜80°であり、そして、前記仕切り壁は、
前記ガス排出孔の前記下部孔壁とほぼ平行に傾斜してお
り、そして、前記仕切り壁の高さは炉内に装入されるコ
ークスの安息角を実質的に超える高さであることに特徴
を有するものである。This invention was made based on the above-mentioned knowledge, and includes an annular chamber formed within the wall of the prechamber, and a large number of gas exhaust holes provided at equal intervals in the circumferential direction within the upper end wall of the cooling chamber. The lower part of each of the plurality of gas exhaust holes is partitioned into at least two stages vertically by a partition wall to form an upper exhaust hole and a lower exhaust hole, and each of the plurality of gas exhaust holes includes: In the coke dry fire extinguishing furnace connected to the annular chamber, the inclination angle of the open end of the gas discharge hole facing the inside of the furnace is 60 to 80 with respect to the horizontal line from the lower end toward the reactor core, and the gas discharge hole The inclination angle of the lower hole wall of the hole is 45 to 80 degrees with respect to the horizontal line from its lower end to the outer wall of the furnace, and the partition wall is
The partition wall is inclined substantially parallel to the lower hole wall of the gas discharge hole, and the height of the partition wall is substantially higher than the angle of repose of coke charged into the furnace. It has the following.
次に、この発明を図面を参照しながら説明する。 Next, the present invention will be explained with reference to the drawings.
第1図はこの発明の一実施態様を示すガス排出孔部分の
概略垂直断面図、第2図は第1図に示したガス排出孔部
分の排ガスの流速分布を示す説明図である。第1図およ
び第2図に示すように、この発明においては、ガス排出
孔8の開口端8aのa点からb点に至る距離tのほぼ半
分即ち約4の位置に仕切り壁15が設けられ、ガス排出
孔8の下端が上部排出孔8cと下部排出孔8dの上下2
段に区分されている。FIG. 1 is a schematic vertical cross-sectional view of a gas discharge hole portion showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the flow velocity distribution of exhaust gas in the gas discharge hole portion shown in FIG. 1. As shown in FIGS. 1 and 2, in the present invention, a partition wall 15 is provided at a position approximately half, or approximately 4, of the distance t from point a to point b of the open end 8a of the gas discharge hole 8. , the lower end of the gas exhaust hole 8 is located above and below the upper and lower exhaust holes 8c and 8d.
It is divided into stages.
ガス排出孔8の炉内に面する開口端8aの傾斜角度θ1
は、その下端から炉心に向けた水平線に対し、60〜8
0°好ましくは70〜75であることが必要である。前
記傾斜角度θ1が60°未満では築炉が不可能であり、
一方、前記傾斜角度が800を超えると、消火されたコ
ークスをy−トを開いて切出装置6A、6Bに向けて下
降させるときの前記下降が困難になる。Inclination angle θ1 of the opening end 8a of the gas discharge hole 8 facing the inside of the furnace
is 60 to 8 with respect to the horizontal line from the bottom to the core.
It is necessary that the angle is 0°, preferably 70-75. If the inclination angle θ1 is less than 60°, it is impossible to construct a furnace,
On the other hand, if the inclination angle exceeds 800, it becomes difficult to lower the extinguished coke toward the cutting devices 6A, 6B by opening the y-t.
ガス排出孔80下部孔壁8bの傾斜角度θ2は、その下
端から炉の外壁に向けた水平線に対し45〜80好まし
くは55〜65であることが必要である。前記傾斜角度
θ2が45未満では、ガス排出孔8に吸引された排ガス
中のコークスが、ガス排出孔8の下部孔壁8bに堆積し
やすく、ガス排出孔8が閉塞する問題が生ずる。一方、
前記傾斜角度が80を超えると、ガス排出孔8の下部の
横断面積が小さくなり、排ガスの吸引力が低下する問題
が生ずる。The inclination angle θ2 of the lower hole wall 8b of the gas discharge hole 80 needs to be 45 to 80, preferably 55 to 65, with respect to the horizontal line from its lower end to the outer wall of the furnace. When the inclination angle θ2 is less than 45, coke in the exhaust gas sucked into the gas exhaust hole 8 tends to accumulate on the lower hole wall 8b of the gas exhaust hole 8, causing a problem that the gas exhaust hole 8 is clogged. on the other hand,
If the angle of inclination exceeds 80, the cross-sectional area of the lower part of the gas discharge hole 8 becomes small, causing a problem that the suction force for exhaust gas is reduced.
仕切り壁15の傾斜角度は、ガス排出孔8の下部孔壁8
bの傾斜角度とほぼ平行(±20°)であることが必要
である。仕切り壁15の傾斜角度がガス排出孔8の下部
孔壁8bの傾斜角度とほぼ平行(±200)でないと、
仕切り壁15に排ガス中のコークスが堆積しやすくなる
。The inclination angle of the partition wall 15 is the same as that of the lower hole wall 8 of the gas discharge hole 8.
It is necessary to be approximately parallel (±20°) to the inclination angle of b. If the inclination angle of the partition wall 15 is not approximately parallel (±200) to the inclination angle of the lower hole wall 8b of the gas discharge hole 8,
Coke in the exhaust gas tends to accumulate on the partition wall 15.
上述のように、仕切り壁15でガス排出孔8が上部排出
孔8cと下部排出孔8dとに区分されていることにより
、ガス排出孔8を流れる排ガスの最大流速は、仕切り壁
15を設けない場合の鴇に小さくなる。従って、従来と
同じ断面積の排出孔で排ガス量を増加し得られ、しかも
、ガス排出孔8内に流れ込む排ガスの流速分布は平均化
されて、特に吸引速度の早い部分が減少する結果、コー
クスがガス排出孔8内に吹き上げられて、ガス排出孔8
を閉塞することがなくなる。As described above, since the gas exhaust hole 8 is divided into the upper exhaust hole 8c and the lower exhaust hole 8d by the partition wall 15, the maximum flow velocity of the exhaust gas flowing through the gas exhaust hole 8 is lower than that without the partition wall 15. The case becomes smaller. Therefore, the amount of exhaust gas can be increased with a discharge hole having the same cross-sectional area as the conventional one, and the flow velocity distribution of the exhaust gas flowing into the gas discharge hole 8 is averaged, and as a result, the part where the suction velocity is particularly high is reduced, and as a result, the coke is blown up into the gas exhaust hole 8, and the gas exhaust hole 8
will no longer be blocked.
仕切り壁15は、炉内に装入されるコークスの安息角を
超える高さであることが必要である。仕切り壁15の高
さがコークスの安息角未満では、上部排出孔8c内に吹
き上げられたコークスが下部排出孔8d内にオーバーフ
ローし、仕切り壁15を設けた効果がない。仕切り壁1
5の高さはこのようにコークスの安息角を超えていれば
よく、必要以上に高くする必要はない。仕切りW15を
ガス排出孔8の高さ方向全長にわたって設けても、より
以上の効果はなく、かえって、設備費が嵩む問題が生ず
る。The height of the partition wall 15 must exceed the angle of repose of the coke charged into the furnace. If the height of the partition wall 15 is less than the angle of repose of coke, the coke blown up into the upper discharge hole 8c overflows into the lower discharge hole 8d, and the provision of the partition wall 15 has no effect. Partition wall 1
In this way, the height of 5 only needs to exceed the angle of repose of coke, and there is no need to make it higher than necessary. Even if the partition W15 is provided over the entire length of the gas discharge hole 8 in the height direction, there is no further effect, and on the contrary, the problem arises that the equipment cost increases.
上部排出孔8cの開口面積は、下部排出孔8dの開口面
積よりも大きくした方が好ましい。即ち、ガス排出孔8
内へのコークスの吹き上げは、上部排出孔8cよりも下
部排出孔8dの方が早く生じやすい。従って、上部排出
孔8cと下部排出孔8dの開口面積が同じであると、下
部排出孔8dにコークスが詰りやすいことがある。そこ
で、下部排出孔8dの開口面積を上部排出孔8cの開口
面積よりも小さくすれば、第2図に点線で示す排ガス最
大流速の高さが小さくなり、下部排出孔8dにコークス
が詰りやすい問題を解決することができる。It is preferable that the opening area of the upper discharge hole 8c be larger than that of the lower discharge hole 8d. That is, the gas exhaust hole 8
Inward blowing of coke tends to occur more quickly in the lower discharge hole 8d than in the upper discharge hole 8c. Therefore, if the opening areas of the upper discharge hole 8c and the lower discharge hole 8d are the same, the lower discharge hole 8d may be easily clogged with coke. Therefore, if the opening area of the lower discharge hole 8d is made smaller than the opening area of the upper discharge hole 8c, the height of the maximum exhaust gas flow velocity shown by the dotted line in FIG. can be solved.
上述した説明では仕切り壁は、ガス排出孔に1枚設けた
が、1枚に限らず2枚以上複数枚設けてもよく、仕切り
壁の数を多くすれば、排ガスの吸引はより分割されて、
粒状コークスのガス排出孔8内への吹き上げによる堆積
は少なくなる。In the above explanation, one partition wall is provided at the gas exhaust hole, but it is not limited to one partition wall, but two or more partition walls may be provided.If the number of partition walls is increased, the exhaust gas suction will be divided into more parts. ,
The amount of granular coke blown up into the gas discharge hole 8 and deposited thereon is reduced.
以上述べたように、この発明によれば、コークス乾式消
火炉において赤熱コークスを消火する際に、ガス排出孔
内に流れ込む排ガスの流速分布は平均化され、従来のよ
うに特に吸引速度の早い部分が軽減され、従って、コー
クスがガス排出孔内に進入し且つ吹き上げてガス排出孔
を閉塞することはなく、シかも、コークスのガス排出孔
内への流入量が極めて少ないから、ガス吹込み口から消
火炉本体内に吹き込まれるガスの圧力を低くすることが
でき、赤熱コークスの消火を経済的に行なうことができ
る等、工業上多くの有用な効果がもたらされる。As described above, according to the present invention, when extinguishing red hot coke in a coke dry fire extinguishing furnace, the flow velocity distribution of the exhaust gas flowing into the gas discharge hole is averaged, and unlike the conventional method, the flow velocity distribution of the exhaust gas flowing into the gas discharge hole is averaged. Therefore, coke will not enter the gas exhaust hole and blow up to block the gas exhaust hole, and since the amount of coke flowing into the gas exhaust hole is extremely small, The pressure of the gas blown into the fire extinguishing furnace body can be lowered, and red-hot coke can be extinguished economically, and many other useful effects can be brought about industrially.
第1図はこの発明の一実施態様を示すガス排出孔部分の
概略垂直断面図、第2図はその排ガスの流速分布を示す
説明図、第3図は従来の消火炉の概略垂直断面図、第4
図は従来の消火炉のガス排出孔部分の概略垂直断面図、
第5図は従来の消火炉の排ガスの流速分布を示す説明図
、第6図は従来の消火炉の他の例を示す概略垂直断面図
である。
図面において、
1・・・消火炉本体、 2・・・装入口、3・・・
不活性ガス吹込み口、
4・・・底部、 5・・・ダート、6A、
6B・・・切出し装置、
7・・・ディストリビュータ、
8・・・ガス排出孔、 8c・・・上部排出孔8
d・・・下部排出孔、 9・・・環状チャンバ、1
0・・・煙道、 11・・・除塵器、12・
・・熱交換器、 13・・・サイクロン、14・・
・ブロワ、 15・・・仕切り壁、17・・・
コークス、 A・・・プレチャンバ、B・・・冷
却室。FIG. 1 is a schematic vertical cross-sectional view of a gas discharge hole portion showing an embodiment of the present invention, FIG. 2 is an explanatory view showing the flow velocity distribution of the exhaust gas, and FIG. Fourth
The figure is a schematic vertical cross-sectional view of the gas discharge hole of a conventional fire-extinguishing furnace.
FIG. 5 is an explanatory diagram showing the flow velocity distribution of exhaust gas in a conventional fire extinguishing furnace, and FIG. 6 is a schematic vertical sectional view showing another example of the conventional fire extinguishing furnace. In the drawing, 1... Fire extinguishing furnace main body, 2... Charging port, 3...
Inert gas inlet, 4...bottom, 5...dart, 6A,
6B... Cutting device, 7... Distributor, 8... Gas discharge hole, 8c... Upper discharge hole 8
d... lower discharge hole, 9... annular chamber, 1
0... Flue, 11... Dust remover, 12.
...Heat exchanger, 13...Cyclone, 14...
・Blower, 15...Partition wall, 17...
Coke, A...Prechamber, B...Cooling chamber.
Claims (2)
、冷却室の上端壁内に円周方向に等間隔に多数のガス排
出孔が設けられ、前記多数のガス排出孔の各々の下部は
、仕切り壁により上下に少なくとも2段に仕切られて上
部排出孔と下部排出孔とが形成されており、前記多数の
ガス排出孔の各々は、前記環状チャンバに連結されてい
るコークス乾式消火炉において、 前記ガス排出孔の炉内に面する開口端の傾斜角度は、そ
の下端から炉心に向けた水平線に対し60〜80°であ
り、前記ガス排出孔の下部孔壁の傾斜角度は、その下端
から炉の外壁に向けた水平線に対し45〜80°であり
、そして、前記仕切り壁は、前記ガス排出孔の前記下部
孔壁とほぼ平行に傾斜しており、そして、前記仕切り壁
の高さは、炉内に装入されるコークスの安息角を実質的
に超える高さであることを特徴とするコークス乾式消火
炉。(1) An annular chamber is formed in the wall of the pre-chamber, and a number of gas exhaust holes are provided at equal intervals in the circumferential direction in the upper end wall of the cooling chamber, and the lower part of each of the multiple gas exhaust holes is In the coke dry fire extinguishing furnace, the coke dry fire extinguishing furnace is partitioned vertically into at least two stages by a partition wall to form an upper discharge hole and a lower discharge hole, and each of the plurality of gas discharge holes is connected to the annular chamber. The inclination angle of the opening end of the gas exhaust hole facing the inside of the reactor is 60 to 80 degrees with respect to the horizontal line from the lower end toward the core, and the inclination angle of the lower hole wall of the gas exhaust hole is 60 to 80 degrees from the lower end. the partition wall is inclined approximately parallel to the lower hole wall of the gas discharge hole, and the height of the partition wall is 45 to 80 degrees with respect to the horizontal line toward the outer wall of the furnace. , a coke dry fire extinguishing furnace characterized in that the height substantially exceeds the angle of repose of coke charged into the furnace.
開口面積よりも大きいことを特徴とする特許請求の範囲
第(1)項に記載のコークス乾式消火炉。(2) The coke dry fire extinguishing furnace according to claim (1), wherein the opening area of the upper discharge hole is larger than the opening area of the lower discharge hole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61091272A JPH0819413B2 (en) | 1986-04-22 | 1986-04-22 | Coke dry fire extinguisher |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61091272A JPH0819413B2 (en) | 1986-04-22 | 1986-04-22 | Coke dry fire extinguisher |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62250090A true JPS62250090A (en) | 1987-10-30 |
JPH0819413B2 JPH0819413B2 (en) | 1996-02-28 |
Family
ID=14021811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61091272A Expired - Lifetime JPH0819413B2 (en) | 1986-04-22 | 1986-04-22 | Coke dry fire extinguisher |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0819413B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02167392A (en) * | 1988-09-01 | 1990-06-27 | Nippon Steel Corp | Flue from gas outlet of coke dry-type extinguisher |
CN110437851A (en) * | 2019-08-30 | 2019-11-12 | 中冶焦耐(大连)工程技术有限公司 | A kind of novel coke dry quenching furnace chute structure |
CN110452719A (en) * | 2019-08-30 | 2019-11-15 | 中冶焦耐(大连)工程技术有限公司 | A kind of oblique air flue of two cellulars |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107502375B (en) * | 2017-07-17 | 2020-07-28 | 唐山首钢京唐西山焦化有限责任公司 | Separating device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59445U (en) * | 1982-06-22 | 1984-01-05 | 日本鋼管株式会社 | Coke dry fire extinguishing furnace |
-
1986
- 1986-04-22 JP JP61091272A patent/JPH0819413B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59445U (en) * | 1982-06-22 | 1984-01-05 | 日本鋼管株式会社 | Coke dry fire extinguishing furnace |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02167392A (en) * | 1988-09-01 | 1990-06-27 | Nippon Steel Corp | Flue from gas outlet of coke dry-type extinguisher |
CN110437851A (en) * | 2019-08-30 | 2019-11-12 | 中冶焦耐(大连)工程技术有限公司 | A kind of novel coke dry quenching furnace chute structure |
CN110452719A (en) * | 2019-08-30 | 2019-11-15 | 中冶焦耐(大连)工程技术有限公司 | A kind of oblique air flue of two cellulars |
CN110437851B (en) * | 2019-08-30 | 2024-07-09 | 中冶焦耐(大连)工程技术有限公司 | Dry quenching furnace chute structure |
Also Published As
Publication number | Publication date |
---|---|
JPH0819413B2 (en) | 1996-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017152784A1 (en) | System and method for dry centrifugal granulation of high_temperature liquid slag and exhaust heat recovery | |
WO2019161638A1 (en) | Liquid slag dry centrifugal granulation and waste heat recovery system having slag buffer and flow control function | |
WO2019161639A1 (en) | Dry type centrifugal granulation and waste heat recycling and utilization system for liquid molten slag | |
TW201014901A (en) | Coke dry quenching facility | |
TW201014902A (en) | Coke dry type extinguishing facility, and coke dry type extinguishing method | |
CN106568331A (en) | Large suspension kiln and production process thereof | |
JPS62250090A (en) | Coke dry quenching furnace | |
CN111928238B (en) | Novel air distribution device for fluidized bed boiler | |
US2467166A (en) | Checker-brick and checkerwork | |
CN211420055U (en) | Put out stove dust removal structure futilely | |
CN116200553A (en) | Centrifugal granulating and waste heat recovery cooling heat exchange system for high-temperature slag | |
CN110819362B (en) | Dry quenching furnace dust removal structure | |
CN211526448U (en) | Heat-preservation oxidation cooling fire cabinet and smelting system | |
CN207196473U (en) | CFB boiler with the effect of certain abrasionproof | |
JP4137676B2 (en) | Coke dry fire extinguishing equipment gas outlet flue structure | |
CN208418711U (en) | A kind of circulating fluidized bed boiler | |
CN208418710U (en) | It is a kind of for circulating fluidized bed boiler two, the circulating ventilation equipment of tertiary air | |
JPH02167392A (en) | Flue from gas outlet of coke dry-type extinguisher | |
CN206168090U (en) | High -efficient smoke and dust separation and cooling device | |
CN201569289U (en) | Fluidization roasting furnace | |
CN216584880U (en) | Dry quenching system | |
CN205878244U (en) | Gas collection structure and fire burning furnace | |
JPS6215222Y2 (en) | ||
JP2011207919A (en) | Coke dry quenching facility | |
CN218842051U (en) | Quenching furnace cooling area structure |