JPS6224965Y2 - - Google Patents
Info
- Publication number
- JPS6224965Y2 JPS6224965Y2 JP19262681U JP19262681U JPS6224965Y2 JP S6224965 Y2 JPS6224965 Y2 JP S6224965Y2 JP 19262681 U JP19262681 U JP 19262681U JP 19262681 U JP19262681 U JP 19262681U JP S6224965 Y2 JPS6224965 Y2 JP S6224965Y2
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- polarized wave
- polarization
- rectangular
- orthogonal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000010287 polarization Effects 0.000 claims description 30
- 230000000737 periodic effect Effects 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 239000003989 dielectric material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
Description
【考案の詳細な説明】
本考案はミリ波帯で用いられる周期分波器にお
いて、直交する二つの偏波成分の伝搬軸方向の位
相定数が異なる導波管を、その二つの偏波成分の
方向とほぼ45゜傾いた直線偏波で励振する周期分
波器において前記導波管内に誘電体を装荷して分
波周波数の間隔を等しくした周期分波器に関する
ものである。[Detailed description of the invention] This invention is a periodic duplexer used in the millimeter wave band, in which two orthogonal polarization components have different phase constants in the propagation axis direction. This invention relates to a periodic duplexer that excites linearly polarized waves tilted approximately 45 degrees to the direction of the waveguide, and in which a dielectric material is loaded in the waveguide to equalize the spacing of the demultiplexed frequencies.
従来、周期分波器としては、一例として第1図
に示すような長さの異なる2本の導波管(主導波
管,副導波管)と、入力電力を二つの等しい出力
電力に分ける3dB結合器2個とにより構成される
ものが用いられていた。第1図において、1は出
力ポート、2,2′は3dB結合器、3,3′は導波
管、4,4′は出力ポートである。 Conventionally, a periodic duplexer uses two waveguides (main waveguide, sub waveguide) of different lengths, as shown in Figure 1, and divides the input power into two equal output powers. A configuration consisting of two 3dB couplers was used. In FIG. 1, 1 is an output port, 2 and 2' are 3 dB couplers, 3 and 3' are waveguides, and 4 and 4' are output ports.
次にこれの動作原理について説明する。入力ポ
ート1から入つた1+2+…+2oの周波数
成分を持つ電波は3dB結合器2によつて半分のエ
ネルギに分かれ、一方は長さの主導波管3、他
の一方は長さ′の副導波管3′を通つて3dB結合
器2′で再び結合する。このとき導波管3,3′の
長さ,′の差を適当に選ぶことにより、出力
ポート4では、1,3,…,2o-1が同相、
2,4,…,2oが逆相となり、出力ポート
4から1+3+…+2o-1が取り出される。 Next, the principle of operation will be explained. A radio wave with a frequency component of 1 + 2 +... + 2o that enters from input port 1 is divided into half energies by a 3 dB coupler 2, one half of which is divided into two halves of energy, one half of which is the main wave tube 3 of length, and the other of which is of length ' They pass through the sub-waveguide 3' and are recombined at the 3 dB coupler 2'. At this time, by appropriately selecting the difference between the lengths of the waveguides 3 and 3', 1 , 3 , ..., 2o-1 are in phase at the output port 4,
2 , 4 ,..., 2o are in reverse phase, and 1 + 3 +...+ 2o-1 is taken out from the output port 4.
一方出力ポート4′では逆の作用が起こり、
2+4+…+2oが取り出される。しかしこの
ような構成の周期分波器では、主副2本の導波管
とこれを結び付ける3dB結合器が必要となり、構
成が複雑で製作,調整が難かしいこと、また広い
周波数帯域にわたつて3dB結合器の結合度を一定
にできないから使用周波数帯域に限界があるこ
と、更に導波管の伝搬定数が周波数とともに変化
するので、各出力ポートで同相又は逆相となる周
波数の間隔が異なり、分波される周波数間隔が一
定とならない等の欠点があつた。 On the other hand, the opposite effect occurs at output port 4',
2 + 4 +...+ 2o is taken out. However, a periodic duplexer with this configuration requires two main and sub waveguides and a 3dB coupler to connect them, making the configuration complex and difficult to manufacture and adjust. Since the degree of coupling of the 3dB coupler cannot be made constant, there is a limit to the frequency band that can be used.Furthermore, the propagation constant of the waveguide changes with frequency, so the intervals between frequencies that are in-phase or out-of-phase at each output port are different. There were drawbacks such as the frequency interval to be demultiplexed was not constant.
これらの欠点のうち、構成が複雑で製作,調整
が難しいこと、使用周波数帯域に限界があること
の二点を解決する方法として、主副2本の導波管
を用いることなく、また3dB結合器も不用となる
構成が提案されている。すなわち、直交する二つ
の偏波成分の伝搬軸方向の位相定数が異なる導波
管を、その二つの偏波成分の方向とほぼ45゜傾い
た直線偏波で励振するものである。 Among these drawbacks, the two points that are difficult to manufacture and adjust due to its complicated configuration, and the limitation of the usable frequency band, have been solved. A configuration has been proposed that eliminates the need for a container. That is, a waveguide in which two orthogonal polarized components have different phase constants in the propagation axis direction is excited with a linearly polarized wave that is tilted approximately 45 degrees to the direction of the two polarized components.
第2図はこの構成を方形導波管で実現した例で
あつて、1は入力ポート、3″は方形導波管、
4,4′は出力ポート、5,5′は円形方形変換導
波管、6は円形テーパ導波管、7は偏分波器であ
る。 Figure 2 shows an example of this configuration realized with a rectangular waveguide, where 1 is an input port, 3'' is a rectangular waveguide,
4 and 4' are output ports, 5 and 5' are circular rectangular conversion waveguides, 6 is a circular tapered waveguide, and 7 is a polarization splitter.
方形導波管3″はその伝搬定数が異なる二つの
偏波をx軸に平行な偏波成分とy軸に平行な偏波
成分とに分けるため、入力ポート1から入射する
直線偏波の方向にほぼ45゜傾いて設置され、偏分
波器7は入射する直線偏波成分と、これに直交す
る偏波成分とを分離するため、一方の出力ポート
4′の偏波成分の方向と、入射する直線偏波の方
向とを一致させ、かつ他の一方の出力ポート4の
偏波成分の方向と、入射する直線偏波の方向とが
直交するように設置されている。なお第2図中の
矢印は偏波の方向とその強さを表わしている。 The rectangular waveguide 3″ separates two polarized waves with different propagation constants into a polarized wave component parallel to the x-axis and a polarized wave component parallel to the y-axis, so the direction of the linearly polarized wave incident from the input port 1 is The polarization splitter 7 is installed at an angle of approximately 45 degrees to the direction of the polarization component of one output port 4', in order to separate the incident linearly polarized component and the polarized component orthogonal thereto. It is installed so that the direction of the incident linearly polarized wave coincides with the direction of the incident linearly polarized wave, and the direction of the polarized wave component of the other output port 4 is orthogonal to the direction of the incident linearly polarized wave. The arrow inside represents the direction of polarization and its strength.
次に動作原理について説明する。第2図におい
て、入力ポート1から入射した直線偏波は、円形
方形変換導波管5で方形導波管に変換される。こ
のとき方形導波管側の直交するx軸及びy軸と入
射波の直線偏波の方向がほぼ45゜となつているの
で、3dB結合器と同様な働きをし、入射波はx軸
に平行な偏波成分(以後、x偏波成分という)と
y軸に平行な偏波成分(以後、y偏波成分とい
う)との二つの分かれ、方形導波管3″に導かれ
る。方形導波管3″は断面寸法がx軸,y軸で異
なつているので、x偏波成分とy偏波成分でその
伝搬定数が異なる。このため方形導波管3″を通
り円形方形変換導波管5′に入つた所で、x偏波
成分とy偏波成分の位相に差が生じており、これ
を入射波の偏波に平行な成分及びこれと直交する
偏波成分で考えると、入射波と平行な偏波成分で
は、2,4,…,2oが周期的に同相とな
り、1,3,…,2o-1は逆相になつてい
る。またこれと直交する偏波成分では、逆の状態
になつている。したがつてこの二つの偏波成分を
円形テーパ導波管6で偏分波器に接続し、偏分波
器7でこの二つの成分を分離し、出力ポート4,
4′から取り出すと、出力ポート4からは1+
3+…+2o-1、出力ポート4′からは2+
4+…+2oの周波数が取り出され、周期分波
器として動作する。 Next, the operating principle will be explained. In FIG. 2, the linearly polarized wave incident from the input port 1 is converted into a rectangular waveguide by a circular rectangular conversion waveguide 5. At this time, the direction of linear polarization of the incident wave is approximately 45 degrees with respect to the orthogonal x-axis and y-axis on the rectangular waveguide side, so it functions similarly to a 3dB coupler, and the incident wave is directed along the x-axis. The parallel polarized wave component (hereinafter referred to as x-polarized wave component) and the polarized wave component parallel to the y-axis (hereinafter referred to as y-polarized wave component) are separated into two parts and guided to the rectangular waveguide 3''. Since the wave tube 3'' has different cross-sectional dimensions on the x-axis and y-axis, the propagation constants are different between the x-polarized wave component and the y-polarized wave component. For this reason, there is a difference in phase between the x-polarized wave component and the y-polarized wave component when the wave passes through the rectangular waveguide 3'' and enters the circular-rectangular conversion waveguide 5', and this is converted into the polarization of the incident wave. Considering the parallel components and the polarization components orthogonal to these, in the polarization components parallel to the incident wave, 2 , 4 ,..., 2o are periodically in phase, and 1 , 3 ,..., 2o-1 are in the opposite phase. In addition, the polarized wave components perpendicular to this are in the opposite state. Therefore, these two polarized wave components are connected to a polarization splitter using a circular tapered waveguide 6, and the polarized wave components are polarized. The demultiplexer 7 separates these two components, and the output port 4,
4', output port 4 outputs 1 +
3 +...+ 2o-1 , 2 + from output port 4'
The frequency of 4 +...+ 2o is extracted and operates as a periodic duplexer.
第3図はこの構成の周期分波器の周波数特性を
示したものである。第3図から明らかなようにチ
ヤネルの中心周波数間隔は低い周波数帯で狭く高
い周波数帯で広くなつている。また、周波数特性
の立ち上りも正弦波状で鋭くないことが分かる。
分波される周波数間隔が一定にならないのは、第
1図の構成と同様に、x偏波成分とy偏波成分の
伝搬定数が周波数と共に変化することによる。 FIG. 3 shows the frequency characteristics of a periodic duplexer having this configuration. As is clear from FIG. 3, the center frequency spacing of the channels is narrower in lower frequency bands and wider in higher frequency bands. It can also be seen that the rise in frequency characteristics is sinusoidal and not sharp.
The reason why the separated frequency interval is not constant is that the propagation constants of the x-polarized wave component and the y-polarized wave component change with frequency, similar to the configuration shown in FIG.
本考案はこの欠点を除去するために、第2図に
示した導波管3″中に誘電体を装荷し、分波する
周波数間隔を等しくしたものである。以下図面に
より本考案を詳細に説明する。 In order to eliminate this drawback, the present invention loads a dielectric material into the waveguide 3'' shown in Fig. 2 to equalize the frequency intervals for demultiplexing.The present invention will be explained in detail with reference to the drawings below. explain.
第4図は本考案の実施例であり、第2図に示し
た方形導波管3″の内に、導波管3″の横方向のほ
ぼ中央に導波管3″の高さと同じ高さをもつ誘電
体を導波管3″の長さ方向に装荷したものであ
る。この実施例の特徴は誘電体の比誘電率と寸法
を適当に設定することによつて、X偏波成分とY
偏波成分の位相差の周波数に対する傾きを高い周
波数帯域にわたつて、ほぼ一定にすることができ
ることである。 FIG. 4 shows an embodiment of the present invention, in which a rectangular waveguide 3'' shown in FIG. The waveguide 3'' is loaded with a dielectric material having a certain thickness in the length direction of the waveguide 3''. The feature of this embodiment is that by appropriately setting the dielectric constant and dimensions of the dielectric material, the X polarization component and the Y polarization component can be
It is possible to make the slope of the phase difference of polarization components with respect to frequency almost constant over a high frequency band.
導波管3″の振幅をa,高さをb,長さを0
誘電体の厚さをt,比誘電率をεrとし、X,Y
偏波成分各々の伝搬定数をγe,γhとおくと、そ
れらは横共振法を用いて次式から求められる。 The amplitude of the waveguide 3″ is a, the height is b, and the length is 0.
The thickness of the dielectric is t, the relative permittivity is ε r , and X, Y
Letting the propagation constants of each polarization component be γ e and γ h , they can be obtained from the following equation using the transverse resonance method.
ここでk0=2π/λ,λ=c/,c:光速,:周
波
数,またhは導波管内の横方向伝搬定数,は誘
電体内の横方向伝搬定数であり、解析の過程の中
でのみ用いる変数である。 Here, k 0 = 2π/λ, λ = c/, c: speed of light, : frequency, and h is the lateral propagation constant in the waveguide. This is a variable that is only used.
次に両偏波間の位相差Δφ()は、 Δφ()=0(γh−γe) となる。 Next, the phase difference Δφ() between both polarized waves becomes Δφ()= 0 (γ h −γ e ).
例としてa=12,b=8,εr=2
t=0〜6の場合のΔφ()の特性とそれに
対応するポート4′の出力電力特性を第5図に示
す。 As an example, FIG. 5 shows the characteristics of Δφ( ) and the corresponding output power characteristics of port 4' when a=12, b=8, ε r =2 and t=0 to 6.
ここでt=6の場合が本実施例、t=0の場合
が第2図に示した構成のものである。これから明
らかなように、従来の構成では位相差特性が周波
数に対して比例していないため、円形方形変換導
波管5′に入つた所で、入射波の直線偏波と同じ
偏波成分では、2,4…2oが異なる周波数
間隔で同相になり、1,3…2o-1が異なる
周波数間隔で逆相になつている。また、入射波と
直交する偏波成分は、その逆の状態になつてい
る。すなわち、出力ポート4,4′から取り出さ
れる分波出力においては、第5図でt=0の場合
のポート4′の出力電力特性で示すように、分波
周波数間隔は不等間隔となる。これに対して、本
実施例の場合は、位相特性が周波数に対して比例
しいるため、円形方形変換導波管5′に入つた所
で、入射波の直線偏波と同じ偏波成分では、
2,4,…,2oが同じ周波数間隔で同相にな
り、1,3,…,2o-1が同じ周波数間隔で
逆相になつている。また入射偏波と直交する偏波
成分では、その逆の状態になつている。すなわち
出力ポート4,4′から取り出される分波出力に
おいては第5図でt=6の場合のポート4′の出
力電力特性で示すようにその周波数間隔を広い周
波数帯域にわたつて、ほぼ一定にすることが可能
となる。 Here, the case of t=6 corresponds to the present embodiment, and the case of t=0 corresponds to the configuration shown in FIG. 2. As is clear from this, in the conventional configuration, the phase difference characteristic is not proportional to the frequency, so at the point where it enters the circular-to-rectangular conversion waveguide 5', the polarization component that is the same as the linearly polarized wave of the incident wave is , 2 , 4 ... 2o are in phase at different frequency intervals, and 1 , 3 ... 2o-1 are out of phase at different frequency intervals. Furthermore, the polarized wave component orthogonal to the incident wave is in the opposite state. That is, in the demultiplexed outputs taken out from the output ports 4 and 4', the demultiplexed frequency intervals are unequal, as shown by the output power characteristics of the port 4' when t=0 in FIG. On the other hand, in the case of this embodiment, since the phase characteristic is proportional to the frequency, at the point where the wave enters the circular-to-rectangular conversion waveguide 5', the polarization component is the same as the linearly polarized wave of the incident wave. ,
2 , 4 ,..., 2o are in phase at the same frequency interval, and 1 , 3 ,..., 2o-1 are at opposite phase at the same frequency interval. In addition, the polarization component orthogonal to the incident polarization is in the opposite state. In other words, in the divided outputs taken out from the output ports 4 and 4', the frequency interval is kept almost constant over a wide frequency band, as shown in the output power characteristics of port 4' when t=6 in Figure 5. It becomes possible to do so.
以上説明したように、本考案の直交偏波を用い
た周期分波器は、主要構成要素として直交する二
つの偏波成分の伝搬軸方向の位相定数が異なる導
波管と偏分波器からなる周期分波器において、前
記位相定数が異なる導波管内に誘電体を付加し、
二つの直交する偏波成分で伝搬定数の一次傾斜を
周波数変化に対して一定にしたことにより、出力
ポートに出力される周波数間隔を一定にできると
いう周期分波器として卓抜した効果を有する。 As explained above, the periodic duplexer using orthogonal polarization of the present invention consists of a waveguide and a polarization duplexer whose main components are two orthogonal polarization components with different phase constants in the propagation axis direction. In the periodic duplexer, a dielectric material is added within the waveguide having different phase constants,
By making the primary slope of the propagation constant constant with respect to frequency changes using two orthogonal polarization components, it has an outstanding effect as a periodic duplexer in that the frequency interval output to the output port can be made constant.
第1図は従来の周期分波器の原理説明図、第2
図は従来の周期分波器の構成を示す斜視図、第3
図は従来の周期分波器の分波特性図、第4図は本
考案による直交偏波を用いた周期分波器の実施例
の構成を示す斜視図、第5図は本考案による周期
分波器のX偏波とY偏波の位相差と、それに対応
するポート4′の出力電力特性を示した図であ
る。
1……入力ポート、2,2′……3dB結合器、
3,3′,3″……方形導波管、4,4′……出力
ポート、5,5′……円形方形変換導波管、6…
…円形テーパ導波管、7……偏分波器、8……誘
電体。
Figure 1 is a diagram explaining the principle of a conventional periodic duplexer, Figure 2
The figure is a perspective view showing the configuration of a conventional periodic duplexer.
The figure is a branching characteristic diagram of a conventional periodic duplexer, Figure 4 is a perspective view showing the configuration of an embodiment of a periodic duplexer using orthogonal polarization according to the present invention, and Figure 5 is a periodic duplexer according to the present invention. FIG. 4 is a diagram showing the phase difference between the X polarization and Y polarization of the duplexer and the output power characteristics of the port 4' corresponding to the phase difference. 1...Input port, 2,2'...3dB coupler,
3, 3', 3''... Rectangular waveguide, 4, 4'... Output port, 5, 5'... Circular-square conversion waveguide, 6...
...Circular taper waveguide, 7...Polarization splitter, 8...Dielectric material.
Claims (1)
数が互いに異なる方形導波管と、この導波管の入
力側及び出力側に接続された円形方形変換導波管
と、この変換導波管の出力側に接続された円形テ
ーパ導波管と、この円形テーパ導波管の出力側に
接続された偏分波器とを有し、前記方形導波管は
入射する直線偏波の方向にほぼ45゜傾けて設置
し、前記偏分波器は一方の出力ポートの偏波成分
の方向と入射する直線偏波の方向とを一致させ、
かつ他の一方の出力ポートの偏波成分の方向と入
射する直線偏波の方向とが直交するように設置
し、前記方形導波管内に、該導波管の横方向のほ
ぼ中央に該導波管と同じ高さの誘電体を該導波管
の長さ方向に装荷し、かつ(―2つの偏波成分の前
記誘電体の幅と比誘電率を伝搬位相差が周波数の
一次関数になるように)―設定したことを特徴とす
る直交偏波を用いた周期分波器。 A rectangular waveguide in which two orthogonal polarized components have different phase constants in the propagation axis direction, a circular-to-rectangular conversion waveguide connected to the input side and output side of this waveguide, and this conversion waveguide. a circular tapered waveguide connected to the output side of the waveguide, and a polarization splitter connected to the output side of the circular taper waveguide, and the rectangular waveguide The polarization splitter is installed at an angle of approximately 45 degrees, and the polarization splitter matches the direction of the polarized wave component of one output port with the direction of the incident linearly polarized wave,
and installed so that the direction of the polarized wave component of the other output port is orthogonal to the direction of the incident linearly polarized wave, and the waveguide is installed in the rectangular waveguide at approximately the center in the lateral direction of the waveguide. A dielectric of the same height as the waveguide is loaded in the length direction of the waveguide, and ) - A periodic duplexer using orthogonal polarization.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19262681U JPS6224965Y2 (en) | 1981-12-25 | 1981-12-25 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19262681U JPS6224965Y2 (en) | 1981-12-25 | 1981-12-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57115704U JPS57115704U (en) | 1982-07-17 |
JPS6224965Y2 true JPS6224965Y2 (en) | 1987-06-26 |
Family
ID=29996215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19262681U Expired JPS6224965Y2 (en) | 1981-12-25 | 1981-12-25 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6224965Y2 (en) |
-
1981
- 1981-12-25 JP JP19262681U patent/JPS6224965Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57115704U (en) | 1982-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1988010013A2 (en) | Microwave multiplexer with multimode filter | |
WO1999067848A9 (en) | Broad band quad ridged polarizer | |
US3958192A (en) | Dual septum waveguide transducer | |
US2806138A (en) | Wave guide frequency converter | |
JPS6224965Y2 (en) | ||
JPS6224964Y2 (en) | ||
US3263176A (en) | Microwave frequency discriminator using a cavity resonator | |
JPS58205301A (en) | Directional filter | |
JPH0345561B2 (en) | ||
JP3159631B2 (en) | Waveguide splitter | |
JPH06140810A (en) | Orthogonal polarizer/branching filter | |
JPS5951762B2 (en) | Resonant cavity bandpass filter | |
JPH0575201B2 (en) | ||
JPH0322081B2 (en) | ||
SU1166201A1 (en) | Waveguide-dielectric filter | |
SU1415281A1 (en) | Divider of frequency channels | |
Ohm | A Low-Loss Branching Filter for Broad Widely Spaced Bandwidths (Short Papers) | |
RU1807538C (en) | Open resonator | |
SU1478266A1 (en) | Phase shifter | |
JPS6129562B2 (en) | ||
SU483729A1 (en) | Directional coupler | |
SU1100662A1 (en) | Microwave discriminator | |
SU490218A1 (en) | Waveguide pathogen types of waves | |
JPH01300601A (en) | Electroma gnetic wave phase shifting synthesizer | |
SU886194A1 (en) | Modulator of single side frequency |