JPS6224961B2 - - Google Patents

Info

Publication number
JPS6224961B2
JPS6224961B2 JP3910079A JP3910079A JPS6224961B2 JP S6224961 B2 JPS6224961 B2 JP S6224961B2 JP 3910079 A JP3910079 A JP 3910079A JP 3910079 A JP3910079 A JP 3910079A JP S6224961 B2 JPS6224961 B2 JP S6224961B2
Authority
JP
Japan
Prior art keywords
microstrip
conductor plate
power
radiating element
distributed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3910079A
Other languages
Japanese (ja)
Other versions
JPS55130203A (en
Inventor
Naoki Inagaki
Shinichi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3910079A priority Critical patent/JPS55130203A/en
Publication of JPS55130203A publication Critical patent/JPS55130203A/en
Publication of JPS6224961B2 publication Critical patent/JPS6224961B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas

Description

【発明の詳細な説明】 本発明はマイクロストリツプ線路と分布結合さ
せた導体板から電磁波を放射する分布結合形マイ
クロストリツプ・アンテナに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distributed-coupled microstrip antenna that radiates electromagnetic waves from a conductor plate that is distributed-coupled to a microstrip line.

従来、この種の分布結合形マイクロストリツ
プ・アンテナは第1図に示すように誘電体基板3
上に形成されたマイクロストリツプ線路2に導体
板1を直結して給電する方式と、第2図に示すよ
うに一本のマイクロストリツプ線路2に近接させ
て導体板1を形成することにより両者を分布結合
させる方式(分布結合形)とが採用されている。
図中、4は接地導体板を示す。
Conventionally, this type of distributed coupling type microstrip antenna has a dielectric substrate 3 as shown in FIG.
One method is to directly connect the conductor plate 1 to the microstrip line 2 formed above to supply power, and the other is to form the conductor plate 1 close to one microstrip line 2 as shown in FIG. Therefore, a method of distributively coupling the two (distributed coupling type) has been adopted.
In the figure, 4 indicates a ground conductor plate.

しかしながら第1図の直結形によると一個の放
射素子1毎に1本のマイクロストリツプ線路2が
必要であるので、多数の放射素子を配列し、各素
子に給電するには電力分配器を設ける必要があり
この電力分配回路のために有効放射面積に匹敵す
る大きさの誘電体基板が必要となり、マイクロス
トリツプ・アンテナのもつ小型軽量の特徴が損な
われる。又、第2図の分布結合形によれば、一本
の線路で多素子を同時に給電できるので給電回路
のための誘電体基板を用意する必要はない。分布
結合形によりアレイアンテナを構成し、指向性合
成を行なう場合、素子の放射強度はマイクロスト
リツプ線路から放射素子への電力結合率を変える
ことによつて変化させる。このためにはマイクロ
ストリツプ線路と放射素子との間の間隔、s、お
よび放射素子の幅、w、を変えるが、wが余り大
きくなると線路に平行な軸方向電流以外に横方向
電流が無視できない大きさになり、放射波の交叉
偏波レベルが許容レベル以上に大きくなる。従つ
て放射強度の重み付けのできる幅が狭いという欠
点があつた。
However, according to the direct connection type shown in Figure 1, one microstrip line 2 is required for each radiating element 1, so a power divider is required to arrange a large number of radiating elements and feed power to each element. This power distribution circuit requires a dielectric substrate with a size comparable to the effective radiation area, which detracts from the compact and lightweight characteristics of the microstrip antenna. Furthermore, according to the distributed coupling type shown in FIG. 2, multiple elements can be fed simultaneously with one line, so there is no need to prepare a dielectric substrate for the feeding circuit. When configuring an array antenna using a distributed coupling type and performing directional synthesis, the radiation intensity of the element is changed by changing the power coupling rate from the microstrip line to the radiating element. To achieve this, the distance between the microstrip line and the radiating element, s, and the width of the radiating element, w, are changed. However, if w becomes too large, a lateral current will flow in addition to the axial current parallel to the line. The magnitude becomes so large that it cannot be ignored, and the cross-polarization level of the radiated wave becomes larger than the permissible level. Therefore, there is a drawback that the range in which the radiation intensity can be weighted is narrow.

本発明は放射板の幅を大きくしても横方向電流
の発生が抑えられ、放射強度の重み付けを幅広く
行なうことを可能とした分布結合形マイクロスト
リツプアンテナを提供するものである。
The present invention provides a distributed coupling type microstrip antenna in which generation of lateral current is suppressed even when the width of the radiation plate is increased, and radiation intensity can be weighted over a wide range.

即ち、本発明によれば、誘電体基板上に形成さ
れた平行な2本のマイクロストリツプ線路間に少
なくとも1個の導体板から成く放射素子を形成し
前記2本のマイクロストリツプ線路から前記放射
素子に電力を分布結合により供給するようにした
ことを特徴とする分布結合形マイクロストリツプ
アンテナが得られる。
That is, according to the present invention, a radiating element made of at least one conductive plate is formed between two parallel microstrip lines formed on a dielectric substrate, and the two microstrip lines are connected to each other. A distributed coupling microstrip antenna is obtained, characterized in that power is supplied from the line to the radiating element by distributed coupling.

次に本発明の一実施例を図面を参照して説明す
る。
Next, one embodiment of the present invention will be described with reference to the drawings.

第3図は同軸線路から入力させる一列の分布結
合マイクロストリツプアンテナ列を示す。図中5
は同軸線路とマイクロストリツプ線路を結ぶコネ
クタ(電力入力端)、6―1,6―2は無反射終
端を示す。コネクタ5からの入力は二等分され、
二本の平行なマイクロストリツプ線路2―1,2
―2上は同相同大の進行波電流が流れる。この進
行波電流を伴なつた伝送電力の一部が方形導体板
の法射素子1―1,1―2,1―3,1―4に分
布結合して放射され、進行波電力は進行方向に沿
つて徐々に減衰し残りは無反射終端6によつて吸
収される。
FIG. 3 shows a row of distributed coupling microstrip antennas with input from a coaxial line. 5 in the diagram
6-1 and 6-2 indicate the connector (power input end) connecting the coaxial line and the microstrip line, and the non-reflection terminations. The input from connector 5 is divided into two equal parts,
Two parallel microstrip lines 2-1, 2
Traveling wave currents of the same phase and magnitude flow on -2. A part of the transmitted power accompanied by this traveling wave current is distributed and coupled to the radiation elements 1-1, 1-2, 1-3, 1-4 of the rectangular conductor plate and radiated, and the traveling wave power is transmitted in the traveling direction. , and the rest is absorbed by the non-reflection termination 6.

以上の構成から成る本発明では二本の平行なマ
イクロストリツプ線路の中間に、両線路から等し
い間隔をもつて方形導体板を置き、両線路の伝送
電力の一部を等しい割合で方形導体板に電磁結合
させ、方形導体板の外面に軸方向に流れる電流か
ら電波を放射させる。横方向に流れる電流は二本
のマイクロストリツプ線路によつて逆向きに励振
されるため打ち消され、方形導体板の幅を広い範
囲で変えても放射波の交叉偏波成分は小さく抑え
られる。
In the present invention having the above configuration, a rectangular conductor plate is placed between two parallel microstrip lines at an equal distance from both lines, and a portion of the transmitted power of both lines is transferred in equal proportions to the rectangular conductor plate. It is electromagnetically coupled to the plate, and radio waves are emitted from the current flowing in the axial direction on the outer surface of the rectangular conductor plate. The current flowing in the lateral direction is excited in opposite directions by the two microstrip lines, so it is canceled out, and even if the width of the rectangular conductor plate is varied over a wide range, the cross-polarized component of the radiated wave can be kept small. .

次に本発明をアレイアンテナ等として実用する
場合に重要な意味を持つ設計パラメータについて
実測値を用いて説明する。
Next, design parameters that have important meaning when the present invention is put to practical use as an array antenna etc. will be explained using actual measured values.

第3図において方形導体板1の横方向の長さを
w、マイクロストリツプ2と方形導体板1との間
隔をs、方形導体板1の中心間隔をl、方形導体
板1の縦方向の長さをlr、話電体基板3の厚さを
d、誘電体基板3の誘電率をεr、とする。マイ
クロストリツプ2に伝送される電力に対する放射
素子(方形導体板)1の一素子に結合、放射され
る電力の割合を示す電力結合率ηと、この結合が
最大となる共振周波数cの上記構造定数sおよ
びlに対する実験データの関係は第4図と第5図
に示されている。第4図及び第5図は3GHz帯で
の実験により得たデータであり、第4図から電力
結合率ηは間隔sにより共振周波数cを殆ど変
えることなく決定され、第5図から共振周波数
cは長さlによつて電力結合率ηを殆ど変えるこ
となく決定されることが明らかである。
In Fig. 3, the horizontal length of the rectangular conductor plate 1 is w, the distance between the microstrip 2 and the rectangular conductor plate 1 is s, the center distance of the rectangular conductor plate 1 is l, and the vertical direction of the rectangular conductor plate 1. Assume that the length of is lr, the thickness of telephone body substrate 3 is d, and the dielectric constant of dielectric substrate 3 is εr. The power coupling ratio η, which indicates the ratio of the power coupled and radiated to one element of the radiating element (rectangular conductor plate) 1 to the power transmitted to the microstrip 2, and the above-mentioned resonance frequency c at which this coupling is maximum. The relationship of the experimental data to the structural constants s and l is shown in FIGS. 4 and 5. Figures 4 and 5 are data obtained from experiments in the 3 GHz band. From Figure 4, the power coupling ratio η is determined by the interval s without changing the resonance frequency c, and from Figure 5, the resonant frequency c It is clear that is determined by the length l without changing the power coupling ratio η.

従つて、本アレイアンテナに於ける指向性合成
のための素子放射電力の重みづけは、動作周波数
に応じて方形放射素子の長さlを決定した後は、
間隔sを調節するだけで行なうことができる。こ
の結果、放射素子の位置により決定される位相を
併せ考慮すると、サイドロープの低いアレイ・ア
ンテナやコセカント二乗等の特殊放射指向性を持
つたアレイ・アンテナを比較的容易に実現するこ
とができる。
Therefore, the weighting of the element radiated power for directivity synthesis in this array antenna is as follows after determining the length l of the rectangular radiating element according to the operating frequency.
This can be done simply by adjusting the interval s. As a result, when the phase determined by the position of the radiating element is also considered, it is possible to relatively easily realize an array antenna with a low side lobe or an array antenna with special radiation directivity such as cosecant square.

以上の実施例は、2本のマイクロストリツプ線
路を平行とし放射素子を方形としたが、実施の形
状として非平行、非方形へと拡張することも可能
である。
In the above embodiment, the two microstrip lines are parallel and the radiating element is rectangular, but it is also possible to extend the shape to a non-parallel or non-rectangular shape.

又、以上の実施例では、マイクロストリツプ線
路の数を2本としたが3本以上の平行な線路に対
し、それぞれの線路の中間に、導体板放射素子を
設けプレーナ・アンテナをより高密度で、形成で
きるよう拡張することも可能である。
In addition, in the above embodiment, the number of microstrip lines is two, but for three or more parallel lines, a conductor plate radiating element is provided in the middle of each line to make the planar antenna higher. It is also possible to expand the density to form.

本発明は以上説明したように、二本のマイクロ
ストリツプ線路の中間に導体板放射素子を設ける
ことにより、薄形構造のままで、交叉偏波成分を
小さくし、又低サイドローブ化等の指向性合成の
ための設計パラメータの実現を容易にする効果が
ある。
As explained above, the present invention provides a conductor plate radiating element between two microstrip lines to reduce cross-polarized components and reduce side lobes while maintaining a thin structure. This has the effect of facilitating the realization of design parameters for directional synthesis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直結形マイクロストリツプアン
テナの斜視図、第2図は従来の分布結合形マイク
ロストリツプアンテナの斜視図、第3図は本発明
の一実施例を示す分布結合形マイクロストリツプ
アンテナの斜視図、第4図と第5図は本発明によ
る分布結合形マイクロストリツプアンテナにおけ
る電力結合率と共振周波数の構造定数に対する関
係を示す図である。 1,1―1,1―2,1―3,1―4……方形
導体板(放射素子)、2―1,2―2……マイク
ロストリツプ線路、3……誘電体基板、4……接
地導体板、5……コネクタ、6―1,6―2……
無反射終端。
FIG. 1 is a perspective view of a conventional direct-coupled microstrip antenna, FIG. 2 is a perspective view of a conventional distributed-coupled microstrip antenna, and FIG. 3 is a distributed-coupled antenna showing an embodiment of the present invention. The perspective views of the microstrip antenna, FIGS. 4 and 5, are diagrams showing the relationship between the power coupling rate and the resonant frequency with respect to the structural constants in the distributed coupling type microstrip antenna according to the present invention. 1, 1-1, 1-2, 1-3, 1-4... Rectangular conductor plate (radiating element), 2-1, 2-2... Microstrip line, 3... Dielectric substrate, 4 ...Ground conductor plate, 5...Connector, 6-1, 6-2...
Non-reflective termination.

Claims (1)

【特許請求の範囲】[Claims] 1 平面上に形成された平行な2本のマイクロス
トリツプ線路間に少なくとも1個の導体板から成
る放射素子を形成し、前記2本のマイクロストリ
ツプ線路から前記放射素子に電力を分布結合によ
り供給するようにしたことを特徴とする分布結合
形マイクロストリツプ・アンテナ。
1. A radiating element made of at least one conductor plate is formed between two parallel microstrip lines formed on a plane, and power is distributed from the two microstrip lines to the radiating element. A distributed coupling type microstrip antenna characterized in that the antenna is supplied by coupling.
JP3910079A 1979-03-30 1979-03-30 Distribution connection type microstrip antenna Granted JPS55130203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3910079A JPS55130203A (en) 1979-03-30 1979-03-30 Distribution connection type microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3910079A JPS55130203A (en) 1979-03-30 1979-03-30 Distribution connection type microstrip antenna

Publications (2)

Publication Number Publication Date
JPS55130203A JPS55130203A (en) 1980-10-08
JPS6224961B2 true JPS6224961B2 (en) 1987-06-01

Family

ID=12543648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3910079A Granted JPS55130203A (en) 1979-03-30 1979-03-30 Distribution connection type microstrip antenna

Country Status (1)

Country Link
JP (1) JPS55130203A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288424A (en) * 1993-05-29 1995-10-31 R C S:Kk Leak antenna

Also Published As

Publication number Publication date
JPS55130203A (en) 1980-10-08

Similar Documents

Publication Publication Date Title
US4931808A (en) Embedded surface wave antenna
US4054874A (en) Microstrip-dipole antenna elements and arrays thereof
US6057802A (en) Trimmed foursquare antenna radiating element
EP0972317B1 (en) Microstrip array antenna
US9401545B2 (en) Multi polarization conformal channel monopole antenna
EP0406563A1 (en) Broadband microstrip-fed antenna
CN112088465B (en) Antenna
US4398199A (en) Circularly polarized microstrip line antenna
JPH01295503A (en) Antenna structure
JPH10150319A (en) Dipole antenna with reflecting plate
EP1070366A1 (en) Multiple parasitic coupling from inner patch antenna elements to outer patch antenna elements
Li et al. 60 GHz dual-polarized high-gain planar aperture antenna array based on LTCC
TW457741B (en) Planar sleeve dipole antenna
JP4188549B2 (en) antenna
CA2182334C (en) Mini-cap radiating element
US5151707A (en) Linear array antenna with e-plane backlobe suppressor
JP2000196344A (en) Antenna device
US4660047A (en) Microstrip antenna with resonator feed
CN115207613B (en) Broadband dual-polarized antenna unit and antenna array
JP3782278B2 (en) Beam width control method of dual-polarized antenna
CN110635230A (en) Asymmetric dual-polarized antenna device based on SICL resonant cavity circular ring gap and printed oscillator
JP3002252B2 (en) Planar antenna
JPS6224961B2 (en)
JP4108246B2 (en) Loop antenna
JP3038205B1 (en) Waveguide-fed planar antenna