JPS6224929A - Xy stage - Google Patents

Xy stage

Info

Publication number
JPS6224929A
JPS6224929A JP16326385A JP16326385A JPS6224929A JP S6224929 A JPS6224929 A JP S6224929A JP 16326385 A JP16326385 A JP 16326385A JP 16326385 A JP16326385 A JP 16326385A JP S6224929 A JPS6224929 A JP S6224929A
Authority
JP
Japan
Prior art keywords
air
pressure
moving stage
stage
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16326385A
Other languages
Japanese (ja)
Inventor
Hiroshi Goto
博史 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP16326385A priority Critical patent/JPS6224929A/en
Publication of JPS6224929A publication Critical patent/JPS6224929A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/60Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/62Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
    • B23Q1/621Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/38Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members using fluid bearings or fluid cushion supports

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)

Abstract

PURPOSE:To enable positioning to be performed in a high speed further with high accuracy, by interposing a pressure switching means, which variably sets a supply air pressure to a pneumatic bearing in a moving stage in accordance with it performs positioning action and when it performs fine moving action, in an air supply line to the moving stage. CONSTITUTION:Compressed air from a compressor 28 is fed with air of pressure P1 always to each pneumatic bearing 5, 6 in movable guides 2, 3 via filter 29, high pressure use pressure reducing valve 30 and a low pressure use pressure regulating valve 31 while with air selectively to a pneumatic bearing 7 of a moving stage 4 through a solenoid valve 32. And the air is respectively supplied to the pneumatic bearing 7 in the moving stage 4 with air of pressure P1 directly through the solenoid valve 32 when the moving stage 4 performs positioning action while with air of lower pressure P2 through a regulator 33 when the moving stage 4 performs fine moving action. In this way, high accurate positioning can be performed.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は、精密測定器、精密加工機、半導体製造装置等
に適用される超精密な位置決め機能をもつXYステージ
に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an XY stage having an ultra-precise positioning function that is applied to precision measuring instruments, precision processing machines, semiconductor manufacturing equipment, and the like.

〈発明の概要〉 この発明は、テーブル上に空気軸受を介して可動ガイド
および移動ステージが支持されて成るXYステージにお
いて、移動ステージに対する圧縮空気の供給圧力を可変
設定することにより、移動ステージを高速且つ高精度に
位置決めできるようにした。
<Summary of the Invention> The present invention provides an XY stage in which a movable guide and a moving stage are supported on a table via an air bearing, and the moving stage can be moved at high speed by variably setting the supply pressure of compressed air to the moving stage. It also enables highly accurate positioning.

〈発明の背景〉 従来、この種XYステージは、第4図に示す如く、水平
なテーブル1上に、縦横交叉する可動ガイド2.3と、
その交叉点に移動ステージ4とが配備されたものである
。各可動ガイド2゜3および移動ステージ4は空気軸受
5,6.7によって浮上状態で支持されており、それぞ
れ空気軸受5,6.7にはエアチューブ8,9゜10を
介して圧縮空気が送り込まれる。
<Background of the Invention> Conventionally, this type of XY stage has movable guides 2.3 arranged vertically and horizontally on a horizontal table 1, as shown in FIG.
A moving stage 4 is placed at the intersection. Each movable guide 2゜3 and moving stage 4 are supported in a floating state by air bearings 5, 6.7, and compressed air is supplied to the air bearings 5, 6.7 through air tubes 8, 9゜10, respectively. sent.

第5図は、この従来例の空気配管例を示しており、コン
プレッサ11を発した圧縮空気は、エアクリーンユニッ
ト12.高圧用エアレギュレータ13.低圧用エアレギ
ュレータ14を経る間、その圧力がP−、Po、P+ 
と順次変化し・最終の圧力P、を有する圧縮空気が可動
ガイド2.3および移動ステージ4へ一律に供給される
よう構成しである。
FIG. 5 shows an example of air piping in this conventional example, in which the compressed air emitted from the compressor 11 is transferred to the air clean unit 12. High pressure air regulator 13. While passing through the low pressure air regulator 14, the pressure is P-, Po, P+
The structure is such that compressed air having a final pressure P that changes sequentially with P is uniformly supplied to the movable guide 2.3 and the moving stage 4.

ところでこの種XYステージでは、移動ステージ4の現
在位置をレーザ測長器15で観測し、この現在位置から
目標位置までは、その速度を制御しつつリニアモータ1
6,17を駆動し、目標位置付近では、速度制御から位
置制御に切り換えて、移動ステージ4の高精度な位置決
めを行っている。この一連の制御動作は第6図に示すよ
うな位置フィードバックループ18および速度フィード
バックループ19を含む制御系によって行われる。同図
中、速度パターン発生回路20は速度制御のための目標
速度パターンを生成するための回路、積分・位相進みゲ
イン補償要素21は位置制御時に制御特性向上のための
補償を速度フィードバックループ19に対し与゛える回
路、位相進みゲイン補償要素22はリニアモータ16,
17およびXYステージ23(可動ガイド2,3および
移動ステージ4)に対し制御特性向上のための補償を与
えるための回路であり、速度制御から位置制御への切換
えはスイッチ24により行われる。なお図中、XRは現
在位置データ、VRは現在速度データ、X。
By the way, in this type of XY stage, the current position of the moving stage 4 is observed by the laser length measuring device 15, and from this current position to the target position, the linear motor 1 is operated while controlling the speed.
6 and 17, and near the target position, speed control is switched to position control to position the moving stage 4 with high precision. This series of control operations is performed by a control system including a position feedback loop 18 and a velocity feedback loop 19 as shown in FIG. In the figure, a speed pattern generation circuit 20 is a circuit for generating a target speed pattern for speed control, and an integral/phase advance gain compensation element 21 is used to provide compensation for improving control characteristics during position control to a speed feedback loop 19. On the other hand, the circuit to provide, the phase lead gain compensation element 22 is a linear motor 16,
17 and the XY stage 23 (movable guides 2, 3 and moving stage 4) to provide compensation for improving control characteristics, and switching from speed control to position control is performed by switch 24. In the figure, XR is current position data, VR is current speed data, and X.

は目標位置データを示し、またSはラプラス演算子であ
る。
represents the target position data, and S is the Laplace operator.

上記制御系において、制御対象であるXYステージ23
は、空気軸受支持のバネ系を構成するため、この制御対
象には第7図に示す共振周波数f0が存在する。そして
かかる制御対象を高速制御するためには、この共振周波
数f0を大きくすることが必要である。共振周波数f0
は、制御対象の質量をM、バネ定数(ここでは軸受剛性
値)をKとすると、次式で与えられ、従って共振周波数
f0を大きくするためには、軸受剛性値Kを大きくすれ
ばよい(第8図参照)。
In the above control system, the XY stage 23 which is the controlled object
Since this constitutes a spring system supported by an air bearing, the resonant frequency f0 shown in FIG. 7 exists in this controlled object. In order to control such a controlled object at high speed, it is necessary to increase this resonance frequency f0. Resonant frequency f0
is given by the following equation, where M is the mass of the controlled object and K is the spring constant (bearing stiffness value here). Therefore, in order to increase the resonance frequency f0, the bearing stiffness value K should be increased ( (See Figure 8).

一方、可動ガイド2,3に組み込まれた微動機構(図示
せず)を用いて移動ステージを微動させる場合、−軸(
例えばX軸)を動かしたときの他軸(例えばY軸)へ与
える影響度(これを「軸間干渉」という)が問題となっ
てくる。
On the other hand, when finely moving the moving stage using a fine movement mechanism (not shown) built into the movable guides 2 and 3, -axis (
For example, the degree of influence (this is called "inter-axis interference") on other axes (for example, Y-axis) when moving the X-axis) becomes a problem.

この軸間干渉を小さくする曾とは微調特性の向上につな
がるが、この特性向上を実現するには、移動ステージ4
と可動ガイド2.3との間の軸受剛性を弱めればよい(
第9図参照)。
Reducing this inter-axis interference leads to improved fine tuning characteristics, but in order to achieve this improved characteristics, it is necessary to
All you have to do is weaken the bearing rigidity between the and movable guide 2.3 (
(See Figure 9).

上記の軸受剛性値は、第10面に示す如く、移動ステー
ジ4への圧縮空気の供給圧力と比例するものであるが、
この軸受剛性値は、位置決め制御の高速化という観点か
らは大きいことが望ましく、一方徽調特性の向上という
観点からは小さいことが望ましい。ところが従来のXY
ステージにおいては、移動ステージ4への供給空気圧力
は一定であり、上記の条件をともに充足させることは不
可能であった。
The above bearing stiffness value is proportional to the supply pressure of compressed air to the moving stage 4, as shown in the 10th page.
It is desirable that this bearing stiffness value be large from the viewpoint of increasing the speed of positioning control, and on the other hand, it is desirable that it be small from the viewpoint of improving the inclination characteristics. However, the conventional XY
In the stage, the air pressure supplied to the moving stage 4 was constant, and it was impossible to satisfy both of the above conditions.

〈発明の目的〉 この発明は、上記問題を解消するためのものであって、
高速且つ高精度の位置決めを実現し得るXYステージを
提供することを目的とする。
<Object of the invention> This invention is intended to solve the above problems,
It is an object of the present invention to provide an XY stage that can realize high-speed and highly accurate positioning.

〈発明の構成および効果〉 上記目的を達成するため、この発明では、移動ステージ
へ圧縮空気を送り込むための空気供給路中に、その空気
軸受への供給空気圧力を、位置決めの動作時と微動時と
に応じて可変設定できるようにした。
<Structure and Effects of the Invention> In order to achieve the above object, in the present invention, the air pressure supplied to the air bearing is adjusted in the air supply path for sending compressed air to the moving stage during positioning operation and during slight movement. The settings can be changed depending on the situation.

この発明によれば、移動ステージを位置決め動作させる
場合は、移動ステージへの圧縮空気の供給圧力を高くし
て軸受剛性値の増大をはかることによってXYステージ
の共振周波数を太き(でき、これによりXYステージの
高速制御を実現できる。また移動ステージを微動させる
場合は、圧縮空気の供給圧力を低くして軸受剛性値を弱
めることによって良好な微動特性が得られ、高精度な位
置決めを実現する等、発明目的を達成した顕著な効果を
奏する。
According to this invention, when positioning the moving stage, the resonant frequency of the XY stage can be increased by increasing the supply pressure of compressed air to the moving stage and increasing the bearing stiffness value. High-speed control of the XY stage can be achieved.Also, when making fine movements of the moving stage, good fine movement characteristics can be obtained by lowering the supply pressure of compressed air and weakening the bearing stiffness value, achieving highly accurate positioning, etc. , it achieves the remarkable effect of achieving the purpose of the invention.

〈実施例の説明〉 第1図はこの考案にかかるXYステージを示し、第2図
はその空気配管例である。
<Description of Embodiments> FIG. 1 shows an XY stage according to this invention, and FIG. 2 shows an example of its air piping.

第1図に示すXYステージは、前記した第4図のものと
同様の構成であって、テーブル1、可動ガイド2,3、
移動ステージ4、空気軸受5.6,7、リニアモータ1
6,17、レーザ測長器15等より構成されている。各
可動ガイド2.3の空気軸受5.6にはエアチューブ2
5.26によって、また移動ステージ4の空気軸受7に
は、エアチューブ27によって、それぞれ所定の供給圧
力の圧縮空気が送り込まれるようになっている。
The XY stage shown in FIG. 1 has the same configuration as the one shown in FIG.
Moving stage 4, air bearings 5, 6, 7, linear motor 1
6, 17, a laser length measuring device 15, etc. Air tube 2 is attached to the air bearing 5.6 of each movable guide 2.3.
5.26, and compressed air at a predetermined supply pressure is fed into the air bearing 7 of the moving stage 4 through the air tube 27, respectively.

圧縮空気はコンプレッサ28を発して、エア・クリーン
ユニット29、高圧用レギュレータ30、低圧用レギュ
レータ31へ順次送られ、その圧力もPs、Po、Pt
 と順次変化してくる。
Compressed air is emitted from the compressor 28 and sent to the air clean unit 29, high pressure regulator 30, and low pressure regulator 31 in order, and the pressures are also Ps, Po, Pt.
and will change sequentially.

そして圧力P、をもった圧縮空気が、可動ガイド2,3
の各空気軸受5.6に対しては常時送られ、また移動ス
テージ4の空気軸受7に対しては電磁弁32を介して選
択的に送り込まれる。
Then, the compressed air with pressure P is transmitted to the movable guides 2 and 3.
It is constantly fed to each air bearing 5,6 of the moving stage 4, and selectively fed to the air bearing 7 of the moving stage 4 via a solenoid valve 32.

すなわち図示例の場合、移動ステージ4への空気供給路
中には、空気軸受7への供給圧力をP。
That is, in the illustrated example, in the air supply path to the moving stage 4, the supply pressure to the air bearing 7 is set to P.

とPt  (ただしPz<P、)とに切換え設定するた
めの電磁弁32と、圧力P、とPtに減圧するためのレ
ギュレータ33とを含む圧力切換部34が設けてあり、
移動ステージ4を位置決め動作させるときは圧力P、の
圧縮空気が、移動ステージ4を微動させるときは圧力P
2の圧縮空気が、それぞれ移動ステージ4の空気軸受7
へ供給されるよう、制御回路35をもって電磁弁32の
切換え動作を制御する。
and Pt (where Pz<P,), and a pressure switching unit 34 including a solenoid valve 32 for switching and setting the pressure P and Pt, and a regulator 33 for reducing the pressure to P and Pt.
Compressed air at pressure P is used to position the moving stage 4, and pressure P is used to move the moving stage 4 slightly.
2 compressed air is applied to the air bearing 7 of the moving stage 4, respectively.
The control circuit 35 controls the switching operation of the solenoid valve 32 so that the electric current is supplied to the electromagnetic valve 32.

第3図は他の空気配管例を示す。同図中、38はコンプ
レッサ、39はエア・クリーンユニット、40はレギュ
レータであって、この実施例の場合、可動ガイド2,3
および移動ステージ4に対する共通する空気供給路中に
、エアレギュレータ36と電磁弁37とを含む圧力切換
部34を設けである。
FIG. 3 shows another example of air piping. In the figure, 38 is a compressor, 39 is an air clean unit, 40 is a regulator, and in the case of this embodiment, movable guides 2, 3
A pressure switching unit 34 including an air regulator 36 and a solenoid valve 37 is provided in a common air supply path to the moving stage 4.

かくて移動ステージ4を位置決め動作させるときは圧力
P0の圧縮空気が、また移動ステージ4を微動させると
きは減圧された圧力P1(p+<po)の圧縮空気が、
それぞれ全ての空気軸受5,6.7へ一斉供給されるも
のである。
Thus, when positioning the moving stage 4, compressed air at a pressure P0 is used, and when moving the moving stage 4 slightly, compressed air at a reduced pressure P1 (p+<po) is used.
They are supplied simultaneously to all air bearings 5, 6.7, respectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかるXYステージの構成例を示す
図、第2図はその空気配管例を示す図、第3図は他の実
施例の空気配管例を示す図、第4図は従来例の構成を示
す図、第5図は従来例の空気配管例を示す図、第6図は
XYステージの制御系を示すブロック図、第7図〜第1
0図はXYステージの特性を説明するための図である。 1・・・・テーブル  2.3・・・・可動ガイド4・
・・・移動ステージ 5.6.7・・・・空気軸受 28.38・・・・コンプレッサ 34・・・・圧力切換部 特 許 出 願 人   重石電機 株式会社3ム
FIG. 1 is a diagram showing an example of the configuration of the XY stage according to the present invention, FIG. 2 is a diagram showing an example of its air piping, FIG. 3 is a diagram showing an example of air piping of another embodiment, and FIG. 4 is a diagram showing a conventional example. Fig. 5 is a diagram showing an example of the conventional air piping, Fig. 6 is a block diagram showing the control system of the XY stage, and Figs.
FIG. 0 is a diagram for explaining the characteristics of the XY stage. 1...Table 2.3...Movable guide 4.
...Movement stage 5.6.7...Air bearing 28.38...Compressor 34...Pressure switching unit Patent Applicant: Juishi Electric 3M Co., Ltd.

Claims (1)

【特許請求の範囲】 テーブル上に縦横交叉する可動ガイドおよび、その交叉
点に移動ステージがそれぞれ配備されると共に、各可動
ガイドおよび移動ステージは空気軸受により浮上状態で
支持されたXYステージにおいて、 前記可動ガイドおよび移動ステージの各空気軸受へ圧縮
空気を供給するための空気供給手段を備えると共に、移
動ステージに対する空気供給路中には、空気軸受への供
給圧力を可変設定するための圧力切換手段を介装して成
るXYステージ。
[Scope of Claims] In the XY stage, movable guides that intersect vertically and horizontally on the table and a moving stage are provided at the intersection points thereof, and each movable guide and the moving stage are supported in a floating state by air bearings, the above-mentioned An air supply means is provided for supplying compressed air to each air bearing of the movable guide and the moving stage, and a pressure switching means is provided in the air supply path to the moving stage for variably setting the supply pressure to the air bearing. XY stage made up of intervening devices.
JP16326385A 1985-07-23 1985-07-23 Xy stage Pending JPS6224929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16326385A JPS6224929A (en) 1985-07-23 1985-07-23 Xy stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16326385A JPS6224929A (en) 1985-07-23 1985-07-23 Xy stage

Publications (1)

Publication Number Publication Date
JPS6224929A true JPS6224929A (en) 1987-02-02

Family

ID=15770479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16326385A Pending JPS6224929A (en) 1985-07-23 1985-07-23 Xy stage

Country Status (1)

Country Link
JP (1) JPS6224929A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2662220A1 (en) * 1990-05-15 1991-11-22 Maitre Ateliers AIR CUSHION SUPPORT DEVICE AND ITS APPLICATIONS.
EP1371994A2 (en) * 2002-06-12 2003-12-17 Gisulfo Baccini Apparatus to measure and control large-size plane elements
JP2018041811A (en) * 2016-09-06 2018-03-15 キヤノン株式会社 Imprint apparatus and article manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2662220A1 (en) * 1990-05-15 1991-11-22 Maitre Ateliers AIR CUSHION SUPPORT DEVICE AND ITS APPLICATIONS.
EP1371994A2 (en) * 2002-06-12 2003-12-17 Gisulfo Baccini Apparatus to measure and control large-size plane elements
EP1371994A3 (en) * 2002-06-12 2004-03-03 Gisulfo Baccini Apparatus to measure and control large-size plane elements
JP2018041811A (en) * 2016-09-06 2018-03-15 キヤノン株式会社 Imprint apparatus and article manufacturing method

Similar Documents

Publication Publication Date Title
JP3755862B2 (en) Synchronized position control apparatus and method
EP0557100B1 (en) Stage driving system
US5623766A (en) Probe head for coordinate measuring apparatus with damping and clamping features
US5184055A (en) Device for positioning control
US4843293A (en) Apparatus for controlling servo system employing piezo-electric actuator
JP4813912B2 (en) Method for dividing motion of relative motion between a workpiece and a tool of a machine tool, and a machine tool for performing motion division
US6025688A (en) Alignment apparatus
JPH1074685A (en) Feeder
JP3116743B2 (en) Wheel cutter type cutting device
EP1128216B1 (en) Precision stage device
CN105252285A (en) Piezoelectric-driven three-dimensional elliptic micro-feed motion platform
KR100472661B1 (en) Paste coating apparatus
CN101361030B (en) Shaft control method
US4648724A (en) Static pressure air surface stage
JPS6224929A (en) Xy stage
JPH10293611A (en) Positioning device
JP3946046B2 (en) Damping control method of machine and damping control type machine
JPH1119835A (en) X y table
JP2676526B2 (en) X-ray exposure equipment
JPS6342997Y2 (en)
JPH08248157A (en) Stage device
KR20060023958A (en) Precision motion control using feed forward of acceleration
US5432423A (en) Electronic damping system
JPS6311226A (en) Wire cut electric discharge machine
JP2004160569A (en) Wire electric discharge machine