JPS62247897A - Microorganism reaction vessel provided with thickening mechanism and microorganism reaction method - Google Patents

Microorganism reaction vessel provided with thickening mechanism and microorganism reaction method

Info

Publication number
JPS62247897A
JPS62247897A JP61091934A JP9193486A JPS62247897A JP S62247897 A JPS62247897 A JP S62247897A JP 61091934 A JP61091934 A JP 61091934A JP 9193486 A JP9193486 A JP 9193486A JP S62247897 A JPS62247897 A JP S62247897A
Authority
JP
Japan
Prior art keywords
liquid
rotor
mixed liquid
tank
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61091934A
Other languages
Japanese (ja)
Other versions
JPH0362479B2 (en
Inventor
Atsuhiro Honda
本多 淳裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Kubota Corp
Panasonic Electric Works Co Ltd
Sekisui Chemical Co Ltd
Takiron Co Ltd
Unitika Ltd
Original Assignee
Ebara Corp
Kubota Corp
Sekisui Chemical Co Ltd
Takiron Co Ltd
Unitika Ltd
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Kubota Corp, Sekisui Chemical Co Ltd, Takiron Co Ltd, Unitika Ltd, Matsushita Electric Works Ltd filed Critical Ebara Corp
Priority to JP61091934A priority Critical patent/JPS62247897A/en
Publication of JPS62247897A publication Critical patent/JPS62247897A/en
Publication of JPH0362479B2 publication Critical patent/JPH0362479B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To reduce the size over the entire device by attaching a centrifugal thickening device to the inside of a reaction vessel in which microorganism reaction is effected and subjecting a liquid mixture contg. microorganisms in the vessel to a solid-liquid sepn. CONSTITUTION:The centrifugal thickening device 2 is attached to the inside of the reaction vessel 1 in which the microorganism reaction is effected. The liquid mixture 3 contg. the microorganism in the vessel is admitted into a rotor 4 of the centrifugal thickening device 2 and the rotor is rotationally driven to generate centrifugal force, by which the liquid mixture is subjected to the solid-liquid sepn. The liquid mixture thickened by the solid-liquid sepn. is returned in the slit 5 provided to the outside peripheral part of the rotor 4 into the vessel from the rotor inside. The separated liquid from the liquid mixture by the solid-liquid sepn. is discharged to the outside of the vessel from the rotor inside in a discharge pipe. As a result, the need for providing the installation for the solid-liquid sepn. to a point separate from the reaction vessel is eliminated, and the entire device is made compact. The floor area for installation and the required volume are thus reduced.

Description

【発明の詳細な説明】 [技術分野] 本発明は、排水処理の曝気槽やその他発酵槽、培養槽な
ど微生物反応をおこなわせるために用いられる反応槽、
特に濃縮機構を備えた反応槽及びこの反応槽での微生物
反応方法に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to reaction tanks used for carrying out microbial reactions, such as aeration tanks for wastewater treatment, other fermentation tanks, and culture tanks;
In particular, it relates to a reaction tank equipped with a concentration mechanism and a microbial reaction method in this reaction tank.

[背景技術] 発酵槽や培養槽、排水の活性汚泥曝気槽なと微生物反応
をおこなわせる反応槽においては、微生物の栄養となり
得る培養液や被処理排水と反応に司る微生物のスタムま
たは活性汚泥のような微生物を含むフロックとを混合し
、この微生物の成育や反応に適した環境条件に保って反
応が進行される。この環境条件としては、微生物を含む
混液を撹拌して液と微生物との接触を良くすること、好
気的微生物反応の場合には混液と空気中の酸度あるいは
純酸素とを十分接触させて高い酸化還元電位に保つこと
、嫌気的微生物反応の場合には混液中の溶存酸素を追い
出したり還元性気体と接触さぜたりして低い酸化還元電
位に保つこと、等が重要になることが多い。また微生物
の一細胞当たりの栄養供給量が少ない程遠やかに微生物
反応は完結する。
[Background technology] In reaction tanks that carry out microbial reactions such as fermenters, culture tanks, and activated sludge aeration tanks for wastewater, the stam of microorganisms or activated sludge that controls the reaction with the culture solution and wastewater that can serve as nutrients for microorganisms is used. The reaction proceeds by mixing flocs containing such microorganisms and maintaining environmental conditions suitable for the growth and reaction of these microorganisms. These environmental conditions include stirring the mixed liquid containing microorganisms to improve contact between the liquid and the microorganisms, and in the case of an aerobic microbial reaction, ensuring sufficient contact between the mixed liquid and the acidity or pure oxygen in the air to increase the In the case of anaerobic microbial reactions, it is often important to maintain a low redox potential by expelling dissolved oxygen in the mixed liquid or by bringing it into contact with a reducing gas. Furthermore, the smaller the amount of nutrients supplied per microorganism cell, the longer the microbial reaction will be completed.

そして微生物反応は一般的に第6図に示すようなフロー
でおこなわれている。下水や工場排水など排水処理を微
生物反応によっておこなう場合も第6図と基本的には同
しであるが、具体的には第7図に示すようなフローとな
る。第6図及び第7図において実線矢印は主なフローを
、破線矢印は付随的なフローを示すが、第6図及び第7
図に実線矢印で示すようにいずれにおいても反応槽での
微生物反応や活性汚泥曝気槽での微生物反応ののちに、
微生物を含む混液を液と増殖微生物とに固液分離する工
程が不可欠である。また破線矢印のように、発酵や培養
など微生物の細胞数を増加させるために反応槽内で生産
的な微生物反応をおこなわせる場合にはスタムを種培養
して大量に供給する手段を採る他に反応槽の混液を固液
分離して増殖微生物の一部を種培養の槽や反応槽に返送
したりすることもなされ、また排水処理の場合には固液
分離した汚泥を返送汚泥として活性汚泥曝気槽に返送し
たりすることもなされる(途中で再曝気することもある
)。
Microbial reactions are generally carried out according to the flow shown in Figure 6. When treating wastewater such as sewage or industrial wastewater by microbial reaction, the process is basically the same as that shown in Figure 6, but the flow is specifically as shown in Figure 7. In Figures 6 and 7, solid line arrows indicate main flows, and dashed line arrows indicate incidental flows.
As shown by the solid arrows in the figure, in both cases, after the microbial reaction in the reaction tank and the microbial reaction in the activated sludge aeration tank,
A process of solid-liquid separation of a mixed liquid containing microorganisms into liquid and proliferating microorganisms is essential. In addition, as shown by the broken line arrow, when carrying out a productive microbial reaction in a reaction tank to increase the number of microbial cells, such as fermentation or cultivation, it is necessary to cultivate Stam as a seed and supply it in large quantities. It is also possible to separate the mixed liquid in the reaction tank into solid-liquid and return some of the proliferating microorganisms to the seed culture tank or reaction tank.In addition, in the case of wastewater treatment, the solid-liquid separated sludge is used as returned sludge and activated sludge. It may also be sent back to the aeration tank (reaeration may be performed during the process).

ここで微生物反応は発酵槽や培養槽、活性汚泥曝気槽な
ど反応槽を回分方式で用いておこなわれる場合と連続方
式で用いておこなわれる場合とがある。そして微生物を
含む混液の固液分離は、微生物反応が完了した時点て反
応槽から混液を引き出し、別の単位操作として実施され
ているのが通常であり、特に連続方式の場合はこのよう
に実施されるのが一般的である。例えば酵母の培養では
高速遠心濃縮で、アルコール発酵では沈澱分離や濾過で
、排水の処理では沈澱分離で、メタン発酵では沈澱分離
でそれぞれ固液分離をおこなうようにしている。また排
水処理の再固液分離やメタン発酵の再固液分離は遠心分
離や濾過を利用しておこなわれている。しかしながらこ
れら固液分離の操作は微生物反応がおこなわれる反応槽
とは別の場所においてなされているものであって、固液
分離操作のための設備の設置箇所を必要とし、装置全体
が大きくなると共に装置全体を設置する所要面積や所要
容積が大きくなるという問題を有する。
Here, the microbial reaction may be carried out using a reaction tank such as a fermenter, a culture tank, or an activated sludge aeration tank in a batch manner or in a continuous manner. Solid-liquid separation of a mixed liquid containing microorganisms is usually carried out as a separate unit operation by drawing the mixed liquid out of the reaction tank once the microbial reaction is completed, especially in the case of a continuous system. It is common that For example, yeast culture uses high-speed centrifugal concentration, alcohol fermentation uses sedimentation and filtration, wastewater treatment uses sedimentation, and methane fermentation uses sedimentation to perform solid-liquid separation. Furthermore, re-solid-liquid separation in wastewater treatment and re-solid-liquid separation in methane fermentation are carried out using centrifugation and filtration. However, these solid-liquid separation operations are performed in a separate location from the reaction tank in which the microbial reaction takes place, requiring a location for the installation of equipment for solid-liquid separation operations, and the overall size of the equipment increases. There is a problem in that the area and volume required for installing the entire device become large.

具体的に説明すると、沈澱分離で固液分離をおこなう場
合には沈澱槽を設備する必要があり、例えば活性汚泥法
による排水処理施設で通常の生活排水(BOD約200
mH/f、COD約200mg//、浮遊物質的200
mg/f>を処理する場合、単位時間当たりの排水量を
Q +n ’とすると反応槽としての活性汚泥曝気槽の
容積はく6〜8)XQm’であるが、これに加えて(2
〜5)X0m3の容積の沈澱槽を設備することが必要と
なり、さらに沈澱汚泥返送のためのポンプを設備するこ
とも必要となる。また酵母の培養やアルコール発酵など
においても遠心分離装置や濾過装置等を反応槽と別に設
備することが必要となる。回分方式では反応槽を沈澱槽
の代わりに用いて沈澱分離で固液分離をおこなうことも
あり、この場合には反応槽内で固液分離をおこなうこと
が可能である。しかしこの場合においては反応槽を沈澱
槽として利用すると反応槽内での滞留時間を長くするた
めに反応槽の容積を大きくする必要があり、上記と同様
に装置全体が大きくなると共に装置全体を設置する所要
面積や所要容積が大きくなるという問題を有する。
Specifically, when performing solid-liquid separation by sedimentation, it is necessary to install a settling tank. For example, in a wastewater treatment facility using the activated sludge method, normal domestic wastewater (BOD approximately 20
mH/f, COD approx. 200mg//, suspended solids 200
mg/f>, the volume of the activated sludge aeration tank as a reaction tank is 6-8)
~5) It is necessary to install a settling tank with a volume of X0 m3, and it is also necessary to install a pump for returning the settled sludge. Furthermore, in yeast cultivation, alcohol fermentation, etc., it is necessary to install a centrifugal separator, a filtration device, etc. separately from the reaction tank. In the batch method, a reaction tank may be used instead of a precipitation tank to perform solid-liquid separation by precipitation, and in this case, solid-liquid separation can be performed within the reaction tank. However, in this case, if the reaction tank is used as a settling tank, it is necessary to increase the volume of the reaction tank in order to lengthen the residence time in the reaction tank, which increases the size of the entire device as well as the installation of the entire device. The problem is that the area and volume required to do so become large.

[発明の目的] 本発明は、上記の点に鑑みて為されたものであり、反応
槽と別の箇所に固液分離の設備を設ける必要がなく、装
置全体をコンパクトに形成して設置する所要面積や所要
容積を小さくすることができることを主たる目的とする
ものであり、さらに固液分離を完全におこなわせること
及び反応槽内での微生物反応を促進させることをも目的
とし、併せて反応槽内の微生物濃度を高めた状態で効率
良く微生物反応をおこなわせることを目的とするもので
ある。
[Object of the invention] The present invention has been made in view of the above points, and there is no need to provide solid-liquid separation equipment at a location separate from the reaction tank, and the entire device can be formed and installed compactly. The main purpose is to reduce the required area and volume, and also to completely perform solid-liquid separation and promote microbial reactions in the reaction tank. The purpose is to efficiently carry out microbial reactions while increasing the concentration of microorganisms in the tank.

[発明の開示] しかして本発明は、微生物反応をおこなわせる反応槽1
内に遠心濃縮装置2を取り付けて構成され、遠心濃縮装
置2は、微生物を含む槽内の混液3が流入され回転駆動
による遠心力で混液3を固液分離するロータ4と、ロー
タ4の外周部に設けられ固液分離によって濃縮された混
液3をロータ4内から槽内に返送するスリット5と、固
液分離によって分離された分離液をロータ4内から槽外
l\排出する一J11出管6とを具備して形成されてい
ることを特徴とする濃縮機構を備えた微生物反応槽を第
一の発明とし、また、微生物反応をおこなわせる反応槽
1内に遠心濃縮装置2を取り付けて構成され、遠心濃縮
装置2は、微生物を含む槽内の混液3が流入され回転駆
動による遠心力で混液3を固液分離するロータ4と、ロ
ータ4の外周部に設けられ固液分離によって濃縮された
混液3をロータ4内から槽内に返送するスリット5と、
固液分離によって分離された分離液をロータ4内から槽
外へ排出する排出管6と、混液3がロータ4内に流入さ
れる流入ロア及びスリット5とロータ4内の分離液が排
出管6に流出される流出口8との間においてロータ4内
に取り付けられる濾過材9とを具備して形成されている
ことを特徴とする濃縮機構を備えた微生物反応槽を第二
の発明とし、さらに、微生物反応をおこなわせる反応槽
1内に遠心濃縮装置2を取り付けて構成され、遠心濃縮
装置2は、微生物を含む槽内の混液3が流入され回転駆
動による遠心力で混液3を固液分離するロータ4と、ロ
ータ4の外周部に設けられ固液分離によって濃縮された
混液3をロータ4内から槽内に返送するスリット5と、
固液分離によって分離された分離液をロータ4内がら槽
外へ排出する排出管6とを具備して形成されていると共
に、上記ロータ4を回転駆動させる回転軸1oの回転に
伴って回転される混液撹拌手段11が遠心濃縮装置2に
付設して設けられていることを特徴とする濃縮機構を備
えた微生物反応槽を第三の発明とし、加えて、微生物を
含む反応槽1内の混液3を反応槽1、内に取り付けた遠
心分離装置2のロータ4内に流入させてロータ4の回転
駆動による遠心力で混液3を固液分離し、固液分離され
て濃縮された混液3をロータ4の外周部に設けられたス
リット5から反応槽1内に返送すると共に固液分離によ
って混液3から分離された分離液をロータ4内がら排出
管6によって槽外へ排出することによって反応槽1内の
混液3の濃度を高め、反応槽1内に供給される被処理液
にこの混液3中の微生物を作用させることを特徴とする
濃縮機構を備えた微生物反応槽での微生物反応方法を第
四の発明とするものである。
[Disclosure of the Invention] The present invention provides a reaction tank 1 for carrying out a microbial reaction.
The centrifugal concentrator 2 includes a rotor 4 into which a mixed liquid 3 containing microorganisms in a tank is fed and separates the mixed liquid 3 into solid and liquid by centrifugal force caused by rotation, and an outer periphery of the rotor 4. A slit 5 provided in the section for returning the mixed liquid 3 concentrated by solid-liquid separation from inside the rotor 4 into the tank, and a slit 5 for discharging the separated liquid separated by solid-liquid separation from inside the rotor 4 to the outside of the tank. The first invention provides a microbial reaction tank equipped with a concentrating mechanism characterized by being formed with a tube 6, and a centrifugal concentrator 2 is installed in the reaction tank 1 in which a microbial reaction is carried out. The centrifugal concentrator 2 consists of a rotor 4 into which a mixed liquid 3 containing microorganisms in a tank flows and separates the mixed liquid 3 into solid and liquid using centrifugal force due to rotational drive; a slit 5 for returning the mixed liquid 3 from the rotor 4 to the tank;
A discharge pipe 6 discharges the separated liquid separated by solid-liquid separation from inside the rotor 4 to the outside of the tank, an inflow lower and slit 5 through which the mixed liquid 3 flows into the rotor 4, and a discharge pipe 6 through which the separated liquid in the rotor 4 is discharged. A second invention provides a microbial reaction tank equipped with a concentration mechanism characterized in that it is formed with a filtering material 9 installed in the rotor 4 between the outflow port 8 and the outflow port 8, The centrifugal concentrator 2 is configured by attaching a centrifugal concentrator 2 to a reaction tank 1 in which a microbial reaction is carried out.The centrifugal concentrator 2 receives a mixed liquid 3 containing microorganisms in the tank and separates the mixed liquid 3 into solid and liquid using the centrifugal force generated by the rotational drive. a slit 5 provided on the outer periphery of the rotor 4 for returning the mixed liquid 3 concentrated by solid-liquid separation from inside the rotor 4 into the tank;
It is formed with a discharge pipe 6 for discharging the separated liquid separated by solid-liquid separation from the inside of the rotor 4 to the outside of the tank, and is rotated with the rotation of the rotating shaft 1o that rotationally drives the rotor 4. A third invention provides a microorganism reaction tank equipped with a concentration mechanism, characterized in that a mixed liquid stirring means 11 is provided attached to the centrifugal concentrator 2, and in addition, the mixed liquid in the reaction tank 1 containing microorganisms is 3 flows into the rotor 4 of the centrifugal separator 2 installed in the reaction tank 1, and the mixed liquid 3 is separated into solid and liquid by the centrifugal force generated by the rotary drive of the rotor 4, and the mixed liquid 3 that has been solid-liquid separated and concentrated is The separated liquid separated from the mixed liquid 3 by solid-liquid separation is returned to the reaction tank 1 through a slit 5 provided on the outer periphery of the rotor 4, and the separated liquid is discharged from the inside of the rotor 4 to the outside of the tank through a discharge pipe 6. A microbial reaction method in a microbial reaction tank equipped with a concentration mechanism characterized by increasing the concentration of the mixed liquid 3 in the reaction tank 1 and allowing the microorganisms in the mixed liquid 3 to act on the liquid to be treated supplied to the reaction tank 1. This is the fourth invention.

本発明の第一の発明では、反応槽1内に遠心濃縮装置2
を取り付けるようにしであるために、反応槽1と固液分
離のための設備とを一体化させることができ、装置の全
体をコンパクトに形成することができるものであり、し
かも固液分離された混液3の濃縮液はロータ4から反応
槽1内に戻されると共に分離液は反応槽1外へ排出され
るために、反応槽1内の混液3の濃度を高めて反応jw
1の容積を小さく形成することが可能になる。また本発
明の第二の発明ではロータ4内に濾過材9を設けである
ために、濾過材9による濾別作用で固液分離を確実にお
こなわせることができる。さらに本発明の第三の発明で
は混液撹拌手段11で混液3を撹拌したり飛散させたり
することができ、反応槽1内での微生物反応を促進さぜ
ることかできる。加えて本発明の第四の発明では、反応
槽1内の混液3の微生物濃度を高めることができ、濃度
の高い微生物によって効率良く被処理液を微生物反応さ
せることができる。
In the first aspect of the present invention, a centrifugal concentration device 2 is provided in the reaction tank 1.
Since the reactor 1 and the equipment for solid-liquid separation can be integrated, the entire apparatus can be made compact, and the equipment for solid-liquid separation can be integrated. Since the concentrated liquid of the mixed liquid 3 is returned from the rotor 4 into the reaction tank 1 and the separated liquid is discharged outside the reaction tank 1, the concentration of the mixed liquid 3 in the reaction tank 1 is increased and the reaction jw
1 can be made smaller in volume. Further, in the second aspect of the present invention, since the filter material 9 is provided within the rotor 4, solid-liquid separation can be reliably performed by the filtration action of the filter material 9. Further, in the third aspect of the present invention, the mixed liquid 3 can be stirred or scattered by the mixed liquid stirring means 11, and the microbial reaction within the reaction tank 1 can be promoted. In addition, in the fourth aspect of the present invention, the microbial concentration of the mixed liquid 3 in the reaction tank 1 can be increased, and the highly concentrated microorganisms can efficiently cause a microbial reaction in the liquid to be treated.

以下本発明を実施例により詳述する。第1図及び第2図
はそれぞれ本発明の装置の一実施例を示すもので、発酵
槽や培養槽、活性汚泥曝気槽などとして構成される反応
槽1内のほぼ中心部に遠心濃縮装置2が取り付けである
。この遠心濃縮装置2の内部中空に形成されるロータ4
にはその上下にそれぞれ突出する縦軸の回転軸10が設
けである。回転軸10は中空パイプによって形成される
もので、上に突出する回転軸10は反応槽1の上部内の
ボックス17内に取り付けた電動機13の出力軸14に
フランジ継手によって結合してボックス17に軸受け1
5で支持してあり、また下に突出する回転軸10はメカ
ニカルシール型軸受け16によって反応槽1の底部に設
けた架台18に支持すると共に封水性を確保した状態で
排出管6に接続しである。第1図の遠心濃縮装置2では
ロータ4は円錐を上下一対接合したような外形に形成さ
れ、その外周の上下中段部には全周に亘ってロータ4を
内外に連通させるスリット5が設けてあり、このロータ
4は反応槽1の混液3の水面下に配置されるようにしで
ある。第2図の遠心濃縮装置2ではロータ4は逆円錐型
に外形を形成され、その上端の外周に全周に亘ってロー
タ4を内外に11一 連通させるスリット5が設けてあり、このロータ4は反
応槽1の混液3の水面付近に配置されるようにしである
。また排出管6は上記のように回転軸10を介してロー
タ4内に接続されるものであり、この排出管6は反応槽
1の外部へと導いである。ロータ4にはその軸芯部にお
いて流入ロアが形成してあり、この流入ロアと上下方向
で離れた位置においてロータ4の軸芯部に設けられる流
出口8によって排出管6内とロータ4内とは連通されて
いる。また第1図の遠心濃縮装置2においてはその回転
軸10に撹拌翼11aで形成される混液撹拌手段11が
取り付けてあり、第2図の遠心濃縮装置2においてはロ
ータ4の外周に撹拌板11bで形成される混液撹拌手段
11が取り付けである。
The present invention will be explained in detail below with reference to Examples. 1 and 2 each show an embodiment of the apparatus of the present invention, in which a centrifugal concentrator 2 is installed approximately in the center of a reaction tank 1 configured as a fermenter, a culture tank, an activated sludge aeration tank, etc. is the installation. A rotor 4 formed hollow inside this centrifugal concentrator 2
is provided with a vertical rotation shaft 10 that protrudes above and below, respectively. The rotating shaft 10 is formed by a hollow pipe, and the rotating shaft 10 protruding upward is connected to the output shaft 14 of the electric motor 13 installed in the box 17 in the upper part of the reaction tank 1 by a flange joint, and is connected to the box 17. Bearing 1
5, and a rotating shaft 10 protruding downward is supported by a mechanical seal type bearing 16 on a pedestal 18 provided at the bottom of the reaction tank 1, and connected to the discharge pipe 6 while ensuring water sealing. be. In the centrifugal concentrator 2 shown in FIG. 1, the rotor 4 has an external shape that resembles a pair of upper and lower cones joined together, and a slit 5 is provided in the upper and lower middle portions of the outer periphery to allow communication between the inside and the outside of the rotor 4 over the entire circumference. The rotor 4 is arranged below the surface of the mixed liquid 3 in the reaction tank 1. In the centrifugal concentrator 2 shown in FIG. 2, the rotor 4 has an inverted conical outer shape, and a slit 5 is provided on the outer periphery of the upper end of the rotor 4 to allow the rotor 4 to pass inside and out in a series of 11 parts over the entire circumference. is arranged near the water surface of the mixed liquid 3 in the reaction tank 1. Further, the discharge pipe 6 is connected to the inside of the rotor 4 via the rotating shaft 10 as described above, and this discharge pipe 6 is led to the outside of the reaction tank 1. The rotor 4 has an inflow lower formed at its axial center, and an outlet 8 provided at the axial center of the rotor 4 at a position vertically apart from the inflow lower allows the inside of the discharge pipe 6 and the inside of the rotor 4 to be connected. are communicated. Further, in the centrifugal concentrator 2 shown in FIG. 1, a mixed liquid stirring means 11 formed of stirring blades 11a is attached to the rotating shaft 10, and in the centrifugal concentrator 2 shown in FIG. The mixed liquid stirring means 11 formed by is attached.

上記反応槽1には流入管19によって培養液や被処理排
水など被処理液が連続して送入されており、反応槽1内
の微生物を含む混液3は流入ロアからロータ4内に入る
。ロータ4は周速度10m/秒程度以上の速さで電動機
13によって回転軸動されており、混液3はロータ4内
でその遠心力によって速やかに固液分離される。このよ
うにロータ4内で固液分離されることによって濃縮され
た混液3はロータ4の外周部に設けたスリット5を通し
てロータ4内から排出されて反応槽]内に戻され、また
固液分離によって微生物など固形分を混液3から分離し
て得られる分離液は流出口8から排出管6に流出され、
排出管6によって反応槽1の外へ排出される。このよう
に反応槽1内の混液3は遠心濃縮装置2のロータ4内で
濃縮されて反応槽1内に返送されるために、反応槽1内
における混液3は微生物濃度が高く、浮遊物質濃度とし
て5000〜50000mg/f程度を保たれる。その
ために流入管1つから反応槽1内に送入される培養液や
被処理排水など被処理液の栄養物は直ちに浮遊物の表面
に生物吸着され、微生物に吸収されて洞化されることに
なる。しかもこのとき、回転軸10によって回転駆動さ
れるロータ4とともに撹拌翼11aや撹拌板11bで形
成される混液撹拌手段11が回転され、混液3は撹拌さ
れたりあるいは水面における撹拌作用で飛散される作用
を受けて混液3は完全混合状態にあり、微生物への栄養
物の吸収、銅化が助長される。また遠心濃縮装置2の連
続運転を続けていると反応槽1内の混液3の濃度は次第
に上昇し、逆に微生物反応が阻害されたり流動性が低下
したりする。そこで混液3の濃度を上記500C1−5
0000mg/Iの濃度範囲に調整して維持することが
必要である。このために反応槽1には濃厚混液排出管2
0が取り付けてあり、適時混液3を排出して反応槽1内
の混液3の濃度が調整できるようにしである。
A liquid to be treated, such as a culture solution or waste water to be treated, is continuously fed into the reaction tank 1 through an inflow pipe 19, and a mixed liquid 3 containing microorganisms in the reaction tank 1 enters the rotor 4 from the inflow lower. The rotor 4 is rotated by an electric motor 13 at a circumferential speed of about 10 m/sec or more, and the mixed liquid 3 is rapidly separated into solid and liquid within the rotor 4 by its centrifugal force. The mixed liquid 3 concentrated by solid-liquid separation in the rotor 4 is discharged from the rotor 4 through the slit 5 provided on the outer periphery of the rotor 4 and returned to the reaction tank. The separated liquid obtained by separating solid content such as microorganisms from the mixed liquid 3 is discharged from the outlet 8 to the discharge pipe 6,
It is discharged to the outside of the reaction tank 1 through a discharge pipe 6. In this way, the mixed liquid 3 in the reaction tank 1 is concentrated in the rotor 4 of the centrifugal concentrator 2 and returned to the reaction tank 1, so the mixed liquid 3 in the reaction tank 1 has a high microbial concentration and a suspended solids concentration. It is maintained at about 5,000 to 50,000 mg/f. Therefore, the nutrients in the liquid to be treated, such as the culture liquid and wastewater to be treated, which are sent into the reaction tank 1 from one inflow pipe, are immediately bioadsorbed onto the surface of the suspended matter, absorbed by microorganisms, and formed into cavities. become. Moreover, at this time, the mixed liquid stirring means 11 formed by the stirring blades 11a and the stirring plate 11b is rotated together with the rotor 4 which is rotationally driven by the rotating shaft 10, and the mixed liquid 3 is stirred or scattered by the stirring action on the water surface. As a result, the liquid mixture 3 is in a completely mixed state, which promotes absorption of nutrients by microorganisms and conversion to copper. Further, if the centrifugal concentrator 2 continues to operate continuously, the concentration of the mixed liquid 3 in the reaction tank 1 will gradually increase, and the microbial reaction will be inhibited or the fluidity will decrease. Therefore, the concentration of mixed liquid 3 was set to 500C1-5 above.
It is necessary to adjust and maintain a concentration range of 0,000 mg/I. For this purpose, the reaction tank 1 has a concentrated mixed liquid discharge pipe 2.
0 is attached so that the concentration of the mixed liquid 3 in the reaction tank 1 can be adjusted by discharging the mixed liquid 3 at the appropriate time.

次に遠心濃縮装置2のロータ4のm造について説明する
。第3図(a)のものはロータ4の内部に上下複数の分
離斜板21を設け、ロータ4を混液3の水面より下方で
回転させるようにしたタイプのものてあり、流入ロアが
ロータ4の上に設けられているときには分離斜板21は
外方へ向けて斜め下方へ傾斜するように配置される。第
3図(b)のものはロータ4の内部に上下複数の分離斜
板21を設け、ロータ4を混液3の水面付近で回転さぜ
るようにすると共にロータ4の外周面に混液撹拌手段1
1としての撹拌板1]、aを取り付けるようにしたタイ
プのものであり、流入ロアがロータ4の下に設けられて
いるときには分離斜板21は外方へ向けて斜め上方へ傾
斜するように配置される。第3図(a) (b)のもの
にあって、流入ロアからロータ4内に流入された混液3
はロータ4の回転による遠心力で固液分離作用を受けつ
つ分離斜板21にガイドされて流れ(実線矢印)、分離
斜板21で固形分と液体とにその流れが分けられて、破
線のように固形分を多く含み濃縮された混液3はスリッ
ト5から排出されると共にさらに固形分を殆ど含まない
分離液は二重線矢印のように流出口8から排出管6に流
出される。このように分離斜板2によって固液分離を促
進し、混液3の遠心分離を促進さぜることかてきるので
ある。第3図(e)及び第3図(d)のものはそれぞれ
第3図(a)のものや第3図(b)のものと同じタイプ
であるが、ロータ4内に濾布や濾紙、連続発泡体など5
0〜100メツシュ程度以下の細孔を有する濾材で傘形
状に形成した濾過材9が取り付けてあり、この濾過材9
によってロータ4内をスリット5や流入ロアに連通され
る部分と流出口8に連通される部分とに仕切って分離す
るようにしである。この第3図(cod>のものにあっ
て、流入ロアがらロータ4内に流入した混液3はロータ
4の回転による遠心力で固液分離作用を受けつつ流れる
が(実線矢印)、固形分は濾過材9を通過することがで
きないために固形分を含まない分離液のみが二重線矢印
のように濾過材9を通過し、分離液は流出口8がら排出
管6へと流出されると共に固形分を多く含み濃縮された
混液3は破線矢印のようにスリット5から排出される。
Next, the construction of the rotor 4 of the centrifugal concentrator 2 will be explained. The one shown in FIG. 3(a) is of a type in which a plurality of upper and lower separation swash plates 21 are provided inside the rotor 4, and the rotor 4 is rotated below the water surface of the mixed liquid 3, and the inflow lower is connected to the rotor 4. When installed above the separating swash plate 21, the separation swash plate 21 is arranged so as to be inclined diagonally downward toward the outside. In the case shown in FIG. 3(b), a plurality of upper and lower separation swash plates 21 are provided inside the rotor 4, so that the rotor 4 is rotated near the water surface of the mixed liquid 3, and a mixed liquid stirring means is provided on the outer peripheral surface of the rotor 4. 1
The stirring plate 1 as a stirring plate 1] is of a type in which a is attached, and when the inflow lower is provided below the rotor 4, the separation swash plate 21 is inclined diagonally upward toward the outside. Placed. 3(a) and (b), the mixed liquid 3 flowing into the rotor 4 from the inflow lower
is guided by the separation swash plate 21 (solid line arrow) and flows under the solid-liquid separation effect due to the centrifugal force caused by the rotation of the rotor 4. The separation swash plate 21 separates the flow into solids and liquid, resulting in the flow shown by the broken line. The concentrated liquid mixture 3 containing a large amount of solid content is discharged from the slit 5, and the separated liquid containing almost no solid content is discharged from the outlet 8 to the discharge pipe 6 as indicated by the double line arrow. In this way, the separation swash plate 2 can promote solid-liquid separation and centrifugal separation of the mixed liquid 3. The ones shown in FIGS. 3(e) and 3(d) are of the same type as those shown in FIG. 3(a) and FIG. 3(b), respectively. Open foam etc.5
A filter material 9 formed into an umbrella shape with a filter material having pores of about 0 to 100 mesh or less is attached.
The interior of the rotor 4 is partitioned and separated into a portion communicating with the slit 5 and the inflow lower and a portion communicating with the outlet 8. In this figure 3 (cod>), the mixed liquid 3 that has flowed into the rotor 4 from the inflow lower flows while undergoing solid-liquid separation action due to the centrifugal force caused by the rotation of the rotor 4 (solid line arrow), but the solid content is Since it cannot pass through the filter medium 9, only the separated liquid that does not contain solids passes through the filter medium 9 as shown by the double line arrow, and the separated liquid flows out from the outlet 8 to the discharge pipe 6. The concentrated liquid mixture 3 containing a large amount of solids is discharged from the slit 5 as indicated by the broken line arrow.

このように濾過材9によって固形分が濾別除去された状
態で分離液は排出されることになり、完全な固液分離を
おこなうことができるのである。尚、上記第3図(b)
(e)においては濾過材9を傘形状に形成して用いるよ
うにしたが、濾過材9はロータ4内をスリット5や流入
ロアに連通される部分と流出口8に連通される部分とに
仕切って分離できることができる形状であればよ−16
〜 く、円筒形など任意である。そして、第3図(a)乃至
(d)に示したそれぞれのタイプのロータ4は、反応槽
1内の混液3の条件等によって適切なものを選択して使
用することができる。勿論第3図(a)乃至(d)のも
のは本発明に用いる遠心分離装置2のロータ4を実用化
する場合の構造を例示したものであって、これらの構造
のものに限定されるものではない。
In this way, the separated liquid is discharged after the solid content has been filtered and removed by the filter medium 9, and complete solid-liquid separation can be performed. In addition, the above figure 3(b)
In (e), the filtering material 9 is formed into an umbrella shape and used, but the filtering material 9 is divided into two parts in the rotor 4: one part communicates with the slit 5 and the inflow lower, and the other part communicates with the outlet port 8. As long as it has a shape that can be partitioned and separated -16
The shape can be arbitrary, such as small or cylindrical. The rotor 4 of each type shown in FIGS. 3(a) to 3(d) can be selected and used depending on the conditions of the mixed liquid 3 in the reaction tank 1. Of course, the structures shown in FIGS. 3(a) to 3(d) are examples of the structures when the rotor 4 of the centrifugal separator 2 used in the present invention is put into practical use, and the structures are limited to these structures. isn't it.

上記のように遠心分離装w2を反応槽1内に取り付け、
反応槽1内の混液3を固液分離して濃縮された混液3を
反応槽1内に返送させるようにしたことによって、装置
全体をコンパクトに形成して装置全体の設置所要面積や
設置所要容積を小さくすることができる。すなわち、固
液分離を反応槽1とは別の箇所でおこなう場合、前述し
たように沈澱分離で固液分離をするときには反応槽1の
他に沈澱槽等を設備しなければならず、また遠心分離や
濾過によって固液分離をするときには反応槽1とは別の
箇所に遠心分離装置や濾過装置を設備しなければならな
いが、本発明てはこれらの設備が不要になり、これらの
設備を付設する必要力(ないために装置の全体をコンノ
(クトに形成して装置全体の設置所要面積や設置所要容
積を小さくすまた上記のように反応槽1内の混液3を遠
心分離装置2のロータ4で固液分離し、濃縮された混液
3を反応槽1内に返送させると共に分離液を反応槽1の
外部に排出するようにしたことによって、反応槽]内の
微生物濃度や活性汚泥濃度を著しく高めることができる
。従来、この種の微生物反応をさせる反応槽1内の混液
3中の微生物乾物濃度は、通常せいぜい0.2%〜1%
程度であり、この濃度を高めることは困難である。例え
ば沈澱槽で混液3を沈澱させることで固液分離して混液
3を濃縮し、これを反応槽1に返送することによって反
応槽1内の混液3の濃度を高めることが試みられるが、
混液3の濃度が2%程度以上になると沈澱槽において液
部と沈降部とに分離し難くなり、混液3を沈澱槽で沈澱
分離してこれを返送することによって、反応槽1内の混
液3の濃度を大きく高めることはできない。また固液分
離を濾過や遠心の手段でおこない、混液3から分離した
スラリーを反応槽1に返送することによって反応槽1内
の混液3の濃度を高めることが試みられるが、分離した
スラリーの乾物濃度が5%以上になるとその流動性が悪
くなって反応槽1への返送が困難になり、しかもこの操
作中に自己消化や腐敗などで微生物の特性が劣化しやす
く、この場合も反応槽1内の混液3の濃度を大きく高め
ることは実用上困難である。これらに対して本発明では
、反応槽1内で遠心分離装置2のロータ4によって遠心
分離で高度に混液3を濃縮し、この濃縮した混液3を直
接反応槽1内に返送するために、反応槽1内の混液3の
濃度を容易に2〜5%程度まで高めることができるので
ある。
Install the centrifugal separator w2 in the reaction tank 1 as described above,
By separating the mixed liquid 3 in the reaction tank 1 into solid and liquid and returning the concentrated mixed liquid 3 to the reaction tank 1, the entire device can be made compact and the required installation area and installation volume of the entire device can be reduced. can be made smaller. In other words, when solid-liquid separation is performed in a location other than reaction tank 1, a sedimentation tank, etc. must be installed in addition to reaction tank 1 when performing solid-liquid separation by precipitation separation as described above, and a centrifugal When performing solid-liquid separation by separation or filtration, it is necessary to install a centrifugal separator or a filtration device in a location other than the reaction tank 1, but with the present invention, these devices are no longer necessary, and these devices can be attached. Since there is no necessary force to do this, the entire device is made into a compact structure to reduce the area and volume required for installation of the entire device. By separating the solid and liquid in Step 4 and returning the concentrated mixed liquid 3 to the reaction tank 1 and discharging the separated liquid to the outside of the reaction tank 1, the concentration of microorganisms and activated sludge in the reaction tank can be reduced. Conventionally, the microbial dry matter concentration in the mixed liquid 3 in the reaction tank 1 in which this type of microbial reaction is carried out is usually 0.2% to 1% at most.
It is difficult to increase this concentration. For example, it is attempted to increase the concentration of the mixed liquid 3 in the reaction tank 1 by precipitating the mixed liquid 3 in a settling tank, performing solid-liquid separation and concentrating the mixed liquid 3, and returning this to the reaction tank 1.
When the concentration of the mixed liquid 3 becomes about 2% or more, it becomes difficult to separate the mixed liquid 3 into a liquid part and a settling part in the settling tank. It is not possible to significantly increase the concentration of In addition, it is attempted to increase the concentration of the mixed liquid 3 in the reaction tank 1 by performing solid-liquid separation by means of filtration or centrifugation and returning the slurry separated from the mixed liquid 3 to the reaction tank 1, but the dry matter of the separated slurry When the concentration exceeds 5%, its fluidity deteriorates and it becomes difficult to return it to the reaction tank 1. Moreover, during this operation, the characteristics of the microorganisms tend to deteriorate due to self-digestion and putrefaction. It is practically difficult to greatly increase the concentration of the mixed liquid 3 in the liquid mixture 3. In contrast, in the present invention, the mixed liquid 3 is highly concentrated by centrifugation using the rotor 4 of the centrifugal separator 2 in the reaction tank 1, and this concentrated mixed liquid 3 is directly returned to the reaction tank 1. The concentration of the mixed liquid 3 in the tank 1 can be easily increased to about 2 to 5%.

そしてこのように反応槽1内の混液3中の微生物濃度が
高まることによって、微生物の1細胞当たりの生物化学
的反応速度が同じであるとすると、一定の槽容積での反
応量を著しく高めることができる。例えばブドウ糖をア
ルコール発酵させるような場合、反応槽1内での微生物
すなわち酵母の濃度が高まると同一容積中の酵母の細胞
数が増加し、この酵母の細胞数に比例して濃度の高いブ
ドウ糖を供給してアルコールを産出させることができ、
発酵効率を著しく高めることができることになるのであ
る。また排水の活性汚泥処理の場合、反応槽1としての
活性汚泥曝気槽内の混液3の浮遊物質の濃度は通常は3
000mg/f程度であるが、混液3中の微生物濃度を
高めて例えば9000■/1程度に保つと、曝気能力が
約3倍になって曝気槽の容積は約173で済むことにな
る。従って曝気槽の容積が前述したように(6〜8)X
Qm3である場合にはその容積を(2〜3)XQm3に
削減しても従来と同程度の処理が達成できることにな 
   ”るのである。
By increasing the concentration of microorganisms in the mixed liquid 3 in the reaction tank 1 in this way, assuming that the biochemical reaction rate per cell of microorganisms remains the same, the amount of reaction in a given tank volume can be significantly increased. I can do it. For example, when alcoholic fermentation of glucose is carried out, as the concentration of microorganisms, that is, yeast, in reaction tank 1 increases, the number of yeast cells in the same volume increases, and the concentration of glucose increases in proportion to the number of yeast cells. can be supplied to produce alcohol,
This means that fermentation efficiency can be significantly increased. In addition, in the case of activated sludge treatment of wastewater, the concentration of suspended solids in the mixed liquid 3 in the activated sludge aeration tank as the reaction tank 1 is usually 3.
000mg/f, but if the concentration of microorganisms in the mixed liquid 3 is increased and maintained at, for example, about 9000mg/f, the aeration capacity will be approximately tripled and the volume of the aeration tank will only need to be about 173mm. Therefore, the volume of the aeration tank is (6 to 8)
Qm3, the same level of processing as before can be achieved even if the volume is reduced to (2~3)XQm3.

また上記のように本発明においては、反応槽1内の混液
3を引き抜いて濃縮したのちに反応槽1に返送するとい
うような操作を必要とすることなく、反応槽1への栄養
物の供給の維持で反応槽1内の混液3の微生物濃度を容
易に高めることかできるものであるが、しかし混液3中
のスラリー濃度が5%以上に達すると反応槽1内での混
液3の流動性が悪くなり、遠心濃縮装置2による遠心濃
縮の効率も低下することになる。しかも好気的な微生物
反応では混液3の濃度に応じて酸素を供給しなければな
らいが、この酸素の供給も混液3の濃度が高くなると困
難になる。このために、条件によっては好気的または嫌
気的消化をおこなわせて混液3のスラリー濃度をコント
ロールすることも可能ではあるが、混液3のスラリー濃
度を所定濃度に保つように反応槽1内の混液3を適宜引
き抜かなければならず、この引き抜いた混液3の固液分
離をおこなって廃棄もしくは再利用するようにしなけれ
ばならない。ここにおいて、本発明では反応槽1内の混
液3は遠心濃縮装置2によって濃縮されていてすでに予
備的濃縮が終わっているようなものであるために、濾過
や高速回転での遠心分離で引き抜いた混液3の固液分離
をおこなうにあたってコンパクトな装置で容易におこな
うことができる。
Furthermore, as described above, in the present invention, nutrients can be supplied to the reaction tank 1 without requiring operations such as drawing out the mixed liquid 3 in the reaction tank 1, concentrating it, and then returning it to the reaction tank 1. However, if the slurry concentration in the mixed liquid 3 reaches 5% or more, the fluidity of the mixed liquid 3 in the reaction tank 1 will decrease. As a result, the efficiency of centrifugal concentration by the centrifugal concentrator 2 also decreases. Moreover, in an aerobic microbial reaction, oxygen must be supplied according to the concentration of the mixed liquid 3, but this supply of oxygen becomes difficult as the concentration of the mixed liquid 3 increases. For this reason, depending on the conditions, it is possible to perform aerobic or anaerobic digestion to control the slurry concentration in the mixed liquid 3, but it is also possible to control the slurry concentration in the reaction tank 1 in order to maintain the slurry concentration in the mixed liquid 3 at a predetermined concentration. The mixed liquid 3 must be drawn out as appropriate, and the drawn mixed liquid 3 must be subjected to solid-liquid separation for disposal or reuse. Here, in the present invention, the mixed liquid 3 in the reaction tank 1 has been concentrated by the centrifugal concentrator 2 and has already undergone preliminary concentration, so it is extracted by filtration or centrifugation at high speed. Solid-liquid separation of the mixed liquid 3 can be easily carried out using a compact device.

また、反応槽1内の混液3を固液分離するにあたって、
沈澱分離や濾過などを用いておこなうと、沈澱分離の場
合には分離が不十分になりまた濾過の場合には濾材に目
詰まりを生じたりトラブルが多い。特に排水の活性汚泥
処理での沈澱分離においては膨化(バルキング)によっ
て固形分の沈降が生じ難くなったり、解体によって清澄
な沈澱分離液が得難くくなったりし易いが、本発明にお
けるように反応槽1内で遠心分離装置2によって混液3
を遠心分離するようにすると、遠心作用で混液3の分離
を著しく促進することができ、常に清澄な分離液を得る
ことができて膨化や解体のトラブルを無くずことができ
る。特に遠心分離装置2のロータ4内に濾過材9を付設
することによって(本発明の第二発明:特許請求の範囲
第2項記載)、濾過材9で混液3の固液分離の効果が高
まり、遠心濃縮の作用が何等かの原因で低下したり不良
になったりしても、常に固形分が完全に濾別された清澄
な分離液しか排出しないようにすることができる。
In addition, when separating the mixed liquid 3 in the reaction tank 1 into solid and liquid,
If precipitation separation or filtration is used, the separation will be insufficient in the case of precipitation separation, and in the case of filtration, there will be many troubles such as clogging of the filter medium. In particular, in sedimentation separation in activated sludge treatment of wastewater, it is difficult for solids to settle due to swelling (bulking), and it is difficult to obtain a clear sedimentation liquid by disassembly. Mixed liquid 3 is separated by centrifugal separator 2 in tank 1.
By performing centrifugal separation, the separation of the mixed liquid 3 can be significantly accelerated by the centrifugal action, and a clear separated liquid can always be obtained, eliminating troubles such as swelling and disassembly. In particular, by attaching the filtering material 9 in the rotor 4 of the centrifugal separator 2 (second invention of the present invention: described in claim 2), the effect of solid-liquid separation of the mixed liquid 3 is enhanced by the filtering material 9. Even if the effect of centrifugal concentration decreases or becomes defective for some reason, it is possible to always discharge only a clear separated liquid in which the solid content has been completely filtered out.

このときの濾過材9への固形分の詰まりはロータ4とと
もに濾過材9が回転する際の遠心力によってセルフクリ
ーニングされ、濾過材9に目詰まりが生じるトラブルの
発生を防止することができることになる。
At this time, the solid content clogging of the filter medium 9 is self-cleaned by the centrifugal force generated when the filter medium 9 rotates together with the rotor 4, and it is possible to prevent troubles such as clogging of the filter medium 9 from occurring. .

また、遠心分離装置2の回転軸1oやロータ4に混液撹
拌手段11を設けることによって(本発明の第三発明:
特許請求の範囲第3項記載)、混液3を撹拌したり、混
液3の水面付近での撹拌で混液3を気層に飛散させたり
することによって、反応槽1内での生物化学反応を著し
く促進させることができる。すなわち反応槽1内に供給
された栄養物はできるだけ均等に槽内の微生物細胞と接
触させることが生物化学反応の促進のうえで望ましいが
、回転軸10やロータ4に設けた混液撹拌手段11とし
ての撹拌翼11aや撹拌板11bによって遠心濃縮と同
時に混液3の撹拌混合が容易になされ、栄養物を微生物
細胞と均一に接触させて生物化学反応を促進することが
できるものである。
In addition, by providing the mixed liquid stirring means 11 on the rotating shaft 1o or the rotor 4 of the centrifugal separator 2 (third invention of the present invention:
(Recited in Claim 3), by stirring the mixed liquid 3 or scattering the mixed liquid 3 into the gas layer by stirring the mixed liquid 3 near the water surface, the biochemical reaction within the reaction tank 1 can be significantly accelerated. It can be promoted. In other words, it is desirable to bring the nutrients supplied into the reaction tank 1 into contact with the microbial cells in the tank as evenly as possible in order to promote biochemical reactions. The stirring blades 11a and the stirring plates 11b facilitate centrifugal concentration and stirring and mixing of the liquid mixture 3 at the same time, allowing the nutrients to come into uniform contact with the microbial cells and promoting biochemical reactions.

混液3の撹拌は上向きの流れを助長したり水平方向の流
れを助長したりすることによって、槽内で旋回流を起こ
させることでなされる。また好気性反応の場合には混液
撹拌手段11によって混液3を空気中に飛散させること
で、いわゆる機械撹拌による曝気をおこなわせて好気性
反応を促進することができる。さらにメタン発酵のよう
な嫌気性反応の場合は、反応槽1を密閉槽として形成し
て反応槽1の上部気層に混液3を飛散させることによっ
て、混液3中の酸素を排除しなり気層中の硫化水素など
で混液3を還元状態に保ち、嫌気性反応を促進すること
ができる。またこれら混液3の飛散によって混液3の表
面に生成されるスカムを解砕することもできる。
The mixed liquid 3 is stirred by creating a swirling flow in the tank by encouraging upward flow or horizontal flow. In the case of an aerobic reaction, by scattering the mixed liquid 3 into the air by the mixed liquid stirring means 11, aeration by so-called mechanical stirring can be performed and the aerobic reaction can be promoted. Furthermore, in the case of an anaerobic reaction such as methane fermentation, by forming the reaction tank 1 as a closed tank and scattering the mixed liquid 3 into the upper air layer of the reaction tank 1, oxygen in the mixed liquid 3 is removed and the air layer is reduced. The mixed liquid 3 can be maintained in a reduced state with hydrogen sulfide, etc. contained therein, and the anaerobic reaction can be promoted. Furthermore, scum generated on the surface of the mixed liquid 3 by scattering of the mixed liquid 3 can also be crushed.

また従来においては、発酵槽や培養槽、活性汚泥曝気槽
のような反応槽1内で反応や処理を効率良く進め、さら
に反応槽1がら移送排出した混液3を固液分離して再度
反応槽1に返送しようとすると、曝気、撹拌、移送、固
液分離(沈澱、遠心濃縮°、濾過など)、返送などのた
めに、多くの駆動装置や機械装置類を必要とするが、本
発明では遠心濃縮装置2のロータ4で遠心濃縮や濾過を
、遠心濃縮装置2に付設した混液撹拌手段11で撹拌や
曝気を、ロータ4のスリット5で返送をそれぞれおこな
わせることができ、これら総ての操作を原則として一台
の駆動装置や機械装置でおこなわせることができること
になって、極めて省エネルギー的である。ここでロータ
4の回転の周速度は前述したように10m/秒以上であ
ればよく、例えば直径が約2501のロータ4の場合、
10Q Q rpm程度以上でロータ4を回転させれば
十分であり、汎用される4極や2極の電動機13を用い
てこの電動1a13の出力軸14にロータ4の回転軸1
0を直結することでよく、特別なものは必要としない。
In addition, in the past, reactions and treatments proceeded efficiently in a reaction tank 1 such as a fermentation tank, a culture tank, or an activated sludge aeration tank, and the mixed liquid 3 transferred and discharged from the reaction tank 1 was separated into solid and liquid and then re-entered into the reaction tank. However, in the present invention, many driving devices and mechanical devices are required for aeration, stirring, transfer, solid-liquid separation (sedimentation, centrifugal concentration, filtration, etc.), and return. The rotor 4 of the centrifugal concentrator 2 can perform centrifugal concentration and filtration, the mixed liquid stirring means 11 attached to the centrifugal concentrator 2 can perform stirring and aeration, and the slit 5 of the rotor 4 can perform return. In principle, the operation can be performed with a single drive device or mechanical device, which is extremely energy-saving. Here, the circumferential speed of rotation of the rotor 4 only needs to be 10 m/sec or more as described above. For example, in the case of a rotor 4 with a diameter of about 250 mm,
It is sufficient to rotate the rotor 4 at about 10Q Q rpm or more, and by using a general-purpose 4-pole or 2-pole electric motor 13, the rotation axis 1 of the rotor 4 is connected to the output shaft 14 of the electric motor 1a13.
It is sufficient to directly connect 0, and no special equipment is required.

従って設備的にも経済的であり、運転動力費も大きくな
らないことになる。
Therefore, it is economical in terms of equipment, and the operating power cost does not increase.

次に本発明の具体的装置への応用について説明する。Next, the application of the present invention to a specific device will be explained.

生産  生  、への 用 糖類をアルコール発酵させたり、糖蜜などからパン酵母
を生産したりする場合に本発明の装置及び方法を有効に
利用することができる。
The apparatus and method of the present invention can be effectively used in the alcoholic fermentation of sugars for production or in the production of baker's yeast from molasses or the like.

例えば10%のブドウ糖や果糖を含む水溶液を100%
近くのアルコールに変えるために、従来はアルコール発
酵のための発酵槽を用意し、これに糖液を満たして種培
養した酵母を添加し、8日以上バッチ方式で発酵させ、
増殖した酵母を発酵槽内に沈澱させるかもしくは濾過、
遠心分離などによって固液分離することでおこなってい
る。
For example, 100% aqueous solution containing 10% glucose or fructose
In order to convert alcohol into nearby alcohol, conventionally a fermenter for alcohol fermentation was prepared, the tank was filled with sugar solution, seed cultured yeast was added to it, and fermentation was carried out in batch mode for 8 days or more.
The grown yeast is precipitated in a fermenter or filtered,
This is done through solid-liquid separation, such as by centrifugation.

これに対して本発明の第1図に示す装置を用い(ロータ
4の回転を周速度で約50m/秒に設定)た場合、発酵
槽としての反応槽1内の混液3には増殖した酵母が濃縮
されて5000〜50000mg/Il程度の浮遊物質
濃度になるまで残存されており、10%の糖水溶液を発
酵槽に連続して供給することによって、直ちに発酵反応
を進行させて糖をアルコールに転化することが可能であ
る。ここで糖類の負荷量は酵母の単位生体1当たりの単
位時間における発酵能力や発酵槽内で維持する酵母の浮
遊物質としての濃度、遠心濃縮装置2の分離機能などに
よって左右されることになるが、従来のアルコール発酵
に比して、発酵を完全に連続化することが可能であり、
しかも発酵槽の容積を著しく削減することが可能になる
。そして従来の種培養酵母を添加するバッチ方式では発
酵開始から終了までの平均浮遊物質濃度は1500mg
/j!程度であるが、混液3を濃縮できる本発明の装置
においてこの濃度を6000mg/j!程度以上に保つ
ようにすると、計算上発酵所要時間を従来の174以下
に短縮することができることになり、また糖水溶液2日
分に当たる容積の発酵槽を用いるようにすれば、従来通
りの収率で連続してアルコール発酵させることができる
と考えられる。このとき発酵槽内の浮遊物質濃度が高く
なり過ぎない−ように、混液3を少量づつ抜き取って槽
外で固液分離をおこない、分離液を発酵槽に返送するよ
うにするのが望ましい。
On the other hand, when the apparatus shown in FIG. 1 of the present invention is used (the rotation of the rotor 4 is set at a circumferential speed of about 50 m/sec), the mixed liquid 3 in the reaction tank 1 as a fermenter contains yeast that has grown. is concentrated and remains until the suspended solids concentration is about 5,000 to 50,000 mg/Il, and by continuously supplying a 10% sugar aqueous solution to the fermenter, the fermentation reaction immediately proceeds and converts sugar into alcohol. It is possible to convert. Here, the amount of sugar loaded depends on the fermentation capacity of yeast per unit time per unit organism, the concentration of yeast as suspended matter maintained in the fermenter, the separation function of centrifugal concentrator 2, etc. , compared to conventional alcoholic fermentation, it is possible to make fermentation completely continuous,
Moreover, it becomes possible to significantly reduce the volume of the fermenter. In the conventional batch method in which seed cultured yeast is added, the average suspended solids concentration from the start to the end of fermentation is 1500 mg.
/j! However, in the device of the present invention that can concentrate the mixed liquid 3, this concentration can be reduced to 6000 mg/j! If the fermentation time is maintained at a certain level or higher, the required fermentation time can be calculated to be reduced to less than 174 mm compared to the conventional method.If a fermenter with a volume equivalent to 2 days' worth of sugar solution is used, the yield can be maintained as usual. It is thought that alcoholic fermentation can be carried out continuously. At this time, in order to prevent the concentration of suspended solids in the fermenter from becoming too high, it is desirable to draw out the mixed liquid 3 little by little, perform solid-liquid separation outside the tank, and return the separated liquid to the fermenter.

メタン  への アルコール発酵廃液や食品加工廃液、畜舎汚水、し尿、
下水汚泥などをメタン発酵することは広く実用化されて
いる。このメタン発酵においても本発明の装置及び方法
を有効に利用することができる。
Alcohol fermentation waste liquid, food processing waste liquid, livestock sewage, human waste,
Methane fermentation of sewage sludge and other materials has been widely put into practical use. The apparatus and method of the present invention can also be effectively used in this methane fermentation.

有機物濃度1〜2%の廃液や汚泥の中温メタン発酵にお
いては、従来は30〜37℃に保温して撹拌しながら滞
留期間を30日前後とれる発酵槽を用い、これに連続ま
たは半連続で被処理液を供給して発酵させることによっ
ておこなわれている。
In medium-temperature methane fermentation of waste liquid or sludge with an organic matter concentration of 1 to 2%, conventionally a fermenter is used that can be kept at a temperature of 30 to 37 degrees Celsius and has a retention period of around 30 days with stirring, and is continuously or semi-continuously exposed to the fermentation tank. This is done by supplying a treatment liquid and fermenting it.

この場合、発酵槽内または発酵槽外で混液を沈澱分離さ
せて脱離液と消化汚泥とに分け、脱離液は二次処理にま
わし、また消化汚泥はメタン発酵槽内の混液浮遊物質濃
度が0.5〜1.5%(下水汚泥ではこれ以上にするこ
ともある)になるように残して他は脱水処理することが
なされている。
In this case, the mixed liquid is separated by sedimentation inside or outside the fermenter to separate the desorbed liquid and the digested sludge, and the desorbed liquid is sent to secondary treatment, and the digested sludge has a concentration of suspended solids in the mixed liquid in the methane fermentation tank. The standard practice is to leave only 0.5 to 1.5% (in the case of sewage sludge, it may be more than this) and dewater the rest.

これに対して本発明の第2図の装置を用い、ロータ4と
して第3図(b)のものを用いた場合(ロータ4の回転
周速度は約30箱/秒に設定)、混液撹拌手段11によ
る撹拌、ロータ4及び排出管6による脱離液の分離排出
と消化汚泥の槽内への返送を密閉槽内でおこなわせるこ
とができる。すなわちロータ4の回転周速度を約30m
/秒に設定することによって混液撹拌手段11による撹
拌の効果を従来の機械撹拌方式と同程度にすることがで
きるものであり、また遠心濃縮装置2によって消化汚泥
の濃厚スラリーを槽内に返送させることで、混液3の浮
遊物質濃度を3〜5%にまで濃厚化することが可能にな
るものである。そしてメタン発酵も消化汚泥中に混在す
る種々の微生物、特にメタン菌群の働きに左右されるも
のであり、これが濃厚化されることによってメタン発酵
を従来の2〜6倍にスピードアップすることが可能にな
り、また被処理液の有機物濃度が1〜2%とすると滞留
5〜15日で十分に分解されてメタンガスの回収ができ
ると考えられる。このメタン発酵においては保温が必要
となるが、槽の容積を著しく減少させることができるた
めに保温のためのエネルギー消費も減少できることにな
る。また濃厚化した混液は適宜引き抜いて固液分離し、
槽内の混液の濃度を制御するのが望ましい。
On the other hand, when the device shown in FIG. 2 of the present invention is used and the rotor 4 shown in FIG. 11, separation and discharge of the desorbed liquid by the rotor 4 and discharge pipe 6, and return of the digested sludge to the tank can be performed in a closed tank. In other words, the rotational circumferential speed of the rotor 4 is approximately 30 m.
/second, the effect of stirring by the mixed liquid stirring means 11 can be made comparable to that of the conventional mechanical stirring method, and the centrifugal concentrator 2 returns the thick slurry of digested sludge to the tank. This makes it possible to increase the concentration of suspended solids in the mixed liquid 3 to 3 to 5%. Methane fermentation also depends on the actions of various microorganisms mixed in the digested sludge, especially the methane bacteria group, and by enriching them, methane fermentation can be speeded up 2 to 6 times compared to conventional methods. Furthermore, if the concentration of organic matter in the liquid to be treated is 1 to 2%, it is thought that it will be sufficiently decomposed and methane gas can be recovered within 5 to 15 days of retention. This methane fermentation requires heat retention, but since the volume of the tank can be significantly reduced, energy consumption for heat retention can also be reduced. In addition, the thickened mixed liquid is drawn out as appropriate for solid-liquid separation,
It is desirable to control the concentration of the mixed liquid in the tank.

水 理への 生活排水、有機性工場排水などの処理は活性汚泥法や、
散水瀘床法、回転円板法、充填循環濾床法等の接触生物
膜法などによっておこなわれているが、特に活性汚泥法
が最も一般に普及している。
The activated sludge method,
Contact biofilm methods such as the trickling bed method, rotating disk method, and packed circulation filter bed method are used, but the activated sludge method is the most popular.

この活性汚泥法で有機性排水処理を完全におこなおうと
すると大きな曝気槽や沈澱槽が必要となり、しかも活性
汚泥法では膨化(バルキング)や解体などの生物学的な
トラブルが発生し易く、また消費電力も大きい。
If you try to completely treat organic wastewater using this activated sludge method, you will need large aeration tanks and sedimentation tanks, and the activated sludge method is also prone to biological problems such as bulking and disintegration. Power consumption is also large.

これに対して本発明の装置及び方法を適用することによ
って、極めて著しい効果を発揮することができる。すな
わち、例えば第2図の装置を活性汚泥曝気槽に用い、ま
た回転速度を周速度で約30珀/秒に設定した第3図(
d)のロータ4を用い、BOD、COD、浮遊物質がそ
れぞれ約200mg/lの生活排水をQ m ’ / 
h rの処理速度で処理する場合、次に列挙するような
効果が期待できる。
In this regard, by applying the apparatus and method of the present invention, extremely remarkable effects can be achieved. That is, for example, the device shown in FIG. 2 is used in an activated sludge aeration tank, and the rotation speed is set to about 30 km/sec in circumferential speed (see FIG. 3).
Using the rotor 4 of d), domestic wastewater with BOD, COD, and suspended solids of about 200 mg/l each is Q m ' /
When processing at a processing speed of hr, the following effects can be expected.

1)反応槽1として使用される曝気槽内で、遠心濃縮装
置2によって混液3を固液分離して汚泥を曝気槽内に直
接返送できると共に分離液を排出管6で槽外に排出でき
るなめに、曝気槽に続く沈澱槽や沈澱汚泥を返送する機
構が全く不要になる。
1) Inside the aeration tank used as the reaction tank 1, the mixed liquid 3 can be separated into solid and liquid by the centrifugal concentrator 2, and the sludge can be returned directly into the aeration tank, and the separated liquid can be discharged to the outside of the tank through the discharge pipe 6. In addition, a settling tank following the aeration tank and a mechanism for returning settled sludge are completely unnecessary.

従って容積的にはく2〜5)XQm3の沈澱槽タンクが
削減できる。
Therefore, the volume of the sedimentation tank can be reduced by 2 to 5) XQm3.

2)遠心製縮装W2で曝気槽内の混液3の濃度を高め、
混液3中の浮遊物質(MLSS)を900〇〜1200
0mg/lに保つようにすると、従来の標準的な活性汚
泥曝気槽のMLS’53000mg/!の3〜4倍にす
ることができ、また曝気槽に対するBOD容積負荷を1
.8〜2 、’4kg/m3−日にすることができる。
2) Increase the concentration of mixed liquid 3 in the aeration tank with centrifugal compaction W2,
Suspended solids (MLSS) in mixed liquid 3 are 9000 to 1200
If maintained at 0 mg/l, the MLS of a conventional standard activated sludge aeration tank would be 53,000 mg/l! It is possible to increase the BOD volume load to the aeration tank by 3 to 4 times.
.. 8-2,'4 kg/m3-day.

従って従来の標準的なりOD容積負荷(約0.6kg/
m3・日以下)での曝気槽は容積(6〜8)×Qm3で
あるところ、この173〜1/4の2×Qm3前後の容
積に曝気槽を形成して用いることが可能になる。上記1
)の沈澱槽の削減と合わせると、タンク容積は従来の1
75以下にすることができる。
Therefore, the conventional standard OD volume load (approximately 0.6 kg/
The aeration tank has a volume of (6 to 8)×Qm3 (less than m3·day), but it becomes possible to form and use the aeration tank with a volume of about 2×Qm3, which is 173 to 1/4 of this. Above 1
), the tank volume is reduced to 1 compared to the conventional one.
It can be set to 75 or less.

3)曝気槽における曝気は従来から散気方式や機械撹拌
方式でおこなわれており、そのために消費電力は除去B
OD1’kg当たりのkWhで示されているが、消費電
力は機械撹拌方式が一般に有利であるとされている。従
って遠心濃縮装置2によって遠心濃縮をおこなう際に同
時に回転される混液撹拌手段11で混液3を機械撹拌す
る本発明の装置は、効率的な撹拌をすることができて有
利であるといえる。
3) Aeration in the aeration tank has traditionally been carried out by aeration methods or mechanical agitation methods, which reduces power consumption.
Although it is expressed in kWh per OD1'kg, the mechanical stirring method is generally considered to be advantageous in terms of power consumption. Therefore, it can be said that the apparatus of the present invention, which mechanically stirs the mixed liquid 3 using the mixed liquid stirring means 11 which is rotated at the same time as centrifugal concentration is performed by the centrifugal concentrator 2, is advantageous because it can perform efficient stirring.

4)沈澱分離で固液分離をおこなうと膨化や解体が発生
し易いが、遠心濃縮装置2による遠心濃縮で固液分離を
おこなうために、膨化や解体を起こすような条件でもこ
れら膨化や解体のおそれなく清澄な分離液を分離するこ
とができる。このことは従来の活性汚泥処理施設の管理
上最も困難であった問題を解消できることを意味する。
4) Swelling and disintegration are likely to occur when solid-liquid separation is performed by sedimentation separation, but since solid-liquid separation is performed by centrifugal concentration using the centrifugal concentrator 2, these swelling and disintegrations can be prevented even under conditions that cause swelling and disintegration. Clear separation liquid can be separated without fear. This means that the most difficult problem in managing conventional activated sludge treatment facilities can be solved.

5)第3図(d)のような濾過材9を設けたロータ4を
用いることによって、浮遊物質は濾過材9で濾別される
ために固液分離した分離液中の浮遊物質を少なくするこ
とができる。例えば濾過材9として100メツシユのナ
イロン布を用いることによって分離液中の浮遊物質を極
めて少なくすることができる。濾過材9は浮遊物質によ
って目詰まりするほうに向かい易いが、濾過材9の表面
に浮遊物質が溜まってもロータ4の回転とともに濾過材
9も回転されるために、このときの遠心力によって浮遊
物質は濾過材9の表面から剥離され、支障は全く生じな
い。
5) By using the rotor 4 provided with the filtering material 9 as shown in FIG. 3(d), suspended solids are filtered out by the filtering material 9, so that the amount of suspended solids in the solid-liquid separated liquid is reduced. be able to. For example, by using a 100-mesh nylon cloth as the filter material 9, suspended solids in the separated liquid can be extremely reduced. The filtering material 9 tends to become clogged with suspended solids, but even if suspended solids accumulate on the surface of the filtering material 9, since the filtering material 9 is also rotated with the rotation of the rotor 4, the centrifugal force at this time will cause the suspended solids to become clogged. The substance is detached from the surface of the filter medium 9 and no disturbance occurs.

6)生活排水や工場排水中には窒素が多いために、通常
の汚泥活性処理をおこなってBODやCODを低下させ
ても処理としては不十分であり、窒素の除去も要求され
ることがある。ここで、窒素は活性汚泥処理における曝
気によって酸化され、亜硝酸や硝酸の形になり、このの
ち曝気を止めて酸化還元電位を下げると、これらは窒素
ガスとなって空気中に揮散されることが知られている。
6) Domestic wastewater and industrial wastewater contain a lot of nitrogen, so even if normal sludge activation treatment is performed to lower BOD and COD, it is not sufficient as a treatment, and nitrogen removal may also be required. . Here, nitrogen is oxidized by aeration in activated sludge treatment and becomes nitrous acid and nitric acid. Afterwards, when aeration is stopped and the redox potential is lowered, these become nitrogen gas and volatilize into the air. It has been known.

この酸化や脱窒素はMLSSが高い程起こり易い。そし
て本発明の装置及び方法において遠心濃縮と撹拌を短時
間停止し、曝気することを繰り返すと、MLSSが従来
より高いだけに容易にその酸化や脱窒素を進行させるこ
とができる。通常はロータ4の回転及び混液撹拌手段1
1による撹拌の停止を1時間当たり5分間程度停止する
と脱窒素の目的が十分に達成される。
This oxidation and denitrification occur more easily as the MLSS increases. In the apparatus and method of the present invention, if centrifugal concentration and stirring are stopped for a short time and aeration is repeated, oxidation and denitrification can easily proceed because the MLSS is higher than before. Usually, the rotation of the rotor 4 and the mixed liquid stirring means 1
If the stirring in step 1 is stopped for about 5 minutes per hour, the purpose of denitrification can be sufficiently achieved.

次に排水処理の装置についての具体的実施例を示す。Next, a specific example of a wastewater treatment device will be shown.

第4図(a)(b)は全曝気遠心分離型合併処理装置を
示すもので、タンクに反応槽1を構成する曝気槽23を
設けて形成してあり、曝気槽23内に第1図のものと同
様な遠心濃縮装置2が取り付けである。このものでは混
液撹拌手段11を回転軸10に設けた逆三角錐の基体2
4の外周に撹拌板11bを突設して形成してあり、混液
撹拌手段11は水面の付近に配置しである。また流入管
1つの先端の下方には篭型のスクリーン25が設けてあ
り、ロータ4に接続される排出管6の先端はハイクロン
充填塔のような消毒剤を充填した塔26を設けた消毒槽
27に導いである。図中28はマンホールである。この
処理装置にあって、排水は流入管1つから曝気槽23に
送入され、まずスクリーンによってごみなどの粗大浮遊
物が除去される。
4(a) and 4(b) show a total aeration centrifugal separation type combined treatment apparatus, in which an aeration tank 23 constituting the reaction tank 1 is provided in the tank, and the aeration tank 23 shown in FIG. A centrifugal concentrator 2 similar to that of the present invention is installed. In this case, an inverted triangular pyramid base 2 is provided with a mixed liquid stirring means 11 on a rotating shaft 10.
A stirring plate 11b is formed protruding from the outer periphery of the water tank 4, and the mixed liquid stirring means 11 is arranged near the water surface. A basket-shaped screen 25 is provided below the tip of one of the inflow pipes, and the tip of the discharge pipe 6 connected to the rotor 4 is a disinfection tank equipped with a tower 26 filled with a disinfectant, such as a Hyclone packed tower. It leads to 27. In the figure, 28 is a manhole. In this treatment device, wastewater is sent into an aeration tank 23 from one inflow pipe, and coarse suspended matter such as garbage is first removed by a screen.

そして排水は遠心濃縮装置2や混液撹拌手段11の働き
で曝気槽23内にて活性汚泥処理を受け、ロータ4内で
固液分離された分離液は排出管6によって消毒槽27へ
送られ、消毒槽27内で消毒されて流出管29から排出
される。
Then, the wastewater is treated with activated sludge in the aeration tank 23 by the action of the centrifugal concentrator 2 and mixed liquid stirring means 11, and the separated liquid separated into solid and liquid in the rotor 4 is sent to the disinfection tank 27 through the discharge pipe 6. It is disinfected in the disinfection tank 27 and discharged from the outflow pipe 29.

第5図(a)(b)は分離曝気遠心分離型合併処理装置
を示すもので、このものではタンク内を溢流板30で仕
切って反応槽1を構成する曝気槽23と一35= 分離槽31とが形成されるようにしてあり、曝気槽23
内に第2図のものと同様な遠心濃縮装置2が取り付けで
ある。図中32はスカム止めである。
FIGS. 5(a) and 5(b) show a separate aeration and centrifugation type combined treatment apparatus, in which the inside of the tank is partitioned by an overflow plate 30 to separate the aeration tanks 23 and 35 that constitute the reaction tank 1. A tank 31 is formed, and an aeration tank 23 is formed.
A centrifugal concentrator 2 similar to that shown in FIG. 2 is installed inside. In the figure, 32 is a scum stopper.

この処理装置にあって、排水は流入管19からまず分離
槽31に送入され、ごみなどが沈澱分離される。そして
分離槽31内の排水は溢流板30の上端を越えて曝気槽
23内に移流し、排水は曝気槽23内で第4図のものと
同様に処理され、さらに消毒槽27内で消毒されて流出
管29から排出[発明の効果コ 上述のように本発明の第一発明は、微生物反応をおこな
わせる反応槽内に遠心濃縮装置を取り付けたものであり
、そしてこの遠心濃縮装置は、微生物を含む槽内の混液
が流入され回転駆動による遠心力で混液を固液分離する
ロータと、ロータの外周部に設けられ固液分離によって
濃縮された混液をロータ内から槽内に返送するスリット
と、固液分離によって混液から分離された分離液をロー
タ内から槽外へ排出する排出管とを具備して形成されて
いるものであるから、反応槽内に固液分離のための設備
である遠心濃縮装置を一体化させることができ、別途固
液分離のための装置を設備するような必要がないと共に
槽外から槽内への返送の設備も不要となって全体をコン
パクトに形成することができるものであり、しかも固液
分離された混液の濃縮液はロータのスリットから反応槽
内に戻されると共に分離液は排出管から反応槽外へ排出
されるために、反応槽内の混液の濃度を高めることがで
きて混液の微生物による反応効率を高めることかでき、
反応槽内での微生物反応の高い効率によって反応槽を容
積小さく形成することができるものである。従って装置
の設置のための面積や容積を小さくすることができる。
In this treatment device, wastewater is first sent from an inflow pipe 19 to a separation tank 31, where garbage and the like are sedimented and separated. Then, the wastewater in the separation tank 31 is advected over the upper end of the overflow plate 30 into the aeration tank 23, where it is treated in the same way as that shown in FIG. 4, and further disinfected in the disinfection tank 27. [Effects of the Invention] As mentioned above, the first invention of the present invention is one in which a centrifugal concentrator is installed in a reaction tank in which a microbial reaction is carried out, and this centrifugal concentrator is A rotor into which the mixed liquid containing microorganisms in the tank flows and separates the mixed liquid into solid and liquid using centrifugal force due to rotational drive, and a slit provided on the outer periphery of the rotor that returns the mixed liquid concentrated by solid-liquid separation from inside the rotor to the tank. and a discharge pipe for discharging the separated liquid separated from the mixed liquid by solid-liquid separation from inside the rotor to the outside of the tank, so there is no equipment for solid-liquid separation inside the reaction tank. A certain centrifugal concentration device can be integrated, and there is no need to install a separate device for solid-liquid separation, and there is no need for return equipment from outside the tank to the inside of the tank, making the whole system compact. Moreover, since the concentrated liquid of the solid-liquid separated mixed liquid is returned into the reaction tank through the slit of the rotor, and the separated liquid is discharged from the reaction tank through the discharge pipe, the mixed liquid in the reaction tank is It is possible to increase the concentration of microorganisms in the mixed solution and increase the reaction efficiency of the microorganisms in the mixture.
Due to the high efficiency of the microbial reaction within the reaction tank, the volume of the reaction tank can be reduced. Therefore, the area and volume for installing the device can be reduced.

また本発明の第二発明は第一発明に加えて、混液がロー
タ内に流入される流入口及びスリットとロータ内の分離
液が排出管に流出される流出口との間においてロータ内
に濾過材が取り付けられているために、ロータ内で遠心
分離によって固液分離された固形分が排出管を通して排
出されることを濾過材の濾別作用で防止することができ
、確実に清澄な分離液のみを排出管によって排出するこ
とができるものであり、また濾過材はロータとともに回
転されるものであって、回転の際の遠心力で濾過材は表
面がセルフクリーニングされ、濾過材が目詰まりするよ
うなこを防止することがてきるものである。従って混液
の固液分離を確実におこなうことができる。
In addition to the first invention, a second invention of the present invention provides a filter between the inlet and slit through which the mixed liquid flows into the rotor and the outlet through which the separated liquid in the rotor flows out into the discharge pipe. Because the material is attached to the rotor, the solid content separated from solid and liquid by centrifugation in the rotor can be prevented from being discharged through the discharge pipe by the filtering action of the filter material, ensuring a clear separated liquid. The filter material is rotated together with the rotor, and the surface of the filter material self-cleans due to centrifugal force during rotation, which prevents the filter material from becoming clogged. This is something that can prevent this from happening. Therefore, solid-liquid separation of the mixed liquid can be reliably performed.

さらに本発明の第三発明は第一発明に加えて、ロータを
回転駆動させる回転軸の回転に伴って回転される混液撹
拌手段が遠心濃縮装置に付設して設けられているなめに
、混液撹拌手段で反応槽内の混液を撹拌したり飛散させ
たりすることができ、撹拌による微生物と栄養物との間
の均等な作用や飛散による混液の気層との接触によって
、微生物反応を促進させることができる。しがも混液撹
拌手段はロータを回転させる際にロータの回転動力と同
じ動力で同時に回転駆動できるものであり、混液撹拌手
段を駆動するための特別な動力が不要であって装置の簡
易化や省エネルギーの効果を得ることができる。
Further, in addition to the first invention, a third invention of the present invention provides a method for stirring a mixed liquid, in which a mixed liquid stirring means is attached to the centrifugal concentrator and is rotated with the rotation of a rotating shaft that rotationally drives a rotor. The mixed liquid in the reaction tank can be stirred or dispersed by means, and the microbial reaction can be promoted by equalizing the action between the microorganisms and nutrients due to stirring and by contacting the mixed liquid with the air layer due to scattering. I can do it. However, when the mixed liquid stirring means rotates the rotor, it can be driven to rotate at the same time with the same power as the rotational power of the rotor, and there is no need for special power to drive the mixed liquid stirring means, which simplifies the device. Energy saving effects can be obtained.

加えて本発明の第四発明は、微生物を含む反応槽内の混
液を反応槽内に取り付けた遠心分離装置のロータ内に流
入させてロータの回転駆動による遠心力で混液を固液分
離し、固液分離されて濃縮された混液をロータの外周部
に設けられたスリットから反応槽内に返送すると共に固
液分離によって混液から分離された分離液をロータ内が
ら排出管によって槽外へ排出することによって反応槽内
の混液の濃度を高め、反応槽内に供給される彼処混液に
この混液中の微生物を作用させるようにしたものである
から、ロータ内で固液分離されて濃縮された混液は反応
槽内ヘロータのスリットから直接返送されると共に固液
分離された分離液は排出管によって槽外へ排出され、こ
の反応槽内での操作の繰り返しで容易に反応槽内の混液
を濃度を高めることができ、混液中の微生物濃度を高め
て微生物による被処理液への生物反応の効率を高めるこ
とができる。
In addition, the fourth aspect of the present invention is to cause the mixed liquid in the reaction tank containing microorganisms to flow into the rotor of a centrifugal separator installed in the reaction tank, and to separate the mixed liquid into solid and liquid by the centrifugal force generated by the rotational drive of the rotor, The solid-liquid separated and concentrated mixed liquid is returned to the reaction tank through a slit provided on the outer periphery of the rotor, and the separated liquid separated from the mixed liquid by solid-liquid separation is discharged from the rotor to the outside of the tank through a discharge pipe. By doing this, the concentration of the mixed liquid in the reaction tank is increased, and the microorganisms in this mixed liquid are allowed to act on the mixed liquid supplied to the reaction tank. Therefore, the mixed liquid is concentrated by solid-liquid separation in the rotor. The solid-liquid separated liquid is directly returned from the slit of the herotor in the reaction tank, and the solid-liquid separated liquid is discharged to the outside of the tank through a discharge pipe. By repeating this operation in the reaction tank, the mixed liquid in the reaction tank can be easily reduced in concentration. By increasing the concentration of microorganisms in the mixed liquid, it is possible to increase the efficiency of the biological reaction of the microorganisms to the liquid to be treated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の装置の実施例を示
す概略断面図、第3図(a) (b) (c)(d)は
それぞれ本発明に用いるロータの実施例を示す断面図、
第4図(a)(b)は本発明の装置を排水処理に適用し
た実施例を示す概略正面断面図と概略平面断面図、第5
図(a)(b)は本発明の装置を排水処理に適用した他
の実施例を示す概略正面断面図と概略平面断面図、第6
図及び第7図はそれぞれ微生物反応のフロー図である。 1は反応槽、2は遠心濃縮装置、3は混液、4はロータ
、5はスリット、6は排出管、7は流入口、8は流出口
、9は濾過材、1oは回転軸、]1は混液撹拌手段であ
る。
Figures 1 and 2 are schematic sectional views showing embodiments of the device of the present invention, and Figures 3 (a), (b), (c) and (d) are cross-sectional views showing embodiments of the rotor used in the present invention, respectively. figure,
FIGS. 4(a) and 4(b) are a schematic front sectional view and a schematic plan sectional view showing an embodiment in which the apparatus of the present invention is applied to wastewater treatment;
Figures (a) and (b) are a schematic front sectional view and a schematic plan sectional view showing another embodiment in which the device of the present invention is applied to wastewater treatment, and
7 and 7 are flow diagrams of microbial reactions, respectively. 1 is a reaction tank, 2 is a centrifugal concentration device, 3 is a mixed liquid, 4 is a rotor, 5 is a slit, 6 is a discharge pipe, 7 is an inlet, 8 is an outlet, 9 is a filter material, 1o is a rotating shaft, ]1 is a mixed liquid stirring means.

Claims (4)

【特許請求の範囲】[Claims] (1)微生物反応をおこなわせる反応槽内に遠心濃縮装
置を取り付けて構成され、遠心濃縮装置は、微生物を含
む槽内の混液が流入され回転駆動による遠心力で混液を
固液分離するロータと、ロータの外周部に設けられ固液
分離によって濃縮された混液をロータ内から槽内に返送
するスリットと、固液分離によって混液から分離された
分離液をロータ内から槽外へ排出する排出管とを具備し
て形成されていることを特徴とする濃縮機構を備えた微
生物反応槽。
(1) A centrifugal concentrator is installed in a reaction tank in which a microbial reaction is carried out.The centrifugal concentrator consists of a rotor that receives the mixed liquid in the tank containing microorganisms and separates the mixed liquid into solid and liquid using the centrifugal force generated by rotation. , a slit provided on the outer circumference of the rotor that returns the mixed liquid concentrated by solid-liquid separation from inside the rotor to the tank, and a discharge pipe that discharges the separated liquid separated from the mixed liquid by solid-liquid separation from inside the rotor to the outside of the tank. A microbial reaction tank equipped with a concentration mechanism, characterized in that it is formed by comprising:
(2)微生物反応をおこなわせる反応槽内に遠心濃縮装
置を取り付けて構成され、遠心濃縮装置は、微生物を含
む槽内の混液が流入され回転駆動による遠心力で混液を
固液分離するロータと、ロータの外周部に設けられ固液
分離によって濃縮された混液をロータ内から槽内に返送
するスリットと、固液分離によって混液から分離された
分離液をロータ内から槽外へ排出する排出管と、混液が
ロータ内に流入される流入口及びスリットとロータ内の
分離液が排出管に流出される流出口との間においてロー
タ内に取り付けられる濾過材とを具備して形成されてい
ることを特徴とする濃縮機構を備えた微生物反応槽。
(2) A centrifugal concentrator is installed in a reaction tank in which a microbial reaction takes place, and the centrifugal concentrator consists of a rotor that receives the mixed liquid in the tank containing microorganisms and separates the mixed liquid into solid and liquid using centrifugal force generated by rotation. , a slit provided on the outer circumference of the rotor that returns the mixed liquid concentrated by solid-liquid separation from inside the rotor to the tank, and a discharge pipe that discharges the separated liquid separated from the mixed liquid by solid-liquid separation from inside the rotor to the outside of the tank. and a filtering material installed in the rotor between the inlet and slit through which the mixed liquid flows into the rotor and the outlet through which the separated liquid in the rotor flows out to the discharge pipe. A microbial reaction tank equipped with a concentration mechanism characterized by:
(3)微生物反応をおこなわせる反応槽内に遠心濃縮装
置を取り付けて構成され、遠心濃縮装置は、微生物を含
む槽内の混液が流入され回転駆動による遠心力で混液を
固液分離するロータと、ロータの外周部に設けられ固液
分離によって濃縮された混液をロータ内から槽内に返送
するスリットと、固液分離によって混液から分離された
分離液をロータ内から槽外へ排出する排出管とを具備し
て形成されていると共に、上記ロータを回転駆動させる
回転軸の回転に伴って回転される混液撹拌手段が遠心濃
縮装置に付設して設けられていることを特徴とする濃縮
機構を備えた微生物反応槽。
(3) A centrifugal concentrator is installed in a reaction tank in which a microbial reaction takes place, and the centrifugal concentrator consists of a rotor that receives the mixed liquid in the tank containing microorganisms and separates the mixed liquid into solid and liquid using the centrifugal force generated by rotation. , a slit provided on the outer circumference of the rotor that returns the mixed liquid concentrated by solid-liquid separation from inside the rotor to the tank, and a discharge pipe that discharges the separated liquid separated from the mixed liquid by solid-liquid separation from inside the rotor to the outside of the tank. A concentrating mechanism characterized in that the centrifugal concentrating device is provided with mixed liquid stirring means that rotates with the rotation of a rotating shaft that rotationally drives the rotor. Equipped with a microbial reaction tank.
(4)微生物を含む反応槽内の混液を反応槽内に取り付
けた遠心分離装置のロータ内に流入させてロータの回転
駆動による遠心力で混液を固液分離し、固液分離されて
濃縮された混液をロータの外周部に設けられたスリット
から反応槽内に返送すると共に固液分離によって混液か
ら分離された分離液をロータ内から排出管によって槽外
へ排出することによって反応槽内の混液の濃度を高め、
反応槽内に供給される被処理液にこの混液中の微生物を
作用させることを特徴とする濃縮機構を備えた微生物反
応槽での微生物反応方法。
(4) The mixed liquid in the reaction tank containing microorganisms is caused to flow into the rotor of a centrifugal separator installed in the reaction tank, and the mixed liquid is separated into solid and liquid by the centrifugal force generated by the rotation of the rotor, and the mixed liquid is separated into solid and liquid and concentrated. The mixed liquid in the reaction tank is returned to the reaction tank through a slit provided on the outer periphery of the rotor, and the separated liquid separated from the mixed liquid by solid-liquid separation is discharged from the rotor to the outside of the tank through a discharge pipe. increase the concentration of
A microbial reaction method in a microbial reaction tank equipped with a concentration mechanism, characterized in that microorganisms in this mixed liquid are made to act on a liquid to be treated that is supplied into the reaction tank.
JP61091934A 1986-04-21 1986-04-21 Microorganism reaction vessel provided with thickening mechanism and microorganism reaction method Granted JPS62247897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61091934A JPS62247897A (en) 1986-04-21 1986-04-21 Microorganism reaction vessel provided with thickening mechanism and microorganism reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61091934A JPS62247897A (en) 1986-04-21 1986-04-21 Microorganism reaction vessel provided with thickening mechanism and microorganism reaction method

Publications (2)

Publication Number Publication Date
JPS62247897A true JPS62247897A (en) 1987-10-28
JPH0362479B2 JPH0362479B2 (en) 1991-09-26

Family

ID=14040421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61091934A Granted JPS62247897A (en) 1986-04-21 1986-04-21 Microorganism reaction vessel provided with thickening mechanism and microorganism reaction method

Country Status (1)

Country Link
JP (1) JPS62247897A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165697A (en) * 2011-02-15 2012-09-06 Sapporo Breweries Ltd Method and apparatus for fermentation test of yeast
WO2013190874A1 (en) * 2012-06-21 2013-12-27 月島機械株式会社 Biomass processing device and processing method
JP2014155892A (en) * 2013-02-14 2014-08-28 Metawater Co Ltd Sludge treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132886A (en) * 1980-10-03 1982-08-17 Provesta Corp Fermentation method and apparatus
JPS62190073A (en) * 1985-11-25 1987-08-20 オランダ国 Apparatus for continuous culture of microorganism in liquid medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132886A (en) * 1980-10-03 1982-08-17 Provesta Corp Fermentation method and apparatus
JPS62190073A (en) * 1985-11-25 1987-08-20 オランダ国 Apparatus for continuous culture of microorganism in liquid medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165697A (en) * 2011-02-15 2012-09-06 Sapporo Breweries Ltd Method and apparatus for fermentation test of yeast
WO2013190874A1 (en) * 2012-06-21 2013-12-27 月島機械株式会社 Biomass processing device and processing method
JP2014003912A (en) * 2012-06-21 2014-01-16 Tsukishima Kikai Co Ltd Treatment system and treatment method for biomass
JP2014155892A (en) * 2013-02-14 2014-08-28 Metawater Co Ltd Sludge treatment system

Also Published As

Publication number Publication date
JPH0362479B2 (en) 1991-09-26

Similar Documents

Publication Publication Date Title
US3152982A (en) Method and apparatus for sewage treatment
CN105174601B (en) A kind of biological treatment of cassava alcohol waste water
CN106219871A (en) A kind of livestock breeding wastewater processing method
JP2002336885A (en) Method for aerobic treatment of waste water
CN106186339A (en) A kind of stain disease processing method with granule immobilization cell as core
CN103043851A (en) Water treatment method of microalgae cultivation-flocculation clarifying-filtration in series connection
CN113304685A (en) Continuous flow aerobic granular sludge reaction device with stirring paddle internal member and method
CN106673190A (en) Waste water efficient anaerobic treatment process and device
CN108314255A (en) A kind of efficient Chinese herbal medicine extraction sewage treatment process
CN100500593C (en) Combined type wastewater treatment method and equipment
JP5873736B2 (en) Organic wastewater treatment method and treatment apparatus
CN101693583B (en) Biochemical comprehensive treatment method for 1, 3-propylene glycol fermentation organism waste water
JPS62247897A (en) Microorganism reaction vessel provided with thickening mechanism and microorganism reaction method
JPS59183895A (en) Fuel gas producing method and apparatus
CN207121472U (en) A kind of aerobic integrated sewage-treating reactor device of internal circulating anaerobic
CN215480387U (en) Breed sewage treatment system
CN115784435A (en) Micro-aerobic anaerobic reaction system with enhanced circulation
JPS63315196A (en) Anaerobic bioreactor
CN108467165A (en) A kind of efficient dephosphorization rural domestic sewage treatment system
CN205035221U (en) Organic waste water's processing system
CN115321742A (en) Breed sewage treatment system
JPH01123697A (en) Aerobic biological treatment device for organic waste water
CN116768360B (en) Pig farm wastewater treatment method
CN220564417U (en) Complete mixing type reactor and wastewater treatment device
CN107557274A (en) A kind of modified upflow solids reactor for handling concentration domestic biological discarded object