JPS62246808A - Method for concentrating slurry - Google Patents

Method for concentrating slurry

Info

Publication number
JPS62246808A
JPS62246808A JP61087471A JP8747186A JPS62246808A JP S62246808 A JPS62246808 A JP S62246808A JP 61087471 A JP61087471 A JP 61087471A JP 8747186 A JP8747186 A JP 8747186A JP S62246808 A JPS62246808 A JP S62246808A
Authority
JP
Japan
Prior art keywords
slurry
fine powder
ultrafiltration
wet
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61087471A
Other languages
Japanese (ja)
Inventor
Teijiro Matsumoto
松本 悌二郎
Yoshitaka Ozaki
尾崎 好孝
Masamichi Hayashi
正道 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Seitetsu Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seitetsu Kagaku Co Ltd filed Critical Seitetsu Kagaku Co Ltd
Priority to JP61087471A priority Critical patent/JPS62246808A/en
Publication of JPS62246808A publication Critical patent/JPS62246808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To easily and efficiently concentrate a slurry of fine inorg. oxide powder obtd. by wet grinding by applying ultrafiltration. CONSTITUTION:An inorg. oxide such as silica or alumina is wet ground to <=10mum average particles size. The resulting slurry of fine inorg. oxide powder is concentrated by ultrafiltration and sent to an evaporation drying stage provided with a spray dryer or the like. Thus, the slurry can be easily concentrated to >=60% concn. without damaging or clogging a filter membrane even when the fine powder has <=10mum average particle size, so the cost in the next drying stage can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子材料などの分野に用いられるセラミックス
の原料であるシリカ、アルミナに代表される無機酸化物
の微粉体の製造方法に関するものであり、就中、微粉体
スラリーを取り扱う工程において微粉体スラリーを濃縮
する方法に関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a method for producing fine powder of inorganic oxides such as silica and alumina, which are raw materials for ceramics used in fields such as electronic materials. In particular, the present invention relates to a method for concentrating a fine powder slurry in a process of handling the fine powder slurry.

(従来の技術) (発明が解決しようとする問題点) 一般に粉砕法を大別すると湿式法と乾式法に分類される
。乾式法では微粉化とともに凝集がおこりやすく、通常
凝集を防ぐために分散剤が添加されるがその場合におい
ても、粉砕後の平均粒子径は湿式法に比べて大きくなる
のが一般的である。
(Prior Art) (Problems to be Solved by the Invention) Generally, pulverization methods are broadly classified into wet methods and dry methods. In the dry method, agglomeration tends to occur along with pulverization, and a dispersant is usually added to prevent agglomeration, but even in that case, the average particle size after pulverization is generally larger than that in the wet method.

一方湿式法では、粉塵対策を講する必要はなく、また粉
体の分散効果がよいために、比較的微粉砕をするのに適
しているが、媒体を蒸発させ、粉体を乾燥するために大
きな装置を必要とし、またエネルギーコストが高くつく
という欠点がある。
On the other hand, with the wet method, there is no need to take dust countermeasures and the powder has a good dispersion effect, so it is relatively suitable for fine pulverization. It has the disadvantage of requiring large equipment and high energy costs.

しかしながら、シリカ、アルミナに代表される無機酸化
物の微粉体を製造する場合は一般的に湿式法が採用され
、湿式ボールミル、湿式媒体攪拌式ミルなどの方法で微
粉砕を行った後、スプレードライヤーなどで乾燥する方
法がとられている。
However, when producing fine powder of inorganic oxides such as silica and alumina, a wet method is generally adopted. Drying methods such as

スプレードライヤーの場合は湿式粉砕後、先ず濾過し、
次いでスプレードライヤーに装入するため、その間の輸
送がスムースにいくように、適度の水を加えて微粉体の
スラリーを調製する必要がある。
In the case of a spray dryer, after wet grinding, it is first filtered,
Next, in order to charge the powder into a spray dryer, it is necessary to prepare a slurry of the fine powder by adding an appropriate amount of water to ensure smooth transportation between the spray dryers.

しかし、スラリー中の微粉体の平均粒径が10μ以下に
なると減圧または加圧で濾過せねばならず、また操作中
に目詰まりをおこすため、工業的に実施するのは非常に
困難であり、さらに微粉体の平均粒径がサブミクロンの
オーダーになってくると、濾過法を工業的に実施するこ
とは実質的に不可能となる。
However, when the average particle size of the fine powder in the slurry is less than 10μ, it must be filtered under reduced pressure or increased pressure, and clogging occurs during the operation, so it is very difficult to implement it industrially. Furthermore, when the average particle size of the fine powder reaches the submicron order, it becomes virtually impossible to implement the filtration method industrially.

このため平均粒径が10μ以下の微粉体を含むスラリー
から微粉体を得るためには、湿式で微粉砕した後、その
まま水分の多いスラリーの状態で輸送し、スプレードラ
イヤーに装入しなければならず、前述の水分を蒸発させ
るためのコストが更に高(つ(という欠点を有する。
Therefore, in order to obtain fine powder from a slurry containing fine powder with an average particle size of 10μ or less, it is necessary to wet-pulverize it, then transport it as a wet slurry and charge it into a spray dryer. First, it has the drawback that the cost for evaporating the water is higher.

(問題点を解決するための手段) しかし電子材料として用いられるセラミックスなどの先
端技術分野では、その原料として10μ程度のみならず
、ミクロンオーダーからサブミクロンオーダーの無機酸
化物の微粉体が要求されており、湿式法による微粉砕は
不可欠な手段となっている。
(Means for solving the problem) However, in advanced technology fields such as ceramics used as electronic materials, fine powder of inorganic oxides of not only about 10 microns but also micron to submicron orders are required as raw materials. Therefore, wet pulverization has become an indispensable means.

そこで本発明者らは、前述の湿式法に伴う欠点を克服す
べく、微粉体スラリー中の水分の除去方法を鋭意検討し
た結果、水分を蒸発法によらず、限外濾過法を採用すれ
ば低コストで効果的に水分を濾過水として除去できるこ
とを見出した。
Therefore, in order to overcome the drawbacks associated with the above-mentioned wet method, the present inventors conducted intensive studies on a method for removing water from a fine powder slurry. It has been found that water can be effectively removed as filtered water at low cost.

一般的に限外濾過法は、タンパク質、酵素、核酸、ウィ
ルス、尿、血清などの濾過、濃縮を分子の大きさのレベ
ルで行い、分子量数百から数百万程度の物質の分離、精
製ないしは除去のために用いられる濾過技術であって、
主として生化学の分野において利用されている。しかし
、無機酸化物の微粉体、就中、シリカ、アルミナなど硬
度が高くて、しかも尖った角を多数持つ微粒子の濾過に
は、限外濾過膜に機械的障害を与えることが懸念され、
本発明におけるような微粉体のスラリーの濃縮に応用さ
れた例は開示されていない。
In general, ultrafiltration methods filter and concentrate proteins, enzymes, nucleic acids, viruses, urine, serum, etc. at the molecular size level, and separate, purify, or concentrate substances with molecular weights from several hundred to several million. A filtration technique used to remove
It is mainly used in the field of biochemistry. However, when filtering fine particles of inorganic oxides, especially particles with high hardness and many sharp edges, such as silica and alumina, there is a concern that they may cause mechanical damage to the ultrafiltration membrane.
An example of application to concentration of a slurry of fine powder as in the present invention is not disclosed.

しかし本発明者らが検討した結果によればスラリーに0
.1〜5kg/cdのガス圧を加え、通常の方法で限外
濾過を行うと濾過膜には何の障害を生ずることなく、ま
た目詰まりをおこすことなく、容易に無機酸化物の微粉
体スラリーの濃縮を実施できることを見出し、本発明に
到達した。
However, according to the results of studies conducted by the present inventors, there is no
.. When a gas pressure of 1 to 5 kg/cd is applied and ultrafiltration is performed in the usual manner, a fine powder slurry of inorganic oxide can be easily obtained without causing any damage or clogging to the filtration membrane. The present invention was achieved by discovering that it is possible to carry out concentration of .

本発明を適用し得る無機酸化物の微粉体は通常セラミッ
クス原料として用いられるものは何でもよいが、特にシ
リカ、アルミナの微粉体に効果的に適用される。
The inorganic oxide fine powder to which the present invention can be applied may be anything that is normally used as a raw material for ceramics, but it is particularly effectively applied to fine powders of silica and alumina.

濃縮の対象となる無機酸化物スラリーの濃度は無機化合
物の種類とその粒径によって異なるが、通常50%以下
であり、好ましくは30%以下の濃度で効果的に実施さ
れる。
The concentration of the inorganic oxide slurry to be concentrated varies depending on the type of inorganic compound and its particle size, but is usually 50% or less, preferably 30% or less.

上記濃度のスラリーに本発明の方法による限外濾過法を
適用することにより、スラリー濃度を60%以上に濃縮
することができる。
By applying the ultrafiltration method according to the method of the present invention to the slurry having the above concentration, the slurry concentration can be concentrated to 60% or more.

また、スラリー中の無機酸化物微粉体の粒子径が10μ
以上の場合においても、本発明の方法を適用できるが、
通常の減圧または加圧濾過法が採用できるので、特に限
外濾過法に依る必要はなく、粒子径が10μ以下、特に
減圧または加圧濾過法では濃縮が実質的に不可能な、サ
ブミクロンオーダーの微粉体に対して本発明の方法を有
利に実施することができる。
In addition, the particle size of the inorganic oxide fine powder in the slurry is 10μ
Although the method of the present invention can be applied to the above cases,
Since ordinary reduced pressure or pressure filtration methods can be used, there is no need to rely on ultrafiltration methods.The particle size is 10μ or less, especially in the submicron order, which is virtually impossible to concentrate with reduced pressure or pressure filtration methods. The method of the present invention can be advantageously carried out on fine powders.

本発明の方法は通常、湿式微粉砕を行った後、場合によ
ってはさらに酸洗浄等の操作を行った後、スプレードラ
イヤーなどによる蒸発乾燥工程に入る前に実施する。湿
式微粉砕の方式については特に制限はなく、いずれの方
法によって得られる微粉体に対しても適用できるが一般
に実施されている湿式ボールミル、湿式媒体撹拌式ミル
などによって得られる微粉体スラリーに対して有利に適
用できる。
The method of the present invention is usually carried out after performing wet pulverization, optionally performing further operations such as acid washing, and before starting an evaporative drying step using a spray dryer or the like. There are no particular restrictions on the method of wet pulverization, and it can be applied to fine powder obtained by any method, but it is applicable to fine powder slurry obtained by commonly used wet ball mills, wet medium stirring mills, etc. Can be applied to advantage.

本発明を工業的に実施する場合、1ヶ以上の限外濾過膜
のモジュールを直列または並列に設置してスラリーを循
環させながら水を系外に抜き出して濃縮を行うバッチ方
式、あるいはスラリーを一方から連続的に供給して濃縮
を行う連続式、また、単にタンク底部に限外濾過膜を装
着し、ポンプなどで攪拌しながら濾過、濃縮する方式な
ど、処理スラリーの多少によって適宜、処理方式を選択
することができる。
When the present invention is carried out industrially, a batch method is used in which one or more ultrafiltration membrane modules are installed in series or in parallel and water is extracted from the system while the slurry is circulated, or the slurry is concentrated in one direction. Depending on the amount of slurry to be treated, the treatment method can be selected as appropriate, such as a continuous method that concentrates the slurry by continuously supplying it from the tank, or a method that simply attaches an ultrafiltration membrane to the bottom of the tank and filters and concentrates it while stirring with a pump. You can choose.

本発明に使用される限外濾過膜は特に制限されるもので
はなく、親木性を付与したポリオレフィン、またはポリ
スルフォンなどの耐熱性高分子など、食品工業、医薬品
工業その他一般的に広く使用されている市販品が応用で
き、いずれの限外濾過膜を用いても有利に本発明の方法
を実施することができる。
The ultrafiltration membrane used in the present invention is not particularly limited, and may be one that is widely used in the food industry, pharmaceutical industry, and other general industries, such as polyolefin with wood-philic properties or heat-resistant polymers such as polysulfone. Commercially available ultrafiltration membranes can be used, and the method of the present invention can be advantageously carried out using any ultrafiltration membrane.

(実施例) 以下実施例で以て本発明を、より詳細に説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

実施例1 アルミナ製の通常のボールミル中で、分散剤として0.
3%のへキサメタリン酸ソーダーを混入しシリカの湿式
微粉砕を20%のスラリー濃度で実施し、平均粒径2.
4μのシリカ微粉末スラリーを得た。
Example 1 In a conventional ball mill made of alumina, 0.0% was used as a dispersant.
Wet milling of silica was carried out at a slurry concentration of 20% by mixing 3% sodium hexametaphosphate, and the average particle size was 2.
A slurry of 4 μm fine silica powder was obtained.

の 加圧筒内径75φの攪拌機付5USL’加圧容器の底部
に限外濾過膜として75φのポリスルホン膜(TOYO
製IJK200)を装着し、上記スラリー500gを装
入し、攪拌しながら常温、圧力1 、6 kg / c
rAの条件下で限外濾過を行った。20分後に62%ま
でスラリーは濃縮され、又底部から無色透明の水が得ら
れた。この間において濾過膜の侑傷は全く見られず、操
作は極めて順調であった。
A 75φ polysulfone membrane (TOYO
(manufactured by IJK200), charged with 500 g of the above slurry, and heated at room temperature, pressure 1, 6 kg/c while stirring.
Ultrafiltration was performed under rA conditions. After 20 minutes, the slurry was concentrated to 62%, and clear colorless water was obtained from the bottom. During this period, no scratches on the filtration membrane were observed, and the operation was extremely smooth.

比較例1 実施例1と全く同じ方法、装置で、ただ底部は通常の化
学実験用定性濾紙2枚を装着し、加圧濾過を実施したが
操作開始後数分後に目づまりをおこし濾過はほとんど不
可能であった。
Comparative Example 1 Pressure filtration was carried out using the same method and apparatus as in Example 1, except that the bottom was equipped with two ordinary qualitative filter papers for chemical experiments, but clogging occurred a few minutes after the start of the operation, and filtration was almost impossible. It was possible.

実施例2            日東電二件ね製。Example 2 Two pieces manufactured by Nitto Electric.

内径15φ、長さ300+/mの限外濾過膜(x+ ’
JオレフィンNTU−2000)のチューブラ−のモジ
ュールを直列に3本連結し、タンク内のスラリー液をポ
ンプで上記直列モジュールを通して、自己循環できるよ
うにし、系内の圧力はモジュール出口弁で所定の圧に保
てるようにした。
Ultrafiltration membrane (x+ '
Three J-Olefin NTU-2000) tubular modules are connected in series, and the slurry liquid in the tank is pumped through the series modules to allow self-circulation. I made it possible to keep it at .

一方、湿式ボールミル粉砕で得た平均粒径1.1μの2
5%アルミナ微粉末スラリー10に+rを上記タンクに
装入し、ポンプにて6001/Hrの流量で系内圧力2
kg/c++1で60分限外濾過操作を実施した。得ら
れたアルミナ微粉末スラリーの濃度は50%であった。
On the other hand, 2 with an average particle size of 1.1μ obtained by wet ball milling
5% alumina fine powder slurry 10 +r was charged into the above tank, and the system pressure was increased to 2 with a flow rate of 6001/Hr using a pump.
A 60 minute ultrafiltration operation was carried out at kg/c++1. The concentration of the obtained alumina fine powder slurry was 50%.

又この間操作は極めて順調であった。During this period, operations were extremely smooth.

(発明の効果) 本発明は市販の限外濾過膜を用いて平均粒径10μ以下
、特にミクロンからサブミクロンオーダーの無機酸化物
微粉体スラリーの新規な濃縮方法を提供するものであっ
て以下のような効果を奏する。
(Effects of the Invention) The present invention provides a novel method for concentrating inorganic oxide fine powder slurry with an average particle size of 10 μm or less, particularly on the order of microns to submicrons, using a commercially available ultrafiltration membrane. It has a similar effect.

(1)通常の減圧または、加圧濾過法では目詰まりをお
こして濃縮不可能であったサブミクロンオーダーのシリ
カ、あるいはアルミナの微粒子を含むスラリーの濃縮が
容易に行なえる。
(1) Slurry containing submicron-order silica or alumina particles, which cannot be concentrated using normal reduced pressure or pressure filtration methods due to clogging, can be easily concentrated.

(2)  スラリーの濃縮により生じた水は、透過水と
して容易に系外に除去できる。
(2) Water generated by concentrating the slurry can be easily removed from the system as permeated water.

(3)限外濾過膜のモジュールを適宜設置し、処理方式
を選択することにより容易に工業的に実施できる。
(3) It can be easily implemented industrially by appropriately installing ultrafiltration membrane modules and selecting a treatment method.

Claims (4)

【特許請求の範囲】[Claims] (1)無機酸化物微粉体のスラリーを濃縮するに際し、
限外濾過法を用いることを特徴とするスラリーの濃縮方
法。
(1) When concentrating the slurry of inorganic oxide fine powder,
A method for concentrating a slurry, characterized by using an ultrafiltration method.
(2)無機酸化物がシリカである特許請求の範囲(1)
記載の方法。
(2) Claim (1) in which the inorganic oxide is silica
Method described.
(3)無機酸化物がアルミナである特許請求の範囲(1
)記載の方法。
(3) Claims (1) in which the inorganic oxide is alumina
) method described.
(4)無機酸化物微粉体の平均粒径が10μ以下である
特許請求の範囲(1)の記載の方法。
(4) The method according to claim (1), wherein the inorganic oxide fine powder has an average particle size of 10 μm or less.
JP61087471A 1986-04-15 1986-04-15 Method for concentrating slurry Pending JPS62246808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61087471A JPS62246808A (en) 1986-04-15 1986-04-15 Method for concentrating slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61087471A JPS62246808A (en) 1986-04-15 1986-04-15 Method for concentrating slurry

Publications (1)

Publication Number Publication Date
JPS62246808A true JPS62246808A (en) 1987-10-28

Family

ID=13915822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61087471A Pending JPS62246808A (en) 1986-04-15 1986-04-15 Method for concentrating slurry

Country Status (1)

Country Link
JP (1) JPS62246808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751204A (en) * 2018-05-14 2018-11-06 江苏联瑞新材料股份有限公司 A kind of preparation method of submicron silicon dioxide dispersion liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751204A (en) * 2018-05-14 2018-11-06 江苏联瑞新材料股份有限公司 A kind of preparation method of submicron silicon dioxide dispersion liquid

Similar Documents

Publication Publication Date Title
US6722958B2 (en) Apparatus and process for recovering abrasive
US5545338A (en) Method for filtering mineral slurries
US5227349A (en) Process for producing a kaolin clay product
US20150210890A1 (en) Polishing-Material Reclamation Method
JPS62246808A (en) Method for concentrating slurry
EP2799185B1 (en) Method for separating polishing material and regenerated polishing material
KR100798717B1 (en) Method of adding activated carbon in water purification and method of water purification
JP2001341074A (en) Regenerative processor for inorganic abrasive waste liquid
JP2001009723A (en) Abrasive recovering device
JP2000288935A (en) Method and device for recovering non-colloidal abrasive material
EP0532633B1 (en) Method for producing high solids slurries of clay water products
JPWO2013051700A1 (en) Abrasive recycling method from spent cerium oxide glass abrasive containing flocculant
CA2879552C (en) Purification process for partly-hydrolyzed cellulose
JP5891800B2 (en) Glass polishing method
JPH11300115A (en) Slurry separation method and device therefor
KR0128123B1 (en) Refining method of wasting acid
JP4294396B2 (en) Recycling method for cerium-based abrasive
JP2001198826A (en) Recovery apparatus for abrasive
JPH02147633A (en) Purification of polymer particle
EP0493406B1 (en) Process for producing a kaolin clay product
KR102542898B1 (en) Puritying method of Boron Nitride Nanotube using ceramic particle and shear stress
JPS61136403A (en) Method for recovering filtering capacity of ultrafiltration apparatus
JPS61136503A (en) Concentration of thermoplastic resin latex
JPH10218935A (en) Production of fine polymer particle
PL227545B1 (en) Method for recovery of high-purity polyglycols from the polyglycol-silicon suspension by means of the water solution of gelatine