JPS62244406A - Membrane separating method - Google Patents

Membrane separating method

Info

Publication number
JPS62244406A
JPS62244406A JP8713486A JP8713486A JPS62244406A JP S62244406 A JPS62244406 A JP S62244406A JP 8713486 A JP8713486 A JP 8713486A JP 8713486 A JP8713486 A JP 8713486A JP S62244406 A JPS62244406 A JP S62244406A
Authority
JP
Japan
Prior art keywords
membrane
particles
liquid
large particles
acetone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8713486A
Other languages
Japanese (ja)
Other versions
JPH0454484B2 (en
Inventor
Takaharu Aketo
明渡 隆治
Seiichi Manabe
征一 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8713486A priority Critical patent/JPS62244406A/en
Publication of JPS62244406A publication Critical patent/JPS62244406A/en
Publication of JPH0454484B2 publication Critical patent/JPH0454484B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To enable selective concentration of specific component and its easy separation by using a component to be separated and a compound forming a complex reversibly to concentrate the component inside large particles and separating the large particles with high-molecular porous membrane while being conveyed under static electric field. CONSTITUTION:For example, to separate acetone, trioctyl phosphate containing acetylene diol compound such as 1,1,6,6-tetraphenyl, 2,4-hexadiyne, 1,6-diol and the like and sodium lauryl sulfate are added to acetone water solution, and ultrasonic vibration is given to form particles of 0.1-10mum diameter. A potential difference is given between the surface of polytetrafluoroethylene porous membrane or the like and a liquid mixture, and by utilizing surface charge of particles, particles conveyed to the membrane surface and filtered with the membrane to separate particles. Only the phase of trioctyl phosphate permeates the membrane and acetone is concentrated in permeating liquid.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液体混合物から特定成分の物質の膜−分離方
法に関する。史に詳しくは、液体混合物中し、静電場下
で該大粒子を輸送しつつ、高分子多孔膜で分離する方θ
iに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for membrane separation of specific component substances from a liquid mixture. In detail, there is a method in which large particles are transported in a liquid mixture under an electrostatic field and separated using a porous polymer membrane.
It is related to i.

従来の技術 均一な液体混合物から特定成分の物質のみを分離する技
術が従来から種々検討され、現在最も広く実用化されて
いる技術の7つは蒸留法である。
BACKGROUND OF THE INVENTION Various techniques have been studied in the past for separating only specific component substances from a homogeneous liquid mixture, and the seven most widely used techniques at present are distillation methods.

しかしながら、近沸点混合物や共沸混合物では同濃度に
分離するために数回の蒸留を繰り返したり、共沸蒸留を
行なう必要があり、多量のエネルギーを要する。また、
沸点付近の同温で分解しやすい成分を分離するには減圧
蒸留や水蒸気蒸留が利用されるが、この場合には常圧蒸
留以上にエネルギーが必要である。従って、蒸留法に代
わる液体混合物の分離技術の開発がまたれ、現在におい
ては膜分離法が注目されている。
However, near-boiling point mixtures and azeotropic mixtures require repeated distillation several times or azeotropic distillation to separate them into the same concentration, which requires a large amount of energy. Also,
Vacuum distillation or steam distillation is used to separate components that are easily decomposed at the same temperature near the boiling point, but this requires more energy than normal pressure distillation. Therefore, there is a need to develop a technology for separating liquid mixtures to replace the distillation method, and membrane separation methods are currently attracting attention.

発明が解決しようとする問題点 しかし、現状の膜分離技術では、分離性ウー晶ければ透
過性が低いか1.もしくは透過性が高ければ分離性が低
いというように、分離性と透過性の両り選択性の悪いの
を補う必要があり、前者については膜の強度が不十分で
ある等の問題、或いは後者の方法では装置が複雑になる
等の問題があった。
Problems to be Solved by the Invention However, with the current membrane separation technology, if the separable woo crystals are used, the permeability is low.1. Alternatively, if the permeability is high, the separation is low, so it is necessary to compensate for the poor selectivity of both separation and permeability, and the former may be due to problems such as insufficient membrane strength, or the latter. This method had problems such as making the device complicated.

本発明者らは、かかる状況下に、分離性および透過性の
両者を同時に大きくする物質の膜分離技術を実現すべく
、物質の分離性と畠分子膜の平均孔径との関連性を検討
し、本技術に到達した。すなわち、液体中における分子
の拡散速度が固体中におけるそれの70〜/θ3倍以上
であることおよび高分子多孔膜の液体の透過速度が大き
いことに着眼して鋭意検削した結果、」二記目的を充分
に達成し得る本発明に到達したものである。
Under such circumstances, the present inventors investigated the relationship between the separation performance of substances and the average pore diameter of Hatake molecular membranes in order to realize a membrane separation technology for substances that increases both separation performance and permeability at the same time. , we have achieved this technology. In other words, as a result of careful investigation, we focused on the fact that the diffusion rate of molecules in liquids is 70~/θ3 times or more that in solids, and that the permeation rate of liquids through porous polymer membranes is high. The present invention has been achieved which can fully achieve the object.

問題を解決するための手段 本発明は、液体混合物の分離において、分離しようとす
る目的成分と可逆的に錯体な形成する化合物(以下ギヤ
リヤーと略す)を含む液体を用いて目的成分を大粒子−
内部に濃縮し、静′屯場下で該大粒子を同分子多孔膜面
へ輸送17つつ、該入棺−丘を訓分子多孔膜で分離する
ことを特徴とする膜分離方法である3゜ まず、本発明における液体混合物とは、分離操i作条件
下で均一な一相の液体状態にある。2成分以1′、′、
Means for Solving the Problems In the present invention, in separating a liquid mixture, the target component is separated into large particles by using a liquid containing a compound that forms a reversible complex with the target component to be separated (hereinafter abbreviated as gearier).
This is a membrane separation method characterized by concentrating the large particles inside and transporting the large particles to the surface of the porous membrane under static conditions, while separating the particles using the porous membrane. First, the liquid mixture in the present invention is in a uniform one-phase liquid state under separation operation conditions. 2 components or more 1′, ′,
.

体を含む混合液または近沸点混合液の分離に不発−明は
特に有用である。このような液体混合物の例・・どして
は、メタノール、エタノール、n−プロパツール、イン
プロパツール、1−ブタノール等のアルコールの水溶液
、アセトン、メチルエチルケトン、テトラヒドロフラン
、ジオキサン、ピリジン、酢酸等の水溶液およびメチル
シクロ−キサン/トルエン、ンク[γヘギサン/トルエ
ン’4 (7) 混合液を挙げることができる。更に、
液体中に溶存する気体の分離に本発明を適用することも
できる。
The invention is particularly useful for the separation of liquid mixtures or near-boiling liquid mixtures containing bodies. Examples of such liquid mixtures include aqueous solutions of alcohols such as methanol, ethanol, n-propertool, impropertool, 1-butanol, aqueous solutions of acetone, methyl ethyl ketone, tetrahydrofuran, dioxane, pyridine, acetic acid, etc. and methyl cyclo-xane/toluene, nuc [γhegisan/toluene'4 (7) mixed solution. Furthermore,
The present invention can also be applied to the separation of gases dissolved in liquids.

このような液体混合物から、分離しようとする1」的成
分を大粒子内部に濃縮し、かかる大粒子の表面荷電を利
用し、静電場下で粒子輸送を生じさせ該大粒子を高分子
多孔膜面へ輸送しつつ、高分子多孔膜で粒子を分離する
。大粒子の表面荷電は粒子液体と液体混合物との誘電率
差あるいは界面付近のイオン濃度の局在化等によって発
生するが、積極的に荷電する目的で極性分子を少量添加
してもよい。この時の大粒子の平均直径は0.18m〜
70μmの範囲にあることが好ましい。粒子径が0.7
11m未満であると、粒子のブラウン運動によ動量が小
さくなり分離性能が低下する。
From such a liquid mixture, the component to be separated is concentrated inside large particles, and the surface charge of the large particles is used to cause particle transport under an electrostatic field, and the large particles are transferred to a porous polymer membrane. While transporting the particles to the surface, the particles are separated using a porous polymer membrane. Surface charging of large particles occurs due to the difference in dielectric constant between the particle liquid and the liquid mixture or localization of ion concentration near the interface, but a small amount of polar molecules may be added for the purpose of positively charging the particles. The average diameter of large particles at this time is 0.18 m ~
It is preferably in the range of 70 μm. Particle size is 0.7
If it is less than 11 m, the amount of movement due to Brownian motion of the particles will be small and the separation performance will be degraded.

:次に、液体混合物から分離しようとする目的成分を大
粒子内部に濃縮する際、キャリヤーを含む液体を用いる
。ここで、キャリヤーとは、液体混合物中の目的成分以
外の物質には不活性であり、目的成分のみと選択的に錯
体を形成し、且つ、この錯形成反応が可逆的に生じるよ
うな性質の物質を称す。キャリヤーと目的成分とで形成
された錯体から目的成分を回収すればキャリヤーが残存
し、しかもキャリヤーとしてそのまま]4ト利用できる
:Next, when concentrating the target component to be separated from the liquid mixture into large particles, a liquid containing a carrier is used. Here, the carrier is a substance that is inert to substances other than the target component in the liquid mixture, selectively forms a complex only with the target component, and has such properties that this complex formation reaction occurs reversibly. Refers to a substance. When the target component is recovered from the complex formed by the carrier and the target component, the carrier remains and can be used as it is as a carrier.

この様な性質を示すギヤリヤーとしては、例えば液体混
合物がアセi・ン、メチルエチルケトンの様なグトン水
溶沙の場合には、汽/、乙、乙−テドラフェニル−認、
グーへキサジイン−/、乙−ジオールまたは/、/、グ
、グーテトラフェニル−コープチン−7゜グージオール
の如きアセチレンジオール化合物を、液体混合物がメタ
ノール、エタノール、インプロパツール、t−ブタノー
ルのようなアルコール水溶液の場合には、9−フルオレ
ンへ−オール、デー(/−プロピニル)の如きフルオレ
ツール化合物等を利用することができる。また、キャリ
ヤーを含む液体とは、キャリヤーをθ、0θ1モル/l
この様なキャリヤーを含む液体を用いた本発明の膜分離
方法によると、熱力学的平衡条件下で達成−乙 − −;これは、ギヤリヤーが粒子界面に局在し、目的成厘
1 一分の粒子内部への収り込み速度が増大し、熱力学的平
衡に到達する以前に粒子が高分子多孔膜で分離されるた
めと考えられる。キャリヤーを含む液体中のキャリヤー
濃度がθ、007モル/を未満の場合は、」−記の効果
は小さく且つ目的成分の粒子への収り込み徴が少なく分
離効率が低下する。従ってキャリヤー濃度はθ、θ01
モル/を以上が好ましい。また、キャリヤーを含む液体
が分離しようとする液体混合物と相互に溶解しないため
には、例えば、液体混合物が水溶液の場合には、キャリ
ヤーを含む液体の30℃、/気圧における水への溶解度
がo、/(y/iθθ1)以下であることが好ましい。
Gears exhibiting such properties include, for example, when the liquid mixture is an aqueous solution of acetone, methyl ethyl ketone, etc.,
An acetylene diol compound such as goo-hexadiin-/, ot-diol or /, /, goo-tetraphenyl-coptine-7゜goo diol is added to a liquid mixture containing an alcohol such as methanol, ethanol, impropatol, t-butanol. In the case of an aqueous solution, fluoreteur compounds such as 9-fluorenol and de(/-propynyl) can be used. In addition, a liquid containing a carrier means that the carrier is θ, 0θ1 mol/l.
According to the membrane separation method of the present invention using a liquid containing such a carrier, this is achieved under thermodynamic equilibrium conditions. This is thought to be due to the fact that the rate of absorption of the particles into the interior of the particles increases, and the particles are separated by the porous polymer membrane before thermodynamic equilibrium is reached. When the carrier concentration in the carrier-containing liquid is less than θ, 007 mol/, the effect described above is small and there is little tendency for the target component to be trapped in the particles, resulting in a decrease in separation efficiency. Therefore, the carrier concentration is θ, θ01
It is preferable that the amount is mol/molar or more. In addition, in order to prevent the liquid containing the carrier from dissolving in the liquid mixture to be separated, for example, if the liquid mixture is an aqueous solution, the solubility of the liquid containing the carrier in water at 30° C./atmospheric pressure is o. , /(y/iθθ1) or less.

水への溶解度がθ、/を越えると、キャリヤーを含む液
体と液体混合物である水溶液とが一部分相!う]に溶解
し、粒子を形成できなくなり、粒子を高分子多孔膜で分
離する時の粒子の回収率が低下、、する。更に、キャリ
ヤーを含む液体を添加した液、1混合物を攪拌すること
により、分離目的成分を、′漸縮する大粒子を形成する
ことができる。攪拌法しり、 ることにより1、Lり安定な大粒子を形成することが!
きる。界面活性剤の添加祉、攪拌時間の制4+uにより
大粒子の径を設定することができ、θ、07μm〜/θ
μm径の大粒子を形成できる。
When the solubility in water exceeds θ, /, the liquid containing the carrier and the aqueous solution, which is a liquid mixture, partially form a phase! ], particles cannot be formed, and the recovery rate of particles decreases when particles are separated using a porous polymer membrane. Furthermore, by stirring a mixture containing a carrier-containing liquid, the component to be separated can be formed into large particles that gradually contract. By using the stirring method, it is possible to form extremely stable large particles!
Wear. The diameter of large particles can be set by adding a surfactant and controlling the stirring time, θ, 07 μm ~/θ
Large particles with a diameter of μm can be formed.

このようにして形成された粒子内部に、粒子/液体混合
物(マトリックス)の界面における物質移動により、l
]的酸成分濃縮され、粒子の表面荷電を利用し、膜表面
と液体混合物との間に電位差を設けることにより、該粒
子を旨分子多孔膜面に輸送しつつ、股肉側の圧力差およ
び粒子/マトリックスとの界面張力差を利用して、高分
子多孔膜により粒子を分離する。
Inside the particles formed in this way, mass transfer at the particle/liquid mixture (matrix) interface causes l
] By using the surface charge of the particles to create a potential difference between the membrane surface and the liquid mixture, the particles are transported to the surface of the porous membrane, while the pressure difference on the groin side and Particles are separated by a porous polymer membrane using the interfacial tension difference between the particles and the matrix.

ここで、電位差は粒子の表面荷゛岨による゛市気力を生
じさせ、粒子を効率良く膜表面に輸送させるための駆動
力であり、粒子が正に帯屯する場合は粒子の透過する膜
がVNに、粒子が頁に帯屯する場合は粒子の透過する膜
が正になるように電位差な設ける。膜表面と液体混合物
との間に電位差を設けることにより、粒子の多孔膜透過
量を増大させることができる。粒子の表面電荷を大きく
するために、粒子形成の際にイオン性界面活性剤を用い
、、ることは有効である。中でも、粒子の表面荷電を□
、’:、Jらは、界面活性剤としてアニオン性界面活性
剤が旺ましい。この理由は定かでないが、粒子の移動、
謡嚇子と同一電荷を持つ副イオンと共に生じ、界面活性
剤がアニオン性の場合、副イオンは水酸イ′芽ン、カチ
オン性の場合は水素イオンであり、水素イオンと水酸イ
オンとの移動度の差が原因でカチオン性よりもアニオン
性の界面活性剤を用いる方が、粒子の輸送効率が良いと
考えられる。また、液体混合物が水溶液の場合、HL 
B価と以上のイオン性界面活性剤を用いて粒子を形成し
た場合、高分子多孔膜による粒子分離と同時に界面活性
剤の分離も実現できる。なお、界面活性剤のHL Bイ
市i (Hydrop)Lilic Lipophil
ic Ba1ance )はGr i f f i n
Here, the potential difference is a driving force that generates a force due to the surface load of the particles and efficiently transports the particles to the membrane surface.If the particles are positively bound, the membrane through which the particles permeate is A potential difference is provided in VN so that when particles are concentrated on the page, the membrane through which the particles pass becomes positive. By creating a potential difference between the membrane surface and the liquid mixture, the amount of particles passing through the porous membrane can be increased. In order to increase the surface charge of particles, it is effective to use an ionic surfactant during particle formation. Among them, the surface charge of particles is
, ':, J et al. prefer an anionic surfactant as the surfactant. The reason for this is unclear, but particle movement,
It is generated together with a secondary ion with the same charge as that of the song. When the surfactant is anionic, the secondary ion is hydroxyl, and when it is cationic, it is a hydrogen ion, and the interaction between hydrogen ion and hydroxyl ion. It is thought that particle transport efficiency is better when using an anionic surfactant than a cationic surfactant due to the difference in mobility. In addition, when the liquid mixture is an aqueous solution, HL
When particles are formed using an ionic surfactant with a valence of B or higher, separation of the surfactant can be achieved simultaneously with particle separation using a porous polymer membrane. In addition, surfactant HL Biichii (Hydrop) Lilic Lipophil
ic Balance) is Gr i f in
.

W、C,(J、8oc、Cosmetic Chemi
sts 、 / (/ 9’19 ) )により非イオ
ン性界面活性剤について提唱され、その後Davies
 (2nd Infer、 Congress of 
5urfaceActivity、 / (/967 
) )により、すべての界面活性剤について適111さ
れるようになった。本発明におけるHLB価は、Dav
iesの方法により決定するものである。
W, C, (J, 8oc, Cosmetic Chemi
sts, / (/9'19)) for nonionic surfactants, and later by Davies
(2nd Infer, Congress of
5urfaceActivity, / (/967
) ) now applies to all surfactants. The HLB value in the present invention is Dav
It is determined by the ies method.

HLB価l以−にのイオン性界面活性剤は安定なすこと
ができる。また、親水性A分子多孔膜でF;−、過する
と、大部分の界面活性剤を含んだマトリックス相(液体
混合物)のみが膜を透過する。111゜B価がざ未満の
イオン性界面活性剤を用いて形成した粒子も錘分子多孔
膜により分離することはできるが、界面活性剤と粒子相
との分離は必ずしも実現可能ではない。このようにして
輸送された粒子は、エマルジョン状に相分離したマトリ
ックス相との界面張力および股肉側の圧力差全利用して
、高分子多孔膜により粒子相とマトリックス相とに分離
することができる。
Ionic surfactants with an HLB value of 1 or higher can be made stable. Furthermore, when F;- is passed through a hydrophilic A molecule porous membrane, only the matrix phase (liquid mixture) containing most of the surfactant permeates through the membrane. Particles formed using ionic surfactants with a value less than 111°B can also be separated by a weighted molecule porous membrane, but separation of the surfactant and particle phase is not always possible. The particles transported in this way can be separated into a particle phase and a matrix phase by a porous polymer membrane, making full use of the interfacial tension with the matrix phase that has phase-separated into an emulsion and the pressure difference on the crotch side. can.

本発明における高分子多孔膜としては、好ましくは、平
均孔径が0.02μm以上で、重量法による空孔率がグ
θチ以上であり、ポリエチレン、ポリプロピレン、ポリ
フッ化ビニリデン、ポリテトラルオロエチレン、ポリス
ルホン、ポリ塩化ビニル、ポリビニルアルコール、ポリ
アミド、セルロース等の重合体または共重合体からなる
高分子多孔膜が適している。平均孔径が0.0.2μm
未満では膜の透過性が小さく、粒子径の50倍以上では
粒子相とマトリックス相とが充分分離されない。
Preferably, the porous polymer membrane in the present invention has an average pore diameter of 0.02 μm or more, a gravimetric porosity of 0.02 or more, and includes polyethylene, polypropylene, polyvinylidene fluoride, polytetrafluoroethylene, Porous polymer membranes made of polymers or copolymers such as polysulfone, polyvinyl chloride, polyvinyl alcohol, polyamide, and cellulose are suitable. Average pore size is 0.0.2μm
If it is less than 50 times the particle diameter, the permeability of the membrane will be low, and if it is 50 times or more the particle size, the particle phase and matrix phase will not be sufficiently separated.

また、高分子多孔膜の形態としては、平膜、チ子−ブ状
、中空糸状等の任意の形態のものを用い乞ことができる
。これら高分子多孔膜の膜厚は/θμm〜/ ran 
、好ましくは70〜2θθμmである。
Furthermore, the porous polymer membrane can be in any form such as a flat membrane, a tube shape, or a hollow fiber shape. The film thickness of these porous polymer membranes is /θμm~/ran
, preferably 70 to 2θθμm.

エマルジョン状に相分離した大粒子とマトリックスの液
体混合物系および用いる高分子多孔膜が親水性であるか
或いは疎水性であるかにより、大粒子が該膜を透過する
かまたはマトリックスが該膜を透過するかが決定される
。本発明では、いずれの場合も利用することができ、且
つ親水性および疎水性高分子多孔膜を併用することによ
り、大粒子の分離を迅速に行なうこともできる。粒子相
が水系液体であり、マトリックス相が非水系液体である
場合、あらかじめ水に濡れた親水性高分子多孔膜を用い
れば粒子相が膜を透過し、一方疎水性高分子多孔膜を用
いればマトリックス相が膜な透過する。また、あらかじ
め水に濡れた親水性膜および疎水性膜なイ)1用すれば
粒子相が親水性膜を、モして7トリツクス相が疎水性膜
を各々透過し、粒子分離が一層効率よく行なわれる。粒
子相が非・、゛小系液体であり、マトリックス相が水系
液体である:場合は、それぞれ、粒子相が疎水性膜を透
過し、? ヤトリックス相が親水性膜を透過する。ここで汀:う、
親水性高分子多孔膜とは、J、t℃、/気圧下において
、直径2団以下の水滴を膜表面に滴下した〜メ:接触角
が10度を越えるものを言う。このよう、1゛′1′j 7卦して高分子多孔膜により分離された大粒子相から目
的成分が回収されるが、この際の回収はもはやエネルギ
ー多消費とはならないので蒸留法を利用することができ
る。
Depending on whether the liquid mixture system of large particles phase-separated in an emulsion and a matrix and the porous polymer membrane used are hydrophilic or hydrophobic, the large particles may pass through the membrane or the matrix may pass through the membrane. It is decided whether to do so. The present invention can be used in either case, and by using a hydrophilic and hydrophobic porous polymer membrane in combination, large particles can be rapidly separated. When the particle phase is an aqueous liquid and the matrix phase is a non-aqueous liquid, if a hydrophilic porous polymer membrane pre-wetted with water is used, the particle phase will pass through the membrane, whereas if a hydrophobic polymer porous membrane is used, the particle phase will pass through the membrane. The matrix phase permeates through the membrane. In addition, by using a hydrophilic membrane and a hydrophobic membrane pre-wetted with water, the particle phase permeates through the hydrophilic membrane, and the 7-trix phase permeates through the hydrophobic membrane, making particle separation more efficient. It is done. If, respectively, the particle phase is a non-small liquid and the matrix phase is an aqueous liquid, then the particle phase permeates through the hydrophobic membrane, and? The Yatrix phase permeates the hydrophilic membrane. Here, Ting: Uh,
A hydrophilic polymer porous membrane is one in which the contact angle exceeds 10 degrees when water droplets having a diameter of two groups or less are dropped onto the membrane surface at J, t° C./atmospheric pressure. In this way, the target component is recovered from the large particle phase separated by the porous polymer membrane in 1゛'1'j 7 trigrams, but the recovery at this time no longer consumes a lot of energy, so a distillation method is used. can do.

本発明の液体混合物の分離方法によれば、蒸留法では多
大のエネルギーを消費するような液体混合物の分離を、
蒸留法で容易に分離できるような混合液の分離に変換す
ることができる。
According to the method for separating a liquid mixture of the present invention, separation of a liquid mixture, which requires a large amount of energy in a distillation method, can be performed.
It can be converted to separation of a mixed liquid that can be easily separated by distillation.

尚、本願発明で言及する大粒子径、高分子多孔膜の空孔
率および平均孔径の測定は次の方法によるものである。
Incidentally, the large particle diameter, porosity of the porous polymer membrane, and average pore diameter referred to in the present invention are measured by the following method.

(粒子径の測定方法) 光学弾性散乱法を用いた。すなわちブラウン運動を行な
う粒子を含む溶液に光を照射すると、粒子からの散乱光
周波数はドツプラー効果を示す。
(Method for measuring particle diameter) Optical elastic scattering method was used. That is, when a solution containing particles that undergo Brownian motion is irradiated with light, the frequency of light scattered from the particles exhibits the Doppler effect.

従って、この光散乱市場の時間的強度変化を解析するこ
とにより、粒子の拡散係数(D)が求められる(例えば
、I)、E、J(oppel、 J、Chem、Phy
s、 ! 7. uf/42會直径を表わす。
Therefore, by analyzing the temporal intensity changes in this light scattering market, the diffusion coefficient (D) of particles can be determined (for example, I), E, J (oppel, J, Chem, Phys.
S,! 7. uf/42 represents diameter.

」−(高分子多孔膜の平均孔径) 多孔膜/cfl当りの孔半径がr −r −1−drに
存在する孔の数をN(r)drと表示すると(N(r)
は孔径分布関数)、1次の平均孔半径〒iは(1)式で
与えられる。
” - (average pore diameter of porous polymer membrane) If the number of pores existing in the pore radius per porous membrane/cfl is r -r -1-dr is expressed as N(r)dr, then (N(r)
is the pore size distribution function), and the first-order average pore radius 〒i is given by equation (1).

高分子多孔膜の表面の電子顕微鏡写真を走査型′電子顕
微鏡を用いて撮影する。該写真から公知の方法で孔径分
布関数N (rlを算出し、これを(1)式に−//l
t− 代入する。すなわち、走査型電子顕微鏡写真を適当な大
きさく例えば、20 cm X 、、2θ/:rn)に
拡大して焼付けし、得られた写真上に等間隔にテストラ
イン(直線)を20本描く。各々のテストラインは多数
の孔を横切る。孔を横切った際の孔内に存在するテスト
ラインの長さを測定し、この頻度分布、関数を求める。
An electron micrograph of the surface of the porous polymer membrane is taken using a scanning electron microscope. Calculate the pore size distribution function N (rl) from the photograph using a known method, and apply this to equation (1) as −//l
t- Substitute. That is, a scanning electron micrograph is enlarged to an appropriate size, for example, 20 cm x , 2θ/:rn) and printed, and 20 test lines (straight lines) are drawn at equal intervals on the obtained photograph. Each test line traverses multiple holes. Measure the length of the test line that exists inside the hole when it crosses the hole, and find this frequency distribution and function.

この頻度分布関数を用いて、例え1、ばステレオロジ(
例えば、諏訪紀夫著パ定量形態? 均孔径は2了3(すなわち(1)式でt−3)である。
Using this frequency distribution function, for example 1, stereology (
For example, Norio Suwa's quantitative form? The uniform pore diameter is 2.3 (ie, t-3 in equation (1)).

(空孔率) 、多孔膜の見掛けの密度(ρa)の実測値から、空孔率
(P r )は次式で算出される。
(Porosity) From the measured value of the apparent density (ρa) of the porous membrane, the porosity (P r ) is calculated by the following formula.

Pr=(i−ρa/ρp>×ioo     +21こ
こで、ρpは多孔膜素材の密度、ρaは多孔膜の重1w
と空孔部を含めた体積Vの測定値よりρa = W /
 Vで算出される。なお、Prは百分率表ボである。
Pr=(i-ρa/ρp>×ioo+21 where ρp is the density of the porous membrane material, ρa is the weight of the porous membrane 1w
From the measured value of the volume V including the pores, ρa = W /
Calculated in V. In addition, Pr is a percentage table.

実施例 以下、実施例により本発明を更に詳細に説明す〜るが、
本発明は下記の実施例により何ら制限され“ るもので
はない。
Examples Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited in any way by the following examples.

、 実施例/〜3 、−/θ重量係アセトン水溶液100−に、キャリヤー
を含む液体として/、/緊、に一テトラフェニルー2.
グーへギサジインー/、乙−ジオールを0.θ1モル濃
度含むリン酸トリオクチル/θθ−及びラウリル硫酸す
)Jラム0./7を添加し、2 t5’ KI]Z超音
波振動の印加時間を変化させることにより、特定の粒子
径のリン酸トリオクチル相が粒子を形成し、アセトン水
溶液中に分散した乳化物を得た。
, Examples/~3, -/θ weight ratio Acetone aqueous solution 100- as a liquid containing a carrier/, /st, 1-tetraphenyl-2.
Goohegisadiin/, Otsu-diol 0. Trioctyl phosphate/θθ- and lauryl sulfate containing θ1 molar concentration) J Lamb 0. By adding /7 and changing the application time of 2t5' KI]Z ultrasonic vibration, trioctyl phosphate phase with a specific particle size formed particles, and an emulsion dispersed in an acetone aqueous solution was obtained. .

1:1 :lこ1の乳化物をポリテトラフルオロエチレン多孔膜
ハ゛;。
1:1:1 The emulsion was applied to a polytetrafluoroethylene porous membrane.

荻(住友電工■製フロjJボア、公称平均孔径10μm
)−−7・:1 1i−%t、圧力θ、θハパA゛嘔位内位勾配3 V/
、nn丁に沖過した。その結果をまとめて第1表にボす
Ogi (manufactured by Sumitomo Electric ■FlojJ bore, nominal average pore diameter 10μm
)--7・:1 1i-%t, pressure θ, θhapaA゛inward gradient 3 V/
, passed the nnnn block. The results are summarized in Table 1.

ポリテトラフルオロエチレン多孔膜でp過することによ
り、粒子状に分散していたリン酸トリオクチル相のみが
膜を透過し、透過液に連続相を形成した。また、実施例
/で得た膜透過液の組成を分析した結果リン酸トリオク
チルざ2係、アセ]・ンー汽6−ジオールのa度を0と
した以外は実施例/と同様に行った。この時の結果も第
1表に示す。第1表より、キャリヤーを用いることによ
り分離係数が増大することが判る。
By passing through a porous polytetrafluoroethylene membrane, only the trioctyl phosphate phase dispersed in particulate form permeated through the membrane, forming a continuous phase in the permeate. Further, as a result of analysis of the composition of the membrane permeate obtained in Example 2, the same procedure as in Example 2 was carried out except that the a degree of trioctyl phosphate was 0, and the a degree of ace]-6-diol was set to 0. The results at this time are also shown in Table 1. From Table 1, it can be seen that the separation factor increases by using a carrier.

比較例ノ 電位勾配をθとした以外は実施例2と同様に行った。こ
の時の結果も第1表に示す。第1表より′電位勾配を設
けることにより粒子の膜透過連関すなわちP液流速が顕
著に増大することが判る。
Comparative Example The same procedure as Example 2 was carried out except that the potential gradient was set to θ. The results at this time are also shown in Table 1. It can be seen from Table 1 that by providing a potential gradient, the membrane permeability of the particles, that is, the P liquid flow rate increases significantly.

実施例グ 実施例/に於て、キャリヤーを含む液体として/、/、
グ、グーテトラフェニルー/、3−ブチン−/、グージ
オールをθ、1モル濃度含むリン酸トリオクチルと、2
,6,10./41−テトラメチルペンタデカン混合液
(、!:/重量比)3−Omlを用い、電位勾配を♂v
/cmとした以外、全て同様に行った。この時の結果を
第1表に示す。得られた膜透過液の組成は、リン酸トリ
オクチルざ6係、アセトン9.3%、水グ、7%であっ
た。
In Examples /, as a liquid containing a carrier /, /,
trioctyl phosphate containing g, gutetraphenyl/, 3-butyne-/, gudiol at θ, 1 molar concentration;
,6,10. /41-Tetramethylpentadecane mixed solution (,!:/weight ratio) Using 3-Oml, the potential gradient was set to ♂v
All procedures were carried out in the same manner except that the temperature was set to /cm. The results at this time are shown in Table 1. The composition of the obtained membrane permeate was 6% trioctyl phosphate, 9.3% acetone, and 7% water.

比較例3 実施例/に準じて平均粒子径0.7タμ?ルの粒子゛々
1分散する乳化物を得た。この乳化物を平均粒子V/、
m下に沖過したが、p液は得られなかった。圧力を0.
Or 5に9Aplにすると涙液は得られたが、こ7″
− □1の11!5.液はリン酸トリオクチルが粒子状に分
散したままであった。
Comparative Example 3 Average particle diameter 0.7 μm according to Example/? An emulsion was obtained in which one particle of each molecule was dispersed. This emulsion has an average particle size V/,
The P liquid was not obtained. Pressure 0.
Or 5 and 9Apl produced lachrymal fluid, but this 7''
- □1 of 11!5. In the liquid, trioctyl phosphate remained dispersed in the form of particles.

第1表 −/ と − 発明の効果 このように、本発明によれば分離に多量のエネルギーを
必要とする液体混合物又は分離困難な液体混合物から特
定の成分を選択的に濃縮し容易に分離することができる
Table 1 - Effects of the Invention As described above, according to the present invention, specific components can be selectively concentrated and easily separated from a liquid mixture that requires a large amount of energy for separation or a liquid mixture that is difficult to separate. be able to.

Claims (1)

【特許請求の範囲】 1)液体混合物の分離において、目的成分と可逆的に錯
体を形成する化合物を含む液体を用いて目的成分を0.
1〜10μm径の大粒子内部に濃縮し、静電場下で該大
粒子を高分子多孔膜面へ輸送しつつ、該大粒子の平均直
径の50倍以下の平均孔径の高分子多孔膜で分離するこ
とを特徴とする膜分離方法 2)液体混合物がアセトン水溶液であり、アセトンと可
逆的に錯体を形成する化合物がアセチレンジオールであ
ることを特徴とする特許請求の範囲第1項記載の膜分離
方法 3)目的成分を濃縮する該大粒子を形成する際にイオン
性界面活性剤を用いることを特徴とする上記第1項また
は第2項に記載の膜分離方法
[Scope of Claims] 1) In separating a liquid mixture, the target component is separated by 0.0% using a liquid containing a compound that reversibly forms a complex with the target component.
It is concentrated inside large particles with a diameter of 1 to 10 μm, and while the large particles are transported to the surface of a porous polymer membrane under an electrostatic field, they are separated using a porous polymer membrane with an average pore size of 50 times or less than the average diameter of the large particles. 2) Membrane separation method according to claim 1, characterized in that the liquid mixture is an acetone aqueous solution, and the compound that reversibly forms a complex with acetone is acetylene diol. Method 3) The membrane separation method according to item 1 or 2 above, characterized in that an ionic surfactant is used when forming the large particles that concentrate the target component.
JP8713486A 1986-04-17 1986-04-17 Membrane separating method Granted JPS62244406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8713486A JPS62244406A (en) 1986-04-17 1986-04-17 Membrane separating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8713486A JPS62244406A (en) 1986-04-17 1986-04-17 Membrane separating method

Publications (2)

Publication Number Publication Date
JPS62244406A true JPS62244406A (en) 1987-10-24
JPH0454484B2 JPH0454484B2 (en) 1992-08-31

Family

ID=13906493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8713486A Granted JPS62244406A (en) 1986-04-17 1986-04-17 Membrane separating method

Country Status (1)

Country Link
JP (1) JPS62244406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248014A (en) * 1988-08-05 1990-02-16 Agency Of Ind Science & Technol Separation of gaseous mixture
JP2011152531A (en) * 2010-01-28 2011-08-11 Ngk Insulators Ltd Separation method of liquid mixture and liquid mixture separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248014A (en) * 1988-08-05 1990-02-16 Agency Of Ind Science & Technol Separation of gaseous mixture
JP2011152531A (en) * 2010-01-28 2011-08-11 Ngk Insulators Ltd Separation method of liquid mixture and liquid mixture separator

Also Published As

Publication number Publication date
JPH0454484B2 (en) 1992-08-31

Similar Documents

Publication Publication Date Title
Khayet et al. Design of novel direct contact membrane distillation membranes
Uragami Science and technology of separation membranes
Wang et al. Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin
Glater The early history of reverse osmosis membrane development
Zhou et al. Janus membrane with unparalleled forward osmosis performance
Tewari Nanocomposite membrane technology: fundamentals and applications
Eryildiz et al. Flux-enhanced reduced graphene oxide (rGO)/PVDF nanofibrous membrane distillation membranes for the removal of boron from geothermal water
EP0080684B1 (en) Membrane filtration using ultrafiltration membrane
Anderson et al. Factors influencing reverse osmosis rejection of organic solutes from aqueous solution
CN103785301A (en) Cellulose acetate forward osmosis film material and preparation method thereof
US5925254A (en) Process for separating sodium from aqueous effluents resulting from the reprocessing of spent nuclear fuel elements
US4717480A (en) Method for separation of liquid mixture
JP7011137B2 (en) Selective permeable membrane and its manufacturing method, water treatment method using the selective permeable membrane
JPS62244406A (en) Membrane separating method
Kujawa et al. Transport properties and fouling issues of membranes utilized for the concentration of dairy products by air-gap membrane distillation and microfiltration
JPH0245453A (en) Method for concentrating aqueous solution of amino acid
Yamagiwa et al. Membrane fouling in ultrafiltration of hydrophobic nonionic surfactant
JP7120523B2 (en) Method for producing water treatment separation membrane and water treatment separation membrane produced thereby
JP2005349268A (en) Substance separation and purification process utilizing diffusion through porous film
Spitzen Pervaporation: Membranes and models for the dehydration of ethanol
JPH05253455A (en) Cyclodextrine-polyvinyl alcohol composite membrane
JPS58192840A (en) Separation and concentration method of ethanol from aqueous solution thereof
JPS61274710A (en) Membrane separation of liquid mixture
JPS6151926B2 (en)
da Silva Biron et al. Overview Membranes Separations

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term