JPS61274710A - Membrane separation of liquid mixture - Google Patents

Membrane separation of liquid mixture

Info

Publication number
JPS61274710A
JPS61274710A JP11680185A JP11680185A JPS61274710A JP S61274710 A JPS61274710 A JP S61274710A JP 11680185 A JP11680185 A JP 11680185A JP 11680185 A JP11680185 A JP 11680185A JP S61274710 A JPS61274710 A JP S61274710A
Authority
JP
Japan
Prior art keywords
liquid
large particles
membrane
separated
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11680185A
Other languages
Japanese (ja)
Other versions
JPH038815B2 (en
Inventor
Takaharu Aketo
明渡 隆治
Seiichi Manabe
征一 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11680185A priority Critical patent/JPS61274710A/en
Priority to US06/842,838 priority patent/US4717480A/en
Priority to DE19863618121 priority patent/DE3618121A1/en
Publication of JPS61274710A publication Critical patent/JPS61274710A/en
Publication of JPH038815B2 publication Critical patent/JPH038815B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To simultaneously enhance separability and permeability, by growing an objective component to be separated into large particles which are, in turn, separated by a polymer porous membrane under an electrostatic field. CONSTITUTION:For example, a liquid-liquid phase separation agent such as potassium carbonate or a liquid-liquid extractant such as trioctylphosphate is added to a liquid mixture such as an aqueous alcohol solution of ethanol under stirring to form large particles with a particle size of 0.1-10mum containing a component to be separated at high concn. Said large particles are filtered under an electrostatic field by using a polytetrafluoroethylene porous membrane with an average pore size 50 times or less the particle size of said large particles and the large particle phase is separated from a matrix phase, which generated phase separation in an emulsion form, by utilizing the surface charge of the large particles. As the porous membrane, both hydrophilic and hydrophobic ones can be utilized and both of them may be used together.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液体混合物の分離方法に関する。更に詳しく
は、液体混合物中の分離しようとする目的成分を大粒子
化し、しかる後静電場下で該大粒子を高分子多孔膜で分
離する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for separating liquid mixtures. More specifically, it relates to a method in which a target component to be separated in a liquid mixture is made into large particles, and then the large particles are separated using a porous polymer membrane under an electrostatic field.

〔従来の技術〕[Conventional technology]

均一な液体混合物から特定成分の液体のみを分離する技
術が従来から種々検旧され、現在量も広く実用化されて
いる技術の1つは蒸留法である。
BACKGROUND ART Various techniques for separating only specific liquid components from a homogeneous liquid mixture have been studied in the past, and one of the techniques that is currently in widespread practical use is the distillation method.

しかしながら、近沸点混合物や共沸混合物では高濃度に
分離するために数回の蒸留を繰り返したり、共沸蒸留を
行なう必要があり、多量のエネルギーを要する。また、
沸点付近の高温で分解しやすい成分を分離するには減圧
蒸留や水蒸気蒸留が利用されるが、この場合には常圧蒸
留以上にエネルギーが必要である。従って、蒸留法に代
わる液体混合物の分離技術の開発がまたれ、現在におい
ては膜分離法が注目されている。
However, near-boiling point mixtures and azeotropic mixtures require repeated distillation several times or azeotropic distillation in order to separate them at high concentrations, which requires a large amount of energy. Also,
Vacuum distillation or steam distillation is used to separate components that are easily decomposed at high temperatures near the boiling point, but in this case, more energy is required than atmospheric distillation. Therefore, there is a need to develop a technology for separating liquid mixtures to replace the distillation method, and membrane separation methods are currently attracting attention.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、現状の膜分離技術では、分離性が高ければ透過
性が低いか、もしくは透過性が高ければ分離性が低いと
いうように、分離性と透過性の両者を共に大きくするよ
うな膜分離技術が得られていない。従って、実用に供す
るために膜厚を薄くして液の透過性を多くしたり、多段
の膜透過により選択性の悪いのを補う必要があり、前者
については膜の強度が不−1分である等の問題、或いは
後者の方法では装置が複雑になる等の問題かあった。
However, with the current membrane separation technology, if the separation is high, the permeability is low, or if the permeability is high, the separation is low. is not obtained. Therefore, in order to put it into practical use, it is necessary to make the membrane thinner to increase liquid permeability, or to compensate for poor selectivity by multi-stage membrane permeation. However, in the latter method, there were problems such as the complexity of the device.

本発明者らは、かかる状況下に、分離性および透過性の
両者を同時に大きくする液体混合物の膜分離技術を実現
すべく、物質の分離性と高分子膜の平均孔径との関連性
を検討し、本技術に到達した。すなわち、液体中におけ
る分子の拡散速度が個体中におけるそれのlO〜103
倍以l−であることおよび高分子多孔膜の液体の透過速
度が大きいことに着眼して鋭意検討した結果、ト記目的
を充分に達成し得る本発明に到達したものである。
Under such circumstances, the present inventors investigated the relationship between the separation performance of substances and the average pore diameter of polymer membranes in order to realize a membrane separation technology for liquid mixtures that increases both separation performance and permeability at the same time. However, this technology has been developed. That is, the diffusion rate of a molecule in a liquid is 1O~103 in a solid.
As a result of intensive study, paying attention to the fact that it is more than twice l- and that the liquid permeation rate of the porous polymer membrane is high, we have arrived at the present invention which can fully achieve the above objectives.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、液体混合物の分離において、分離しようとす
る目的成分を大粒子化し、しかる後静電場下で該大粒子
を高分子多孔膜で分離することを特徴とする液体混合物
の分離方法である。
The present invention is a method for separating a liquid mixture, which is characterized in that the target components to be separated are made into large particles, and then the large particles are separated using a porous polymer membrane under an electrostatic field. .

まず、本発明における液体混合物とは、分離操作条性下
で均一な一相の液体状態にある2成分以上の混合液をい
うが、蒸留法による分離においてエネルギーを多量に消
費する蒸発潜熱の大きい液体を含む混合液または近沸点
混合液の分離に本発明は特に有用である。このような液
体混合物の例としては、メタノール、エタノール、n−
プロパツール、イソプロパツール、t−ブタノール等→
のアルコールの水溶液、アセトン、メチルエチルケトン
、テトラヒドロフラン、ジオキサン、ピリジン、酢酸等
の水溶液およびメチルシクロヘキサン/トルエン、シク
ロヘキサン/トルエン等の混合液を挙げることができる
First, the liquid mixture in the present invention refers to a liquid mixture of two or more components that is in a uniform one-phase liquid state under separation operation conditions, but has a large latent heat of vaporization that consumes a large amount of energy in separation by distillation. The present invention is particularly useful for separating liquid-containing or near-boiling mixtures. Examples of such liquid mixtures include methanol, ethanol, n-
Propatool, isopropatool, t-butanol, etc. →
Examples include aqueous solutions of alcohols such as acetone, methyl ethyl ketone, tetrahydrofuran, dioxane, pyridine, acetic acid, and mixtures of methylcyclohexane/toluene, cyclohexane/toluene, and the like.

このような液体混合物から、分離しようとする目的成分
を大粒子化し、かかる大粒子の表面荷電を利用し、静電
場下で粒子輸送を生しさせ、高分子多孔膜で粒子相を分
離するが、この時の大粒子の平均径は0,1μm−10
μmの゛範囲にあることが好ましい。粒子径が0.1μ
m未満であると粒子のブラウン運動により粒子輸送が効
率良く実現されず、粒子径が10μmを超えると粒子の
表面積が小さくなり、粒子界面の物質移動量が小さくな
って分離性が低下する。
From such a liquid mixture, the target component to be separated is made into large particles, the surface charge of the large particles is used to cause particle transport under an electrostatic field, and the particle phase is separated using a porous polymer membrane. , the average diameter of the large particles at this time is 0.1 μm-10
Preferably, it is in the μm range. Particle size is 0.1μ
If the particle diameter is less than 10 m, particle transport will not be achieved efficiently due to the Brownian motion of the particles, and if the particle diameter exceeds 10 μm, the surface area of the particles will become small, the amount of mass transfer at the particle interface will become small, and the separation performance will deteriorate.

次に、本発明の液体混合物から分離する目的成分を大粒
子化する方法として、液体混合物に液一液相分離剤また
は液−液抽出剤を添加し、これらを攪拌する方法がある
。ここで、液一液相分離剤とは、分離操作条件下におい
て、液体混合物を目的成分の濃厚な相と希薄な相とに相
分離を生じさせるような物質を言う。このような液一液
相分離剤は、液体混合物系により適宜選択されるが、例
えば、エタノール/水系には炭酸カリウム、メチルシク
ロヘキサン/トルエン系には水、シクロヘキサン/トル
エン系にはエタノール、酢酸/水系にはトルエン等を利
用することができる。
Next, as a method of making large particles of the target component to be separated from the liquid mixture of the present invention, there is a method of adding a liquid-liquid phase separating agent or a liquid-liquid extracting agent to the liquid mixture and stirring them. Here, the liquid-liquid phase separation agent refers to a substance that causes phase separation of a liquid mixture into a concentrated phase and a dilute phase of the target component under separation operation conditions. Such a liquid-liquid phase separation agent is selected as appropriate depending on the liquid mixture system, but for example, potassium carbonate is used for ethanol/water systems, water is used for methylcyclohexane/toluene systems, ethanol is used for cyclohexane/toluene systems, and acetic acid/ Toluene or the like can be used for water systems.

また、液−液抽出剤とは、それ自体は液体混合物と相互
に溶解しないが、液体混合物中の目的成分を他の成分よ
り多く溶解するような性質を有する液体を言う。かかる
液−液抽出剤は、抽出物である分離目的成分と容易に分
離できるものが好ましく、例えば、液体混合物がアルコ
ール水溶液である場合には、30℃、1気圧における水
への溶解度が0.1以下であり、さらに化学構造中に極
性基を有する液体または極性基を有する液体と極性基の
ない液体との混合液体を利用できる。液−液抽出剤の3
0℃、1気圧における水への溶解度が0.1を超えると
、液−液抽出剤と液体混合物であるアルコール水溶液上
が相互に溶解し、粒子を形成することができなくなる。
Furthermore, the liquid-liquid extractant refers to a liquid that does not dissolve in the liquid mixture itself, but has the property of dissolving a target component in the liquid mixture in a larger amount than other components. The liquid-liquid extractant is preferably one that can be easily separated from the component to be separated, which is the extract. For example, when the liquid mixture is an aqueous alcohol solution, the solubility in water at 30°C and 1 atm is 0. 1 or less, and a liquid having a polar group in its chemical structure or a mixed liquid of a liquid having a polar group and a liquid having no polar group can be used. Liquid-liquid extractant 3
If the solubility in water at 0° C. and 1 atm exceeds 0.1, the liquid-liquid extractant and the alcohol aqueous solution that is the liquid mixture will dissolve in each other, making it impossible to form particles.

また、液−液抽出剤とアルコールとの分離を容易にする
ためには、液−液抽出剤の蒸気圧が200℃で30mm
Hg以下と低いことが好ましい。更に、液−液抽出剤は
、化学構造中に、−COO−1−〇−1>C=0.>N
H、シP、−0H8−N1(Co−からなる群から選ば
れた1種以上の極性基を含む純液体又は混合液体が好ま
しい。本発明の方法によるアルコール水溶液がらのアル
コールの分離に特に有用な液−液抽出剤の具体例として
は、リン酸トリオクチルまたはリン酸トリオクチルと2
.6,10.14−テトラメチルペンタデカン混合液等
を挙げることができる。
In addition, in order to facilitate the separation of the liquid-liquid extractant and alcohol, the vapor pressure of the liquid-liquid extractant must be 30 mm at 200°C.
It is preferably as low as Hg or less. Furthermore, the liquid-liquid extractant has a chemical structure in which -COO-1-〇-1>C=0. >N
A pure liquid or a mixed liquid containing one or more polar groups selected from the group consisting of H, P, -0H8-N1 (Co-) is preferred. It is particularly useful for separating alcohol from an aqueous alcohol solution by the method of the present invention. Specific examples of liquid-liquid extractants include trioctyl phosphate or trioctyl phosphate and
.. A mixed solution of 6,10,14-tetramethylpentadecane and the like can be mentioned.

更に、液一液相分離剤または液−液抽出剤を添加した液
体混合物を攪拌することにより、分離目的成分を濃厚に
含んだ粒子を形成することかできる。攪拌法としては、
機械的攪拌はもとより超音波振動等が利用できる。また
、界面活性剤を添加し、更に超音波振動印加により大粒
子化でき、界面活性剤添加量、超音波印加時間の制御に
より、大粒子の径を設定することができ、0.O1μm
〜lOメ1mの大粒子を形成できる。
Further, by stirring a liquid mixture to which a liquid-liquid phase separation agent or a liquid-liquid extractant is added, particles containing a concentrated component to be separated can be formed. As for the stirring method,
In addition to mechanical stirring, ultrasonic vibration and the like can be used. In addition, it is possible to make large particles by adding a surfactant and applying ultrasonic vibration, and the diameter of the large particles can be set by controlling the amount of surfactant added and the ultrasonic application time. O1μm
Large particles of ~10m can be formed.

このようにして分離目的成分を濃厚に含んだ大粒子は、
エマルジョン状に相分離したマトリックス液体との界面
張力を利用して、高分子多孔膜により粒子相と7トリソ
クス相に分離することができる。
In this way, large particles richly containing the components to be separated are produced.
Utilizing the interfacial tension with the matrix liquid phase-separated into an emulsion, it can be separated into a particle phase and a 7-trisox phase using a porous polymer membrane.

本発明における高分子多孔膜としては、好ましくは、平
均孔径が0.02ftm以上で、重量法による空孔率が
40%以上であり、ポリエチレン1.N gプロピレン
、ポリフッ化ビニリデン、ポリテトラフルオロエチレン
、ポリスルホン、ポリアミド、セルロース等の重合体ま
たは共重合体からなる多孔膜が遁している。エマルジョ
ン状に相分離した大粒子とマトリックスの成分系および
用いる高分子多孔膜が親水性であるか或いは疎水性であ
るかにより、大粒子が線膜を透過するかまたはマトリッ
クスが線膜を透過するかが決定される。本発明では、い
ずれの場合も利用することができ、且つ親水性および疎
水性高分子多孔膜を併用することにより、大粒子の分離
を迅速に行なうこともできる。高分子多孔膜による粒子
相の分離が効率的に行なわれるためには、線膜の平均孔
径は大粒子径の50倍以下でなくてはならない。50倍
を超える平均孔径の膜では粒子相とマトリックス相の分
離が充分でない。膜の孔径分布は鋭ければ鋭いほど好ま
しい。ここでいう親水性高分子多孔膜とは、25℃、常
圧下において、直径2龍以下の水滴を膜表面に滴下した
ときに、膜の水との接触角が0度であるものを意味し、
一方線水性高分子多孔膜とは、水との接触角が0度を超
えるものを言う。
The porous polymer membrane in the present invention preferably has an average pore diameter of 0.02 ftm or more, a gravimetric porosity of 40% or more, and polyethylene 1. Porous membranes made of polymers or copolymers such as Ng propylene, polyvinylidene fluoride, polytetrafluoroethylene, polysulfone, polyamide, and cellulose are used. Depending on the component system of the large particles phase-separated in an emulsion and the matrix and whether the porous polymer membrane used is hydrophilic or hydrophobic, either the large particles pass through the wire membrane or the matrix passes through the wire membrane. is determined. The present invention can be used in either case, and by using a hydrophilic and hydrophobic porous polymer membrane in combination, large particles can be rapidly separated. In order for the porous polymer membrane to efficiently separate the particle phases, the average pore diameter of the linear membrane must be 50 times or less than the large particle diameter. Membranes with an average pore diameter of more than 50 times do not provide sufficient separation between the particle phase and the matrix phase. The sharper the pore size distribution of the membrane, the better. The term "hydrophilic porous polymer membrane" as used herein means one in which the contact angle of the membrane with water is 0 degrees when a water droplet with a diameter of 2 dragons or less is dropped onto the membrane surface at 25°C and normal pressure. ,
On the other hand, a linear aqueous porous polymer membrane refers to one whose contact angle with water exceeds 0 degrees.

粒子相が水系液体であり、マトリックス相が非水系液体
である場合、あらかじめ水に濡れた親水性高分子多孔膜
を用いれば粒子相が膜を透過し、一方線水性高分子多孔
膜を用いればマトリ、タス相が膜を透過する。また、あ
らかしめ水に濡れた親水性膜および疎水性膜を併用すれ
ば粒子相が親水性膜を、そしてマトリックス相が疎水性
膜を各々透過し、粒子分離が一層効率よ(行なわれる。
When the particle phase is an aqueous liquid and the matrix phase is a non-aqueous liquid, if a hydrophilic porous polymer membrane pre-wetted with water is used, the particle phase will pass through the membrane, whereas if a linear aqueous porous membrane is used, the particle phase will pass through the membrane. Matri and Tass phases permeate through the membrane. Furthermore, if a hydrophilic membrane and a hydrophobic membrane wetted with pre-wet water are used in combination, the particle phase permeates the hydrophilic membrane and the matrix phase permeates the hydrophobic membrane, making particle separation more efficient.

粒子相が非水系液体であり、マトリックス相が水系液体
である場合は、それぞれ、粒子相が疎水性膜を透過し、
マトリックス相が親水性膜を透過する。
When the particle phase is a non-aqueous liquid and the matrix phase is an aqueous liquid, the particle phase permeates through the hydrophobic membrane, respectively.
The matrix phase permeates the hydrophilic membrane.

更に、膜面側の圧力差および/または大粒子の荷電を利
用し、静電場を与えて膜表面と液体混合物との間に電位
差を設けることにより、高分子多孔膜による大粒子の分
離を迅速にかつ継続的に行なうことができる。
Furthermore, by applying an electrostatic field and creating a potential difference between the membrane surface and the liquid mixture by utilizing the pressure difference on the membrane surface side and/or the charge of the large particles, large particles can be rapidly separated by the porous polymer membrane. It can be carried out quickly and continuously.

ここで、電位差は粒子の荷電による電気力を生じさせ、
粒子を効率よく膜表面に接触させるための駆動力であり
、粒子が正に帯電する場合は粒子の透過する膜が負に、
粒子が負に帯電する場合は粒子の透過する膜が正になる
ように電位差を設け(]O) る。膜表面と液体混合物との間に電位差を設けることに
より、粒子の多孔膜透過量を増大させることができる。
Here, the potential difference causes an electric force due to the charge on the particles,
This is the driving force that allows particles to efficiently contact the membrane surface. When particles are positively charged, the membrane through which they pass becomes negatively charged.
If the particles are negatively charged, a potential difference is provided (]O) so that the membrane through which the particles pass becomes positive. By creating a potential difference between the membrane surface and the liquid mixture, the amount of particles passing through the porous membrane can be increased.

このようにして分離された大粒予相から目的成分が回収
されるが、この際の回収はもはやエネルギー多消費とは
ならないので蒸留法を利用することができる。
The target component is recovered from the large-grain prephase separated in this way, but since the recovery at this time no longer consumes a lot of energy, a distillation method can be used.

本発明の液体混合物の分離方法によれば、蒸留法では多
大のエネルギーを消費するような液体混合物の分離を、
蒸留法で容易に分離できるような混合液の分離に変換す
ることができる。
According to the method for separating a liquid mixture of the present invention, separation of a liquid mixture, which requires a large amount of energy in a distillation method, can be performed.
It can be converted to separation of a mixed liquid that can be easily separated by distillation.

尚、この明細書で言及する空孔率、粒子径および高分子
多孔膜の平均孔径の測定は次の方法によったものである
The porosity, particle diameter, and average pore diameter of the porous polymer membrane referred to in this specification were measured by the following methods.

〈高分子多孔膜の平均孔径〉 多孔膜1 cJ当りの孔半径がr〜r十drに存在する
孔の数をN(rldrと表示すると(N tr+は孔径
分布関数)、i次の平均孔半径〒iは(1)式で与えら
れる。
<Average pore size of porous polymer membrane> If the number of pores with a pore radius of r to r10dr per cJ of porous membrane is expressed as N (rldr (N tr+ is the pore size distribution function), then the i-th order average pore is The radius 〒i is given by equation (1).

r i  −m=−−−−ill 高分子多孔膜の表面の電子顕微鏡写真を走査型電子顕微
鏡を用いて撮影する。該写真から公知の方法で孔径分布
関数N (r)を算出し、これを+11式に代入する。
r i -m=----ill An electron micrograph of the surface of the porous polymer membrane is taken using a scanning electron microscope. A pore size distribution function N (r) is calculated from the photograph using a known method, and this is substituted into formula +11.

すなわち、走査型電子顕微鏡写真を適当な大きさく例え
ば20cm X 20cm)に拡大して焼付けし、得ら
れた写真上に等間隔にテストライン(直線)を20本描
く。各々のテストラインは多数の孔を横切る。孔を横切
った際の孔内に存在するテストラインの長さを測定し、
この頻度分布関数を求める。この頻度分布関数を用いて
、例えばステレオロジ(例えば、諏訪紀夫著“定量形態
学°′岩波書店)の方法でN if)を定める。なお、
平均孔径は2〒3である。
That is, a scanning electron micrograph is enlarged to an appropriate size (for example, 20 cm x 20 cm) and printed, and 20 test lines (straight lines) are drawn at equal intervals on the obtained photograph. Each test line traverses multiple holes. Measure the length of the test line existing in the hole when crossing the hole,
Find this frequency distribution function. Using this frequency distribution function, N if) is determined, for example, by the method of stereology (for example, "Quantitative Morphology °' Iwanami Shoten," by Norio Suwa).
The average pore size is 2〒3.

〈空孔率〉 多孔膜の見掛けの密度(/pa)の実測値から、空孔率
(Pr)は次式で算出される。
<Porosity> From the measured value of the apparent density (/pa) of the porous membrane, the porosity (Pr) is calculated by the following formula.

Pr=(1−fa /f’p )  xloo    
 t2+ここで、ζpは多孔膜素材の密度、Paは多孔
膜の重量Wと空孔部を含めた体積■の測定値よりfa−
W/Vで算出される。なお、Prは百分率表示である。
Pr=(1-fa/f'p) xloo
t2+ Here, ζp is the density of the porous membrane material, and Pa is fa− from the measured value of the weight W of the porous membrane and the volume ■ including the pores.
Calculated as W/V. Note that Pr is expressed as a percentage.

く粒子径の測定方法〉 先車弾性散乱法を用いた。すなわちブラウン運動を行な
う粒子を含む溶液に光を照射すると、粒子からの散乱光
周波数はドツプラー効果を示す。
Measurement method of particle size> The lead-vehicle elastic scattering method was used. That is, when a solution containing particles that undergo Brownian motion is irradiated with light, the frequency of light scattered from the particles exhibits the Doppler effect.

従って、この光散乱電場の時間的強度変化を解析するこ
とにより、粒子の拡散係数(D)が求められる(例えば
、D、[!、Koppel、 J、Chem、Phys
、57.4814(1972))  。そして、この拡
散係数からアインシュタインーストークスの式:D=k
T/3πηrを用い、平均粒子径を算出した。
Therefore, by analyzing the temporal intensity change of this light scattering electric field, the diffusion coefficient (D) of the particle can be determined (for example, D, [!, Koppel, J, Chem, Phys.
, 57.4814 (1972)). From this diffusion coefficient, the Einstein-Stokes equation: D=k
The average particle diameter was calculated using T/3πηr.

ここで、k、T、η、rはそれぞれポルツマン定数、エ
マルジョンの絶対温度、粘性係数、粒子直径を表わす。
Here, k, T, η, and r represent the Portzmann constant, the absolute temperature of the emulsion, the viscosity coefficient, and the particle diameter, respectively.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明するが、本
発明は下記の実施例により何ら制限されるものではない
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the Examples below.

実施例1〜3 20容量%エタノール水溶液100mAにリン酸トリオ
クチル100m1、ラウリル硫酸ナトリウム0.1gを
添加し、21(kHz超音波振動の印加時間を変化させ
ることにより、特定の粒子径のリン酸トリオクチルが粒
子を形成し、エタノール水溶液中に分散した乳化物を得
た。この乳化物をポリテトラフルオロエチレン多孔膜(
住人電工側製 フロロボア、公称平均孔径10μm)で
、圧力0.01kg / cn!、電位勾配4.5 V
 / cm下に濾過した。その結果をまとめて表1に示
す。
Examples 1 to 3 100 ml of trioctyl phosphate and 0.1 g of sodium lauryl sulfate were added to 100 mA of a 20% by volume ethanol aqueous solution, and trioctyl phosphate of a specific particle size was prepared by changing the application time of 21 (kHz ultrasonic vibration). formed particles and obtained an emulsion dispersed in an aqueous ethanol solution.This emulsion was transferred to a polytetrafluoroethylene porous membrane (
Fluorobore manufactured by Judenenko, nominal average pore diameter 10μm), pressure 0.01kg/cn! , potential gradient 4.5 V
/cm below. The results are summarized in Table 1.

ポリテトラフルオロエチレン多孔膜で濾過することによ
り、粒子状に分散していたリン酸トリオクチル相のみが
膜を透過し、透過液は連続相を形成した。
By filtering through a polytetrafluoroethylene porous membrane, only the trioctyl phosphate phase dispersed in particulate form permeated the membrane, and the permeate formed a continuous phase.

また、実施例2で得た膜透過液の組成を分析しく14) た結果、リン酸トリオクチル90%、エタノール7.2
%、水2.8%であった。
In addition, we analyzed the composition of the membrane permeate obtained in Example 214) and found that trioctyl phosphate was 90% and ethanol was 7.2%.
%, water 2.8%.

比較例1 電位勾配を0とした以外は実施例2と同様に行なった。Comparative example 1 The same procedure as in Example 2 was carried out except that the potential gradient was set to 0.

この時の結果も表1に示す。表1より電位勾配を設ける
ことにより流速が顕著に増大することが判る。
The results at this time are also shown in Table 1. It can be seen from Table 1 that the flow rate increases significantly by providing a potential gradient.

表  1 実施例 1   0.3  9B、0    14.7実施例 2   2.5  97.1    14.2実施例 3   5.0  94.5    14.3比較例2 実施例1〜3に準じて平均粒子径0.1μmの粒子が分
散する乳化物を得た。この乳化物を平均孔径が粒子径の
100倍であるテフロン多孔膜により圧力0.01kg
/cJ下に濾過したが、濾液は得られなかった。圧力を
0.05kg/cI11以上にすると濾液は得られたが
、この濾液中にはリン酸トリオクチルが粒子状に分散し
たままであった。
Table 1 Example 1 0.3 9B, 0 14.7 Example 2 2.5 97.1 14.2 Example 3 5.0 94.5 14.3 Comparative Example 2 Average according to Examples 1 to 3 An emulsion in which particles having a particle size of 0.1 μm were dispersed was obtained. This emulsion was passed through a Teflon porous membrane with an average pore size 100 times the particle size under a pressure of 0.01 kg.
/cJ, but no filtrate was obtained. A filtrate was obtained when the pressure was increased to 0.05 kg/cI11 or higher, but trioctyl phosphate remained dispersed in the form of particles in this filtrate.

実施例4 実施例2に従って得た乳化物を、側面の一部に再生セル
ロース多孔膜(東洋濾紙■製、公称平均孔径3μm)を
、側面の他の一部分にポリテトラフルオロエチレン多孔
膜(平均孔径10μm)を設置した濾過器で、ポリテト
ラフルオロエチレン膜側が正になるような4.5 V 
/ cmの電位勾配において、0.01kg/cJの圧
力下で濾過した。この時の膜透過の流速は、テフロン膜
に対して97kg/r+(・hr、再生セルロース膜に
対して70kg/m・hrであった。また、マトリック
ス相から粒子相へのエタノールの水に対する分離係数は
14であった。
Example 4 The emulsion obtained according to Example 2 was coated with a regenerated cellulose porous membrane (manufactured by Toyo Roshi ■, nominal average pore size 3 μm) on one side, and a polytetrafluoroethylene porous membrane (average pore size 3 μm) on the other side. 4.5 V so that the polytetrafluoroethylene membrane side is positive using a filter equipped with
Filtration was carried out under a pressure of 0.01 kg/cJ at a potential gradient of /cm. The flow rate of membrane permeation at this time was 97 kg/r+(・hr for the Teflon membrane and 70 kg/m・hr for the regenerated cellulose membrane. Also, the flow rate of ethanol from the matrix phase to the particle phase was 97 kg/m・hr). The coefficient was 14.

このように、親水性高分子多孔膜と疎水性高分子多孔膜
とを併用することにより、乳化物の分散液滴と分散媒と
の分離速度を増大することができ実施例5 20容量%エタノール水溶液100rr+7!に、リン
酸トリオクチルと2.6,10.14−テトラメチルペ
ンタデカンとの混合液(2:1重量比)  100rr
lおよびラウリル硫酸ナトリウム0.2gを添加し、2
8kHzの超音波振動を2分間印加した。その結果、リ
ン酸トリオクチル/2,6.10.14−テトラメチル
ペンタデカン混合液が平均粒子径0.3μmの粒子を形
成し、エタノール水溶液中に分散した乳化物を得た。こ
の乳化物を圧力0.01kg/cJ、電位勾配4、5 
V / cm下で公称平均孔径2.0μmのポリテトラ
フルオロエチレン多孔膜で濾過したところ、粒子状に分
散していたリン酸トリオクチル/2.6.10゜14−
テトラメチルペンタデカン相のみが、流速48kg/イ
・hrで膜を透過し、透過液は連続相を形成した。
As described above, by using a hydrophilic porous polymer membrane and a hydrophobic polymer porous membrane in combination, the separation rate between the dispersed droplets of the emulsion and the dispersion medium can be increased.Example 5 20% ethanol by volume Aqueous solution 100rr+7! A mixed solution of trioctyl phosphate and 2.6,10.14-tetramethylpentadecane (2:1 weight ratio) 100rr
1 and 0.2 g of sodium lauryl sulfate,
Ultrasonic vibrations of 8 kHz were applied for 2 minutes. As a result, an emulsion was obtained in which the trioctyl phosphate/2,6.10.14-tetramethylpentadecane mixture formed particles with an average particle diameter of 0.3 μm and was dispersed in an aqueous ethanol solution. This emulsion was heated at a pressure of 0.01 kg/cJ and a potential gradient of 4, 5
When filtered through a polytetrafluoroethylene porous membrane with a nominal average pore size of 2.0 μm under V/cm, trioctyl phosphate/2.6.10°14- was dispersed in particulate form.
Only the tetramethylpentadecane phase permeated the membrane at a flow rate of 48 kg/i·hr, and the permeate formed a continuous phase.

透過液の組成を分析した結果、リン酸トリオクチル60
%、2,6.10.14−テトラメチルペンタデカン3
0%、エタノール8.5%、水1.5%であった。
As a result of analyzing the composition of the permeate, it was found that trioctyl phosphate 60
%, 2,6.10.14-tetramethylpentadecane 3
0%, ethanol 8.5%, and water 1.5%.

この透過液を105°Cで単蒸留したところ、85%エ
タノール水溶液が得られた。
When this permeate was subjected to simple distillation at 105°C, an 85% ethanol aqueous solution was obtained.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、分離に多量あエネルギーを
必要とする液体混合物または分離困難な液体混合物から
特定成分を選択的に濃縮し、容易に分離することができ
る。
As described above, according to the present invention, a specific component can be selectively concentrated and easily separated from a liquid mixture that requires a large amount of energy for separation or a liquid mixture that is difficult to separate.

Claims (1)

【特許請求の範囲】 1、液体混合物の分離において、目的成分を0.1〜1
0μm径に大粒子化し、しかる後静電場下で該大粒子を
該大粒子の直径の50倍以下の平均孔径の高分子多孔膜
で分離することを特徴とする液体混合物の分離方法。 2、大粒子化する際に、液一液相分離剤を用いることを
特徴とする特許請求の範囲第1項記載の分離方法。 3、大粒子化する際に、液−液抽出剤を用いることを特
徴とする特許請求の範囲第1項記載の分離方法。 4、高分子多孔膜として親水性高分子多孔膜および/ま
たは疎水性高分子多孔膜を用いることを特徴とする特許
請求の範囲第1〜3項のいずれかに記載の分離方法。 5、液体混合物がアルコール水溶液であり、大粒子化の
際に用いる液体が30℃、1気圧における水への溶解度
が0.1以下であり、該液体の化学構造中に極性基を有
する液体または極性基を有する液体と極性基のない液体
との混合液であることを特徴とする特許請求の範囲第1
項記載の分離方法。 6、液体混合物がアルコール水溶液であり、大粒子化の
際にリン酸トリオクチルまたはリン酸トリオクチル/2
,6,10,14−テトラメチルペンタデカン混合物が
用いられることを特徴とする特許請求の範囲第5項記載
の分離方法。
[Claims] 1. In separating a liquid mixture, the target component is 0.1 to 1
A method for separating a liquid mixture, which comprises converting the particles into large particles to a diameter of 0 μm, and then separating the large particles under an electrostatic field using a porous polymer membrane having an average pore size of 50 times or less the diameter of the large particles. 2. The separation method according to claim 1, characterized in that a liquid-liquid phase separating agent is used when forming large particles. 3. The separation method according to claim 1, characterized in that a liquid-liquid extractant is used when forming large particles. 4. The separation method according to any one of claims 1 to 3, characterized in that a hydrophilic porous polymer membrane and/or a hydrophobic porous polymer membrane is used as the porous polymer membrane. 5. The liquid mixture is an alcohol aqueous solution, and the liquid used for forming large particles has a solubility in water of 0.1 or less at 30°C and 1 atm, and has a polar group in its chemical structure, or Claim 1, characterized in that the liquid is a mixture of a liquid having a polar group and a liquid having no polar group.
Separation method described in section. 6. The liquid mixture is an alcohol aqueous solution, and when making large particles, trioctyl phosphate or trioctyl phosphate/2
, 6,10,14-tetramethylpentadecane mixture is used.
JP11680185A 1985-05-31 1985-05-31 Membrane separation of liquid mixture Granted JPS61274710A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11680185A JPS61274710A (en) 1985-05-31 1985-05-31 Membrane separation of liquid mixture
US06/842,838 US4717480A (en) 1985-05-31 1986-03-24 Method for separation of liquid mixture
DE19863618121 DE3618121A1 (en) 1985-05-31 1986-05-30 METHOD FOR SEPARATING LIQUID MIXTURES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11680185A JPS61274710A (en) 1985-05-31 1985-05-31 Membrane separation of liquid mixture

Publications (2)

Publication Number Publication Date
JPS61274710A true JPS61274710A (en) 1986-12-04
JPH038815B2 JPH038815B2 (en) 1991-02-07

Family

ID=14696001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11680185A Granted JPS61274710A (en) 1985-05-31 1985-05-31 Membrane separation of liquid mixture

Country Status (1)

Country Link
JP (1) JPS61274710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011787A (en) * 2008-07-03 2010-01-21 Takuma Co Ltd Ethanol-concentrating method and heat-utilizing system
CN110404337A (en) * 2018-04-26 2019-11-05 中国石油大学(北京) The application of montmorillonite/hydroxyethyl cellulose layering self-assembled material bionic surface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118974A (en) * 1974-03-04 1975-09-18
JPS58180442A (en) * 1982-04-19 1983-10-21 Asahi Chem Ind Co Ltd Separation and concentration method of ethanol from aqueous solution thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118974A (en) * 1974-03-04 1975-09-18
JPS58180442A (en) * 1982-04-19 1983-10-21 Asahi Chem Ind Co Ltd Separation and concentration method of ethanol from aqueous solution thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011787A (en) * 2008-07-03 2010-01-21 Takuma Co Ltd Ethanol-concentrating method and heat-utilizing system
CN110404337A (en) * 2018-04-26 2019-11-05 中国石油大学(北京) The application of montmorillonite/hydroxyethyl cellulose layering self-assembled material bionic surface
CN110404337B (en) * 2018-04-26 2020-05-05 中国石油大学(北京) Application of bionic surface of montmorillonite/hydroxyethyl cellulose layered self-assembly material

Also Published As

Publication number Publication date
JPH038815B2 (en) 1991-02-07

Similar Documents

Publication Publication Date Title
Lüdtke et al. Nitrate removal of drinking water by means of catalytically active membranes
Wang et al. Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin
CN103386258A (en) Preparation method of polyamide composite nanofiltration membrane containing modified carbon nano tube
CN104209021A (en) Preparation method of aromatic polyamide film modified by ZIF-8 type metal-organic framework material
He et al. Constructing A Janus membrane with extremely asymmetric wettability for water unidirectional permeation and switchable emulsion separation
US4142966A (en) Membrane separation of water from aqueous mixtures
US5151182A (en) Polyphenylene oxide-derived membranes for separation in organic solvents
Zhao et al. Hydrophilicity and crystallization behavior of PVDF/PMMA/TiO 2 (SiO 2) composites prepared by in situ polymerization
EP0080684B1 (en) Membrane filtration using ultrafiltration membrane
US4717480A (en) Method for separation of liquid mixture
JPS61274710A (en) Membrane separation of liquid mixture
US3454489A (en) Desalination process
Hou et al. Superhydrophobic membrane from double co-crystallization for high-performance separation of water-in-oil emulsion
WO2017150705A1 (en) Permselective membrane, method for producing same, and water treatment method using the permselective membrane
Lah et al. Polyethersulfone ultrafiltration membranes modified with MAA-EGDMA imprinted polymers for selective atrazine separation
JPH0466858B2 (en)
JPH0454484B2 (en)
USRE28002E (en) Desalination process
Gabrielli et al. Lipid—polypeptide interaction in monolayers and in black lipid membranes
CN114507137A (en) Method for preparing high-purity dimethyl carbonate and methanol through mixed matrix membrane
Yoshizawa et al. Novel procedure for monodispersed polymeric microspheres with high electrifying additive content by particle-shrinking method via SPG membrane emulsification
JPS61274708A (en) Separation of emulsified liquid membrane
JPS628418B2 (en)
Cakl et al. Flux and fouling in the crossflow ceramic membrane microfiltration of polymer colloids
JPS58192840A (en) Separation and concentration method of ethanol from aqueous solution thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term