JPS62243956A - Injecting method for liquefied gas - Google Patents

Injecting method for liquefied gas

Info

Publication number
JPS62243956A
JPS62243956A JP8740086A JP8740086A JPS62243956A JP S62243956 A JPS62243956 A JP S62243956A JP 8740086 A JP8740086 A JP 8740086A JP 8740086 A JP8740086 A JP 8740086A JP S62243956 A JPS62243956 A JP S62243956A
Authority
JP
Japan
Prior art keywords
fuel
engine
pressure
temperature
liquefied gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8740086A
Other languages
Japanese (ja)
Inventor
Naoya Iwata
岩田 尚哉
Masanori Matsuura
正典 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carburetor Co Ltd
Original Assignee
Nippon Carburetor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carburetor Co Ltd filed Critical Nippon Carburetor Co Ltd
Priority to JP8740086A priority Critical patent/JPS62243956A/en
Publication of JPS62243956A publication Critical patent/JPS62243956A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve engine starting by presuming fuel pressure or its temperature at the time of engine stop, and the quantity of fuel vapour generated in a fuel supply pipe with the lapse of time after the engine stop to correct starting fuel, and then controlling a fuel injection valve for injecting liquefied gas into a suction pipe according to the said corrected starting fuel. CONSTITUTION:Liquefied gas fuel supplied from a liquefied gas tank 4 is fed to a fuel injection valve 3 for injecting the said fuel into a suction pipe 2 through an isolation valve 6, a filter 7, and a pump 8, and excess fuel is returned into the tank 4 through a return pipe 9, a pressure regulator 10 to balance the said fuel pressure with pressure in the tank 4, and an isolation valve 11. Since fuel vapour is generated in the fuel supply pipe during the engine stop, fuel temperature 17 and its pressure 18 are detected during then, and the said generated fuel vapour is presumed on the above temperature 17 and pressure 18, and the time elapsed after the engine stop, and then a control device 13 computes starting fuel according to the number of engine revolutions, engine temperature 15, and negative suction pressure 16 in consideration of the said presumed value of the generated fuel vapour to control the fuel injection valve 3.

Description

【発明の詳細な説明】 本発明は液化ガスを吸気路へ噴射する方法に関するもの
であり、自動車その他の動力装置であるエンジンの燃料
供給に利用される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of injecting liquefied gas into an intake passage, and is used for supplying fuel to an engine of a motor vehicle or other power device.

自動車の火花点火式1/ジ/に液体燃料を噴射方式によ
り供給する糸は、燃料ポンプで加圧し圧力レギュレータ
で所定圧力に調整した燃料を噴射弁から吸気路へ噴射す
るよ5になっており1例えは第4図に示すように燃料り
/り21から燃料ポンプ22を経て噴射弁24に至る供
給管路23と圧力レギュレータ25す経て燃料夕/り2
1に至る戻し管路26とによって構成されている。
The line that supplies liquid fuel to the spark ignition type 1/ji/ of an automobile by an injection method is such that the fuel is pressurized by a fuel pump and adjusted to a predetermined pressure by a pressure regulator, and then injected from the injection valve into the intake passage. For example, as shown in FIG. 4, the fuel inlet 2 is supplied from the fuel inlet 21 through the fuel pump 22 to the injection valve 24, and through the pressure regulator 25.
1.

こりよ(知られた燃料供給系において2例えはエンジン
停止後にエンジン周辺が高温になると燃料が加熱され場
合によっては蒸発して気泡を発生し、噴射弁24からの
噴射量が減少してエンジンの再始動性を悪化する。その
対策として燃料温度が設定温度以上となったとき圧力レ
ギュレータ25に導入している吸気マニホルド圧を大気
圧に切換えて設定圧力を高(し噴射量を増加させること
により燃料密度の低下による流量不足を補正することや
(In known fuel supply systems, for example, when the area around the engine becomes high temperature after the engine has stopped, the fuel gets heated and may evaporate and generate bubbles, reducing the amount of injection from the injection valve 24 and causing engine damage.) As a countermeasure, when the fuel temperature exceeds the set temperature, the intake manifold pressure introduced into the pressure regulator 25 is switched to atmospheric pressure to increase the set pressure (and increase the injection amount). To compensate for insufficient flow due to a decrease in fuel density.

再始動に先立って燃料ポンプ22を一定時間運転し供給
管路23の高温燃料な燃料夕/り21の低温燃料と入れ
替えることが行なわれている。
Prior to restarting, the fuel pump 22 is operated for a certain period of time, and the high temperature fuel in the supply pipe 23 is replaced with the low temperature fuel in the tank 21.

しかしながら、前記のよ5な燃料供給系によってLPG
のような液化方スな噴射させる場合には、液体燃料に比
べて熱的影響を受けやすく容易に気化して大量の気泡を
発生し圧力が大幅に変動する。また、多気筒工/ジ/の
各気筒に対して噴射弁24を設けたものは工/ジ/に近
く熱的影gl受けやすいことによってその内部の燃料の
殆んどが気化することがあり、17かも噴射弁24は供
給管路23から分岐して行きどまりとなっているので、
圧力レギュレータ25の設定圧力を変更するだけでは再
始動時に適正な噴射量制御を行なうことができないばか
りか、再始動前に燃料ポンプ22を運転しても噴射弁2
4内の燃料を排出することは不可能である。
However, due to the above-mentioned fuel supply system, LPG
When injecting fuel in a liquefied manner, it is more susceptible to thermal effects than liquid fuel and easily vaporizes, producing large amounts of bubbles and causing significant pressure fluctuations. In addition, in a multi-cylinder engine/engine/engine with an injection valve 24 for each cylinder, most of the fuel inside it may vaporize because it is close to the engine/engine and is susceptible to thermal effects. , 17 Since the injection valve 24 branches from the supply pipe 23 and is a dead end,
Not only is it not possible to properly control the injection amount at the time of restart by simply changing the set pressure of the pressure regulator 25, but even if the fuel pump 22 is operated before the restart, the injection valve 2
It is impossible to drain the fuel within 4.

本発明は前述のような間曜点を解決し、熱料供給系内の
燃料が加熱されたときでもエンジン再始動時に適正流量
の燃料を正確に噴射することができる液化カス噴射方法
を提供することな目的とする。
The present invention solves the above-mentioned problem and provides a liquefied scum injection method that can accurately inject a proper flow rate of fuel when restarting an engine even when the fuel in the heat supply system is heated. For a different purpose.

本発明に係る液化ガス噴射方法は、エンジンが停止した
後にエンジン温度、W!、料供給系内の燃料温度、燃料
圧力の少なくともいずれかを検出してエンジン停止後の
時間経過に伴う前記検出値の変化から燃料供給系内の気
泡発生率を推定し、エンジン再始動時における燃料噴射
量の増量分を補正する補正係数を前記推定気泡発生率に
基いて算出1/ 1この補正係数によって計算された噴
射量の燃料をエンジン再始動時に噴射する構成とした。
In the liquefied gas injection method according to the present invention, after the engine has stopped, the engine temperature, W! , detect at least one of the fuel temperature and fuel pressure in the fuel supply system, estimate the bubble generation rate in the fuel supply system from changes in the detected values over time after the engine is stopped, and estimate the bubble generation rate in the fuel supply system when restarting the engine. A correction coefficient for correcting the increase in the fuel injection amount is calculated by 1/1 based on the estimated bubble generation rate, and the fuel in the injection amount calculated by this correction coefficient is injected when the engine is restarted.

実施例 本発明の実施例を図面に基いて説明すると。Example Examples of the present invention will be described based on the drawings.

第1図において工/ジ/1の各気筒に接続された吸気マ
ニホルドの各吸気路2に設置した噴射弁3に耐圧容器か
らなる燃料タンク4の液化ガス燃料な分配供給する供給
管路5に遮断弁6.フィルタ7、燃料ポンプ8が順に設
けられ、また供給管路5の終端から燃料タンク4に至る
戻し管路9に圧カレギュレ−fi 10゜遮断弁11が
順に設けられ、これらは燃料供給系12ft構成してい
る。
In Fig. 1, a supply pipe 5 for distributing and supplying liquefied gas fuel from a fuel tank 4 consisting of a pressure-resistant container to an injection valve 3 installed in each intake passage 2 of an intake manifold connected to each cylinder (E/G/1). Shutoff valve 6. A filter 7 and a fuel pump 8 are provided in this order, and a pressure regulator 10° cutoff valve 11 is provided in this order in a return pipe 9 from the terminal end of the supply pipe 5 to the fuel tank 4, and these constitute a 12ft fuel supply system. are doing.

遮断弁6,11は液化ガスな扱う系において安全のため
一般的に設けられているものと同じ目的で設置したもの
であり、実施例では電磁力で開閉されるようになってお
り、・噸科ボ/プ8.噴射弁3ととも1(電子式の制御
ユニット13から送られる駆動信号によって駆動される
。また、圧カレギ:LV−夕10は液体・熱料の場合の
吸気マニホルド圧とは¥%なり、燃料タンク4の気相部
分を調繁圧としており、噴射弁3の燃料圧力は燃料ポ/
ブ8の入口圧と出口圧との差圧力に応じて調整される。
The shutoff valves 6 and 11 are installed for the same purpose as those generally provided for safety in systems that handle liquefied gas, and in the embodiment, they are opened and closed by electromagnetic force. Kabo/Pu8. The injection valves 3 and 1 are driven by drive signals sent from the electronic control unit 13. Also, the pressure regulator: LV-10 is the intake manifold pressure in the case of liquid/heat charge, and the fuel The gas phase part of the tank 4 is controlled pressure, and the fuel pressure of the injection valve 3 is controlled by the fuel port/port.
It is adjusted according to the differential pressure between the inlet pressure and the outlet pressure of the tube 8.

制御ユニツH3には工/ジ/1に設けた回転速度セフ 
f 14 、 fFjA度センサ15.吸気路2に設け
た圧カセ/す16.供給管路5の噴射弁3の近(に設け
た温度セ/す17.圧カセ/す18その他エンジン1お
よびその周辺の状態す検知するセンナからの電気信号が
入力されるようになっている。
The control unit H3 has a rotation speed control installed in the machine/gear/1.
f 14 , fFjA degree sensor 15. Pressure cassette/slot provided in intake passage 2 16. An electric signal is input from a sensor installed near the injection valve 3 in the supply pipe 5 to detect the temperature sensor/sink 17, pressure sensor/s 18, and other conditions of the engine 1 and its surroundings. .

このような構成の燃料供給系12は、エンジン運転時に
おいて涜断弁6.l!が開弁しており。
The fuel supply system 12 having such a configuration is configured such that the blow valve 6. l! is open.

燃料ポンプ8で加圧され圧力レギュレータlOで所定圧
力に調整された液化ガスを噴射弁3から吸気路2へ噴射
するものであり、また。
Liquefied gas pressurized by the fuel pump 8 and adjusted to a predetermined pressure by the pressure regulator IO is injected from the injection valve 3 into the intake passage 2.

エンジンの回転速度、吸気マニホルド圧などの電気信号
に基き制御ユニツ)13で決定したデユーティ比で噴射
弁12を開閉し噴射量を制御することは液体@科の噴射
システムにおける突然比制御と同じである。
Controlling the injection amount by opening and closing the injection valve 12 at the duty ratio determined by the control unit 13 based on electrical signals such as engine rotational speed and intake manifold pressure is the same as sudden ratio control in a liquid injection system. be.

エンジンlが停止して遮断弁6.11が閉弁するととも
に燃料ポンプ8.噴射弁3が停止すると、燃料供給系1
2の二つの遮断弁6.11の間に液化ガスが封入される
。本発明では、エンジンが停止したとき一定時間経過す
るまで制御ユニット13を動作状nK維持させておくも
′のであり、二つの温度センナ15.17および圧力セ
ンナ18からの電気信号の入力と演算とを行なわせる。
When the engine 1 stops and the shutoff valve 6.11 closes, the fuel pump 8. When the injection valve 3 stops, the fuel supply system 1
Liquefied gas is sealed between the two shutoff valves 6.11. In the present invention, the control unit 13 is kept in an operating state nK until a certain period of time has passed after the engine is stopped, and the input and calculation of electrical signals from the two temperature sensors 15 and 17 and the pressure sensor 18 are performed. have them do it.

ここで、燃料供給系12に封入されている液化ガスの状
態を温度セ/す17.圧カセ/す18によって直接検出
し温度と気泡発生率とな知ることができる。また、エン
ジンlの温度と封入液化ガスの温度とは一次的な関係が
あると考えられ、エンジン1の停止後の温度変化から液
化ガスの温度と気泡発生率な間接的に検出できる。更に
、エンジンlの停止前の運転状態、停止後の工/ジン温
度変化、液化ガス圧力変化などを総合して液化ガスの温
度と気泡発生率を間接的に検出することもできる。
Here, the state of the liquefied gas sealed in the fuel supply system 12 is controlled by the temperature 17. The temperature and bubble generation rate can be determined directly by the pressure case/sustainer 18. Further, it is thought that there is a primary relationship between the temperature of the engine 1 and the temperature of the enclosed liquefied gas, and the temperature of the liquefied gas and the bubble generation rate can be indirectly detected from the temperature change after the engine 1 is stopped. Furthermore, it is also possible to indirectly detect the temperature of the liquefied gas and the bubble generation rate by integrating the operating state of the engine 1 before it is stopped, changes in engine/engine temperature after the engine is stopped, changes in liquefied gas pressure, etc.

尚、特に噴射弁3の内部の気泡発生率を知ることが重要
であるので、エンジンlの熱的影響を受けやすい場所に
噴射弁3が設置されていること?考慮してエンジン1の
停止後の温度変化を検出し演算処理のパラメータとする
のが好ましい。
In addition, it is especially important to know the bubble generation rate inside the injection valve 3, so make sure that the injection valve 3 is installed in a location that is easily affected by the heat of the engine. In consideration of this, it is preferable to detect the temperature change after the engine 1 is stopped and use it as a parameter for calculation processing.

第2図は二/ジ/lの停止後におけるエンジン温度と封
入液化ガスの気泡発生率との経時変化の一例な示してお
り、気泡発生ぶはエンジンlと噴射弁3との位置関係や
それらの間の断熱状態などによって若干の差異はあるが
エンジン温度に応じて成る時間後に最大となり、その後
はエンジン温度の低下に伴い減少し一定値となる。
Figure 2 shows an example of changes over time in the engine temperature and the bubble generation rate of the enclosed liquefied gas after the engine stops, and shows the positional relationship between the engine L and the injection valve 3 and their Although there are some differences depending on the adiabatic state during the period, it reaches a maximum after a certain time depending on the engine temperature, and then decreases to a constant value as the engine temperature decreases.

燃料の噴射量Rはエンジン始動時においてR=Ro(K
(RAt +RA2)十RT )(但し、に;補正係数
、Ro; 基本噴射量。
The fuel injection amount R is R=Ro(K
(RAt +RA2) 10 RT) (However, ni: correction coefficient, Ro: basic injection amount.

RAI:始動増量、RA2;始動後増量、RTyエンジ
ン温度補正) で与えられる。エンジン停止後の経過時間とそのときの
気泡発生率に対する補正係数には制御ユニット13に設
定してあり2時間比例によるかまたは時間に対するマツ
プにより決定される。第2図に示した気泡発生率に対応
する補正係数にの値は同じ第2図に示した辿りであり、
気泡発生率が一定値となったときの補正係数Koが制御
ユニット13に記憶される。
RAI: Start-up amount increase, RA2: After-start amount increase, RTy (engine temperature correction). The correction coefficients for the elapsed time after the engine is stopped and the bubble generation rate at that time are set in the control unit 13 and are determined based on the two-hour proportionality or based on a map with respect to time. The values of the correction coefficients corresponding to the bubble generation rate shown in Fig. 2 follow the same trace as shown in Fig. 2,
The correction coefficient Ko when the bubble generation rate becomes a constant value is stored in the control unit 13.

尚、補正係数にはエンジンlが停止したとき。In addition, the correction coefficient is when the engine l is stopped.

そのときのエンジン温度に対応した一定値に1に自動的
に設定され、その後は気泡発生率に対応するように変化
する。
It is automatically set to a constant value of 1 corresponding to the engine temperature at that time, and thereafter changes to correspond to the bubble generation rate.

制御ユニット13はこの補正係数Koが決定されるまで
を考慮した充分長い一定時間だけ動作状態を維持するが
、補正係数Koが決定されたときt源を遮断するようK
してもよい。
The control unit 13 maintains the operating state for a sufficiently long period of time until the correction coefficient Ko is determined, but the control unit 13 maintains the operating state for a sufficiently long period of time until the correction coefficient Ko is determined.
You may.

エンジンlが再始動するとき、前記のようにして決定し
た補正係数KoKよって計算された噴射IIHの燃料が
供給されるデエーテイ比をもって噴射弁3が開閉粗動さ
れるのである。
When the engine 1 is restarted, the injection valve 3 is coarsely opened and closed at a ratio at which the injection IIH fuel calculated by the correction coefficient KoK determined as described above is supplied.

尚、制御ユニット13が動作状nな維持しているときに
エンジンlが再始動したときは、そのとき算出されてい
る補正係数Kに基いて噴射量Rik設定することは言う
までもない。
It goes without saying that when the engine 1 is restarted while the control unit 13 maintains the operating state n, the injection amount Rik is set based on the correction coefficient K calculated at that time.

エンジン1が始動した後は供給管路5および噴射弁3の
気泡は吸気路2へ噴射され或いは燃料夕/り4へ戻され
て次第に減少する。
After the engine 1 is started, the air bubbles in the supply pipe 5 and the injection valve 3 are injected into the intake pipe 2 or returned to the fuel tank 4, and are gradually reduced.

このため、噴射弁3の一回の開閉動作当りの噴射量とそ
の成る噴射回数とによって定まる単位時間当りの噴射量
を次第に減少させるように補正係数Kを次第に小さな値
に設定し。
Therefore, the correction coefficient K is gradually set to a smaller value so as to gradually reduce the injection amount per unit time determined by the injection amount per opening/closing operation of the injection valve 3 and the number of injections.

噴射量Rを補正する。このエンジン始動後の補正係数に
と噴射量Rとの関係の一例は第3図に示されている。
Correct the injection amount R. An example of the relationship between the correction coefficient after engine startup and the injection amount R is shown in FIG.

本発明によると、エンジン停止後にエンジン温度、燃料
供給系内の燃料温度、認科圧力の少な(ともいずれかを
検出してその時間餞過に伴う変化から気泡発生率な推定
し、エンジン再始動時の燃料噴射量の増・量分の補正係
数を算出し噴射量を決定するものであるから。
According to the present invention, after the engine is stopped, the engine temperature, the fuel temperature in the fuel supply system, and the low pressure are detected, and the bubble generation rate is estimated from the change over time, and the engine is restarted. This is because the injection amount is determined by calculating the correction coefficient for the increase/amount of fuel injection amount at the time.

熱的影響を受けやす(容易に気泡を発生する液化ガスの
気泡発生率に応じて噴射量が補正され、適正流量の燃料
を正確に噴射してエンジン再始動を確実に行なうことが
できるものである。
The injection amount is corrected according to the bubble generation rate of liquefied gas that is easily affected by heat (which easily generates bubbles), and the fuel can be accurately injected at the appropriate flow rate to ensure engine restart. be.

【図面の簡単な説明】[Brief explanation of drawings]

第illは本発明の実施例の配置図、$2図はエンジン
停止後のエンジン温度、気泡発生率、補正係数の経時変
化を示す図、第3図はエンジン始動後の補正係数と噴射
量との関係な示す図、第4図は従来例の配置図である。 l・・・・・・エンジン、2・・・・・・吸気路、3・
・・・・・噴射弁、4・・・・・・燃料タンク、5・・
−・・・供給管路。 8・・・・・・燃料ボ/プ、9・・・・・・戻し管路、
12・・・・・・燃料供給系、13・・・・・・制御l
l Sニラ) 、 15.17・・・・・・温度セ/す
、18・・・・・・圧力センサ。 I
Figure 2 is a diagram showing the layout of the embodiment of the present invention, Figure 2 is a diagram showing changes over time in the engine temperature, bubble generation rate, and correction coefficient after the engine is stopped, and Figure 3 is a diagram showing the correction coefficient and injection amount after the engine is started. FIG. 4 is a layout diagram of a conventional example. l...Engine, 2...Intake path, 3.
...Injection valve, 4...Fuel tank, 5...
-... Supply pipeline. 8...Fuel pump, 9...Return pipe,
12... Fuel supply system, 13... Control l
15.17...Temperature sensor, 18...Pressure sensor. I

Claims (1)

【特許請求の範囲】 エンジンが停止した後にエンジン温度、燃 料供給系内の燃料温度、燃料圧力の少なくともいずれか
を検出してエンジン停止後の時間経過に伴う前記検出値
の変化から燃料供給系内の気泡発生率を推定し、エンジ
ン再始動時における燃料噴射量の増量分を補正する補正
係数を前記推定気泡発生率に基いて算出し、この補正係
数によって計算された噴射量の燃料をエンジン再始動時
に噴射することを特徴とする液化ガス噴射方法。
[Scope of Claims] After the engine has stopped, at least one of the engine temperature, the fuel temperature in the fuel supply system, and the fuel pressure is detected, and the change in the detected value with the passage of time after the engine has been stopped is detected. A correction coefficient for correcting the increase in fuel injection amount when restarting the engine is calculated based on the estimated bubble generation rate, and the fuel injection amount calculated by this correction coefficient is used when restarting the engine. A liquefied gas injection method characterized by injection at the time of startup.
JP8740086A 1986-04-16 1986-04-16 Injecting method for liquefied gas Pending JPS62243956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8740086A JPS62243956A (en) 1986-04-16 1986-04-16 Injecting method for liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8740086A JPS62243956A (en) 1986-04-16 1986-04-16 Injecting method for liquefied gas

Publications (1)

Publication Number Publication Date
JPS62243956A true JPS62243956A (en) 1987-10-24

Family

ID=13913821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8740086A Pending JPS62243956A (en) 1986-04-16 1986-04-16 Injecting method for liquefied gas

Country Status (1)

Country Link
JP (1) JPS62243956A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1009528C2 (en) 1998-06-30 2000-01-04 Vialle Beheer B V Liquefied gas fuel system.
DE19949902A1 (en) * 1999-10-16 2001-04-19 Bayerische Motoren Werke Ag Fuel supply pump for car has housing of motor surrounded by outer housing by formation of outer intermediate chamber and fuel quantity delivered by pump divides
KR100346465B1 (en) * 1999-09-18 2002-07-27 현대자동차주식회사 Evaporative emission control system for automobile
KR20020076525A (en) * 2001-03-29 2002-10-11 (주)모토닉 liquid fuel supply device for vehicles fuel
FR2831212A1 (en) * 2001-10-20 2003-04-25 Bosch Gmbh Robert Internal combustion engine operation, involves determining measurement value of pressure in fuel distributor after engine shut off, and correcting signal quantity with obtained saturation pressure values
KR20060024580A (en) * 2004-09-14 2006-03-17 르노삼성자동차 주식회사 Liquefied petroleum liquid injection system controled by temperature and pressure and method thereof
KR100683072B1 (en) * 2002-07-30 2007-02-15 아이상 고교 가부시키가이샤 Fuel supply apparatus for internal combustion engine
KR100799770B1 (en) 2006-08-31 2008-02-01 (주)모토닉 Gas feeding apparatus of gas fuel vehicles
DE102008053873A1 (en) * 2008-10-30 2010-05-06 Winkelmann, Karlheinrich, Dipl.-Ing. (TH) Internal combustion engine i.e. petrol engine, operating method for motor vehicle, involves adjusting evaporation pressure of fluid phase with turned-off engine at operating temperature in evaporation-critical position for starting engine
DE102008024561B4 (en) * 2008-05-21 2015-01-08 Vialle Alternative Fuel Systems B.V. Method for operating an internal combustion engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1009528C2 (en) 1998-06-30 2000-01-04 Vialle Beheer B V Liquefied gas fuel system.
KR100346465B1 (en) * 1999-09-18 2002-07-27 현대자동차주식회사 Evaporative emission control system for automobile
US6561773B1 (en) 1999-10-16 2003-05-13 Bayerische Motoren Werke Aktiengesellschaft Fuel supply pump for a vehicle and a fuel supply system equipped with said fuel supply pump
DE19949902A1 (en) * 1999-10-16 2001-04-19 Bayerische Motoren Werke Ag Fuel supply pump for car has housing of motor surrounded by outer housing by formation of outer intermediate chamber and fuel quantity delivered by pump divides
KR20020076525A (en) * 2001-03-29 2002-10-11 (주)모토닉 liquid fuel supply device for vehicles fuel
GB2382668A (en) * 2001-10-20 2003-06-04 Bosch Gmbh Robert Fuel supply control means for an internal combustion engine
FR2831212A1 (en) * 2001-10-20 2003-04-25 Bosch Gmbh Robert Internal combustion engine operation, involves determining measurement value of pressure in fuel distributor after engine shut off, and correcting signal quantity with obtained saturation pressure values
GB2382668B (en) * 2001-10-20 2003-12-24 Bosch Gmbh Robert Method of and means for determining a fuel admetering value for use in engine operation
KR100683072B1 (en) * 2002-07-30 2007-02-15 아이상 고교 가부시키가이샤 Fuel supply apparatus for internal combustion engine
KR20060024580A (en) * 2004-09-14 2006-03-17 르노삼성자동차 주식회사 Liquefied petroleum liquid injection system controled by temperature and pressure and method thereof
KR100799770B1 (en) 2006-08-31 2008-02-01 (주)모토닉 Gas feeding apparatus of gas fuel vehicles
DE102008024561B4 (en) * 2008-05-21 2015-01-08 Vialle Alternative Fuel Systems B.V. Method for operating an internal combustion engine
DE102008053873A1 (en) * 2008-10-30 2010-05-06 Winkelmann, Karlheinrich, Dipl.-Ing. (TH) Internal combustion engine i.e. petrol engine, operating method for motor vehicle, involves adjusting evaporation pressure of fluid phase with turned-off engine at operating temperature in evaporation-critical position for starting engine

Similar Documents

Publication Publication Date Title
JPH08232741A (en) Fuel feeder for internal combustion engine
JP2001164997A (en) Fuel injection system of internal combustion engine
JPS62243956A (en) Injecting method for liquefied gas
KR100629673B1 (en) Fuel supplying device of an engine
JP2010007595A (en) Fuel supply system for lpg engine
JP4875535B2 (en) LPG fuel supply method and apparatus
US8037875B2 (en) Control apparatus and control method for internal combustion engine
US20210071598A1 (en) Evaporated fuel treatment apparatus
JPS6316162A (en) Liquefied gas controlling method
US20210033052A1 (en) Device and Method for Supplying Water Into a High-Pressure Fuel Pump of an Internal Combustion Engine Provided in a Motor Vehicle
JP2003328858A (en) Lpg injection supply device for engine
JP4212885B2 (en) Engine positive pressure gas fuel supply method
JP3196656B2 (en) Fuel supply control device for internal combustion engine
JPH08128370A (en) Fuel supply device of internal combustion engine
JP6414522B2 (en) Engine fuel supply system
JP3876795B2 (en) Fuel control device for internal combustion engine
JP2007056679A (en) Liquified petroleum gas fuel feeder of engine
KR20070063139A (en) Fuel leakage preventing device of liquified petroleum gas injection system
JP2003129899A (en) Fuel temperature detection equipment and engine control unit
KR20100125909A (en) Apparatus and method for controlling fuel pump speed of lpi vehicle
JPH0223815Y2 (en)
JP2006257968A (en) Fuel injection control device for internal combustion engine
JPH0765546B2 (en) Liquefied gas injection method
KR100475342B1 (en) A liquid gas injection system for car
JPS61178526A (en) Fuel injection control method of internal-combustion engine