JPS62243515A - Thermos heatable by direct fire - Google Patents

Thermos heatable by direct fire

Info

Publication number
JPS62243515A
JPS62243515A JP8638486A JP8638486A JPS62243515A JP S62243515 A JPS62243515 A JP S62243515A JP 8638486 A JP8638486 A JP 8638486A JP 8638486 A JP8638486 A JP 8638486A JP S62243515 A JPS62243515 A JP S62243515A
Authority
JP
Japan
Prior art keywords
container
heat
heating
heat medium
thermos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8638486A
Other languages
Japanese (ja)
Inventor
郷 龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8638486A priority Critical patent/JPS62243515A/en
Publication of JPS62243515A publication Critical patent/JPS62243515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermally Insulated Containers For Foods (AREA)
  • Cookers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、魔法びん、あるいはこれを利用して得られ
る保温性の高いやかんや鍋に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermos bottle, or a kettle or pot with high heat retention obtained using the thermos bottle.

従来、魔法びんは、ガス加熱や電熱加熱などにより、容
器の外側から直接に内部の液体を加熱させることはでき
なかった。これは、魔法びんの構造上、保温すなわち熱
遮へいがよく、内部の熱が外部へ伝わらない代わりに、
外部からの熱も内部へ伝わらないためである。
Conventionally, it has not been possible to heat the liquid inside a thermos bottle directly from the outside of the container using gas heating or electric heating. This is due to the structure of the thermos bottle, which has good heat retention, or heat shielding, and prevents internal heat from transferring to the outside.
This is because heat from the outside is not transferred to the inside.

しかしながら、内部の温度を一定に保ち、その冷却を防
ぎながら、かつ、外部の温度が内部の温度より高いとき
にだけ、熱が内部に速やかに伝わるようにできると都合
がよい。
However, it would be advantageous to be able to keep the internal temperature constant, prevent its cooling, and ensure that heat is rapidly transferred to the internal area only when the external temperature is higher than the internal temperature.

本発明は、このような一方向だけの伝導機能、すなわち
、一種の熱的ダイオードとも言える性質を持つ容器を得
るためになされたもので、この原理を図面で説明する。
The present invention has been made to obtain a container that has such a unidirectional conduction function, that is, a type of thermal diode, and this principle will be explained with reference to the drawings.

第1図に示すように、容器を外容器(1)と内容器(2
)の二重構造とし、その間(3)を真空あるいは減圧し
、熱媒体(4)となる液体を封入する。このとき、内容
器(2)の底が下に溜っている熱媒体(4)の液と接し
ないようにする。これにより、通常は、この真空あるい
は減圧の層(3)により、内容器(2)内が保温される
が、外から加熱されたとき、熱媒体(4)の外容器(1
)での沸騰および内容器壁(2)での凝縮により、容易
に内容器(2)内へ熱が伝達される。
As shown in Figure 1, the container is divided into an outer container (1) and an inner container (2).
), the space (3) between them is evacuated or depressurized, and a liquid serving as a heat medium (4) is sealed. At this time, make sure that the bottom of the inner container (2) does not come into contact with the liquid of the heat transfer medium (4) collected below. As a result, the inside of the inner container (2) is normally kept warm by this vacuum or reduced pressure layer (3), but when heated from the outside, the outer container (1) of the heat medium (4)
) and condensation on the inner vessel wall (2), heat is easily transferred into the inner vessel (2).

例えば水を熱媒体(4)とすると、常温20℃では18
Torr程度の真空層(3)で内容器(2)は囲まれる
ことになり、内容器(2)に入れた液体(6)が熱いと
きは、これが断熱層となる。この内容器の液体(6)が
冷たいときには、外容器(1)の底を加熱することで、
内容器の液体(6)を加熱することができる。これを第
2図の様式図で示す。
For example, if water is used as a heat medium (4), at room temperature 20℃, 18
The inner container (2) is surrounded by a vacuum layer (3) of about Torr, and when the liquid (6) placed in the inner container (2) is hot, this becomes a heat insulating layer. When the liquid (6) in the inner container is cold, by heating the bottom of the outer container (1),
The liquid (6) in the inner container can be heated. This is shown in the format diagram in Figure 2.

すなわち、外容器(1)の底が加熱されると、封入され
た熱媒体(4)としての水は、減圧下にあるため直ちに
蒸発し始める。これは加熱の程度がよほど小さくない限
りは、沸騰による蒸発である。蒸発潜熱を得て蒸気(7
)となった水は、内容器(2)に冷たい液体(6)が入
っているため、その外側器壁で直ちに潜熱を伝え凝縮し
て水滴(8)となり圧力も下がる。このため、蒸気(7
)は低温の内容器壁(2)へ向かう流れとなる。一方、
凝縮して生じた水滴(8)は、重力により、遂時、外容
器(1)の底へ流下することになる。流下した水は再び
加熱され蒸発する。このような熱媒体(4)の蒸発と凝
縮による循環により、速やかに外部からの熱が内容器の
液体(6)へ伝えられる。
That is, when the bottom of the outer container (1) is heated, the enclosed water as a heat medium (4) immediately begins to evaporate because it is under reduced pressure. This is evaporation due to boiling unless the degree of heating is very small. Obtains latent heat of vaporization and generates steam (7
) Since the inner container (2) contains the cold liquid (6), the water immediately transfers latent heat on the outer container wall and condenses to form water droplets (8), which lowers the pressure. For this reason, steam (7
) becomes a flow toward the low temperature inner container wall (2). on the other hand,
The condensed water droplets (8) eventually flow down to the bottom of the outer container (1) due to gravity. The water that flows down is heated again and evaporates. Through such circulation through evaporation and condensation of the heat medium (4), heat from the outside is quickly transferred to the liquid (6) in the inner container.

本発明の断熱と伝熱の機構はこのようなものであるから
、封入された熱媒体(4)の液量は、伝熱応答性から少
ない方がよい。しかし、加熱時、内容器壁面(2)での
液滴(8)のホールドアップのため、外容器(1)の底
に液がなくなるほどに少なくすると、伝熱速度は急激に
小さくなる。また、熱媒体(4)を封入する前に、二重
壁内(3)をできるだけ高真空にして、空気などの混入
がない方が、断熱時の熱遮断性と加熱時の熱伝導性が向
上する。蓋(9)は、加熱容器となるため、内容器(2
)内の圧力が逃がせるようにしてあり、かつ、断熱構造
であった方がよい。
Since the heat insulation and heat transfer mechanism of the present invention is as described above, it is preferable that the amount of liquid in the enclosed heat medium (4) is small in terms of heat transfer responsiveness. However, due to hold-up of droplets (8) on the inner container wall surface (2) during heating, if the amount of liquid is reduced to such an extent that there is no liquid at the bottom of the outer container (1), the heat transfer rate decreases rapidly. In addition, before enclosing the heat medium (4), it is better to make the double wall (3) as high a vacuum as possible so that there is no air or other contaminants, which will improve the thermal insulation properties during insulation and the thermal conductivity during heating. improves. The lid (9) serves as a heating container, so the inner container (2)
) should be designed to allow the pressure inside to escape, and should also have an insulated structure.

熱媒体(4)として水を用いると、内容器の液体(6)
を100℃まで昇温するのに、二重壁内(3)の圧力を
ほぼ大気圧以下で作動させることができる。しかし、1
00℃以上に昇温するときには、大気圧以上となる。こ
のため、常に二重壁内(3)を大気圧以下で作動させた
いとき、あるいは、過度に高圧になることを避けたいと
きは、沸点が100℃以上の熱媒体を使えばこれを達成
できる。この高沸点の熱媒体は常温での蒸気圧が低いの
で、保温時の断熱性も向上する。このように目的に応じ
て、熱媒体(4)は種々選ぶことができる。
When water is used as the heat medium (4), the liquid in the inner container (6)
In order to raise the temperature to 100° C., the pressure inside the double wall (3) can be operated at approximately below atmospheric pressure. However, 1
When the temperature rises to 00° C. or higher, the pressure becomes higher than atmospheric pressure. Therefore, if you want to always operate the inside of the double wall (3) at below atmospheric pressure, or if you want to avoid excessively high pressure, you can achieve this by using a heat medium with a boiling point of 100°C or higher. . Since this high boiling point heat medium has a low vapor pressure at room temperature, it also improves its insulation properties during heat retention. As described above, various types of heat medium (4) can be selected depending on the purpose.

さらに、内容器壁(2)の内部と外側および外容器壁(
1)の内部の熱放射率小さく、逆に言えば、反射率を大
きくすると、断熱性が向上することは、一般の魔法びん
と同じである。
Furthermore, the inside and outside of the inner container wall (2) and the outer container wall (
1) As with ordinary thermos bottles, if the internal thermal emissivity is small, or conversely, if the reflectance is increased, the insulation improves.

本発明は保温性については、内径170mm、深さ17
0mmの本発明の容器と、比較のために同じ内容積の普
通の一重の容器に、2.5リットルの水を入れて100
℃にしてから、その温度降下を調べた。
Regarding heat retention, the present invention has an inner diameter of 170 mm and a depth of 17 mm.
For comparison, 2.5 liters of water was poured into a container of the present invention having a diameter of 0 mm, and a regular single-layer container with the same internal volume for comparison.
℃ and then examined the temperature drop.

それぞれの構造を第3図と第4図に示す。The respective structures are shown in FIGS. 3 and 4.

用いた材料は、いずれも厚さ0.5mmの18−8ステ
ンレス鋼で、その表面の放射率は0.3である。ただし
、容器の最外表面については、0.6程度である。本発
明の容器については、二重構造部(3)を減圧後、熱媒
体(4)として100ccの水が封入されている。容器
内の水温の測定位置(10)は、水の中心とした。
The materials used are 18-8 stainless steel with a thickness of 0.5 mm, and the emissivity of the surface thereof is 0.3. However, for the outermost surface of the container, it is about 0.6. In the container of the present invention, 100 cc of water is sealed as a heat medium (4) after the double structure part (3) is depressurized. The water temperature measurement position (10) in the container was set at the center of the water.

この降温曲線を第5図に示す。このときの冷却条件は、
外気温が15℃で、いずれの容器も、鍋敷きの上に乗せ
、その底部は空気が流通する。
This temperature decreasing curve is shown in FIG. The cooling conditions at this time are
The outside temperature was 15°C, and both containers were placed on a trivet with air circulating through the bottom.

本発明の容器は、一般の魔法びんに比べると保温性は見
劣りするが、普通の一重の容器に入れたものより格段に
温度降下は小さい。
Although the container of the present invention has poor heat retention compared to a general thermos bottle, the temperature drop is much smaller than that of a container placed in an ordinary single layer container.

例えば、本例では50℃まで冷却するのに、普通の容器
が2hrであるのに対し、本発明では実に、16.5h
rであり、その保温性は高い。
For example, in this example, it takes 2 hours for a normal container to cool down to 50°C, but in the present invention, it takes 16.5 hours to cool down to 50°C.
r, and its heat retention is high.

一方、加熱性については、それぞれの容器15℃の水を
2.5リットル入れて、直径170mmで1kwの電熱
とヒーターに置いて加熱した。このときの外気温も15
℃である。昇温曲線を第6図に示す。
On the other hand, regarding heating properties, each container was heated by placing 2.5 liters of water at 15°C in a diameter of 170 mm and placing it on a 1 kW electric heater. The outside temperature at this time was also 15
It is ℃. The temperature increase curve is shown in FIG.

いずれも100℃に達するのに29分要し、本発明の容
器は保温性が高いにもかかわらず、その加熱特性は普通
の容器と全く同じか、それより若干良い。
Both require 29 minutes to reach 100°C, and although the containers of the present invention have high heat retention properties, their heating characteristics are exactly the same as, or slightly better than, ordinary containers.

この加熱時においては、加熱面基準の総括伝熱係数は両
者共、30■程度であった。しかし、総括伝熱係数は加
熱方法や加熱速度などの条件によって異なり、10から
100程度である。そして、外容器(1)の底部外側(
加熱面側)および内部(熱媒体側)それに内容器(2)
の外側(熱媒体蒸気側)および内部のそれぞれの伝熱機
構とその伝熱係数の値は、上記の順におよそ次の通りで
ある。
During this heating, the overall heat transfer coefficient based on the heating surface was approximately 30 . However, the overall heat transfer coefficient varies depending on conditions such as the heating method and heating rate, and is about 10 to 100. Then, the outside of the bottom of the outer container (1) (
heating surface side), inside (heating medium side) and inner container (2)
The outside (heat medium vapor side) and inside heat transfer mechanisms and their heat transfer coefficient values are approximately as follows in the above order.

なお、容器壁が金属のとき、その伝導の伝熱抵抗は無視
し得る。
Note that when the container wall is made of metal, its conduction heat transfer resistance can be ignored.

1)熱源からの放射あるいは燃焼ガスによる強制対流伝
熱係数:10〜100■ 2)熱媒体の沸騰伝熱係数:1000〜100003)
熱媒体の凝縮伝熱係数:2000〜200004)水の
自然対流伝熱係数: 100〜 2000これから分か
るように、二重構造部の熱媒体側はその伝熱係数が充分
大きく、伝熱抵抗となっていない。伝熱律速となってい
るのは、外容器(1)の底部の加熱面側と内容器(2)
の水側であり、主には前者である。従って、普通の容器
と本発明の総括伝熱係数はほとんど同じ値となる。そし
て、本発明の容器の方が若干伝熱が促進される理由とし
て、1)内容器壁(2)とその中の水(6)との接液面
積がすべて伝熱面積となること 2)蓋(9)が断熱構造であること によるものと考えられる。
1) Forced convection heat transfer coefficient due to radiation from heat source or combustion gas: 10 to 100 2) Boiling heat transfer coefficient of heat medium: 1000 to 100003)
Condensation heat transfer coefficient of heat medium: 2000-20000 4) Natural convection heat transfer coefficient of water: 100-2000 As can be seen, the heat transfer coefficient on the heat medium side of the double structure is sufficiently large, resulting in heat transfer resistance. Not yet. The rate of heat transfer is determined by the heating surface side at the bottom of the outer container (1) and the inner container (2).
The water side is mainly the former. Therefore, the overall heat transfer coefficients of the ordinary container and the present invention are almost the same. The reason why the container of the present invention promotes heat transfer slightly is that 1) the area in contact with the inner container wall (2) and the water (6) therein is all the heat transfer area; 2) This is thought to be due to the fact that the lid (9) has a heat insulating structure.

本発明は、普通の魔法びんに比べその保温性は劣るが、
中の液体(6)の温度が下がったとき、直火上での加熱
ができ、すぐに昇温できるという利点で、そのような欠
点を補っている。そして、この直火上での加熱特性が、
やかん並みに優れていることから、保温性の高いやかん
として、これを積極的に利用できる。
Although the present invention has inferior heat retention compared to ordinary thermos bottles,
This drawback is compensated for by the advantage that when the temperature of the liquid (6) inside drops, it can be heated over an open flame and the temperature can be raised immediately. And the heating characteristics over this direct flame are
Since it is as good as a kettle, it can be actively used as a kettle with high heat retention.

同様に、この性質を保温性の高い鍋としても利用できる
。鍋の保温性が高くなると、食事直前に煮炊きしなくと
もよいし、食事時間が各人まちまちの家庭でも誰もが暖
かいものを食べることができるようになる。また、加熱
性が良いので、それを暖め直すにしても容易である。さ
らに、本発明を鍋に適用した場合、伝熱面が鍋の接液面
の全体に及び、かつ、均一加熱であるという利点も利用
することができる。
Similarly, this property can be used as a pot with high heat retention. If the heat retention of the pot increases, there will be no need to boil the food immediately before meals, and everyone will be able to enjoy hot food even in households where mealtimes vary. Moreover, since it has good heating properties, it is easy to reheat it. Furthermore, when the present invention is applied to a pot, it is possible to take advantage of the fact that the heat transfer surface covers the entire liquid-contacted surface of the pot and that heating is uniform.

一方、本発明の欠点として、二重構造の密閉部(3)に
少量であるにしても熱媒体(4)が入っているため、空
だきのときは、それが高い圧力になり危険である。そこ
で安全弁(11)は必要である。しかし、常温時は真空
となるため、空気の漏れがないように、可溶合金を用い
た溶栓のような完全に外気を遮断できるものがよい。
On the other hand, a drawback of the present invention is that the double-walled sealed part (3) contains a heating medium (4), even if it is a small amount, so when it is empty, the pressure becomes high and dangerous. . Therefore, the safety valve (11) is necessary. However, since it is a vacuum at room temperature, it is best to use a fusible plug made of a fusible alloy that can completely shut off the outside air to prevent air leakage.

このようなことから、封入する熱媒体(4)の量を減ら
し、かつ、容器が傾いても、加熱体に面する外容器(1
)の底の前面に熱媒体(4)が行き渡るように、第7図
に示すように、外容器(1)の底部の前面に、毛細管構
造物(5)を密着させてもよい。ただし、この毛細管構
造物(5)も、保温効果が減ずるので、内 容器(2)
に接しないようにすることが必要である。
For this reason, it is possible to reduce the amount of the heat medium (4) enclosed, and even if the container is tilted, the outer container (1) facing the heating element can be
As shown in FIG. 7, a capillary structure (5) may be tightly attached to the front surface of the bottom of the outer container (1) so that the heat medium (4) spreads over the front surface of the bottom of the outer container (1). However, this capillary structure (5) also reduces the heat retention effect, so the inner container (2)
It is necessary to avoid contact with

また、前述のように、熱媒体(4)のある二重構造部(
3)は伝熱抵抗とはほとんどならないことから、これを
容器底部のみとしても加熱性は低下しない。
Moreover, as mentioned above, the double structure part (
3) has almost no heat transfer resistance, so even if it is applied only to the bottom of the container, the heating performance will not deteriorate.

そこで、容器剥壁は真空層あるいは断熱材からなる一般
的な断熱構造(12)としてもよい。これを第8図に示
す。このようにすると、保温性能を向上させることがで
きる。
Therefore, the peeled wall of the container may be a general heat insulating structure (12) made of a vacuum layer or a heat insulating material. This is shown in FIG. In this way, heat retention performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の容器の縦断面図。 第2図は本発明の容器の伝熱機構を示す模式図。 第3図は測定のために使用した本発明の容器の縦断面図
。 第4図は、第3図の本発明の容器と比較のために使用し
た一重の容器の縦断面図。 第5図は容器内の水の降温曲線。 第6図は容器内の水の昇温曲線。 第7図および第8図は本発明の容器の実施態様を示す縦
断面図。 1は外容器、2は内容器、3は二重壁内の空間部、4は
熱媒体、5は毛細管構造物、6は内容器内の液体、7は
熱媒体の蒸気、8は熱媒体の凝縮液滴、9は蓋、10は
測温位置、11は安全弁、12は真空層あるいは断熱材
からなる一般的な断熱構造部、Aは本発明の容器内の水
温、Bは一重容器内の水温。
FIG. 1 is a longitudinal sectional view of the container of the present invention. FIG. 2 is a schematic diagram showing the heat transfer mechanism of the container of the present invention. FIG. 3 is a longitudinal sectional view of the container of the present invention used for measurement. FIG. 4 is a longitudinal sectional view of a single container used for comparison with the container of the present invention shown in FIG. Figure 5 shows the temperature drop curve of water in the container. Figure 6 shows the temperature rise curve of water in the container. 7 and 8 are longitudinal sectional views showing embodiments of the container of the present invention. 1 is an outer container, 2 is an inner container, 3 is a space within the double wall, 4 is a heat medium, 5 is a capillary structure, 6 is a liquid in the inner container, 7 is a vapor of a heat medium, and 8 is a heat medium 9 is a lid, 10 is a temperature measuring position, 11 is a safety valve, 12 is a general insulation structure made of a vacuum layer or a heat insulating material, A is the water temperature in the container of the present invention, B is in the single layer container water temperature.

Claims (1)

【特許請求の範囲】 1)容器を外容器(1)と内容器(2)の二重構造とし
、その間(3)を真空あるいは減圧し、熱媒体(4)と
なる液体をそれが内容器(2)の底に接しない程度に封
入した魔法びん。 2)外容器(1)の内部底部に毛細管構造物(5)を密
着させた特許請求の範囲第1項記載の魔法びん。 3)底部以外を熱媒体を入れない断熱構造とした特許請
求の範囲第1項または第2項記載の魔法びん。 4)やかんや鍋などの加熱目的で使用される容器形状と
した特許請求の範囲第1項、第2項または第3項記載の
魔法びん。
[Claims] 1) The container has a double structure of an outer container (1) and an inner container (2), and the space (3) between them is evacuated or depressurized, and the liquid serving as the heat medium (4) is transferred to the inner container. (2) A thermos bottle sealed to the extent that it does not touch the bottom. 2) The thermos bottle according to claim 1, wherein the capillary structure (5) is brought into close contact with the inner bottom of the outer container (1). 3) The thermos bottle according to claim 1 or 2, which has a heat insulating structure that does not allow heat medium to enter the portion other than the bottom portion. 4) The thermos flask according to claim 1, 2 or 3, which is in the shape of a container used for heating purposes such as a kettle or a pot.
JP8638486A 1986-04-16 1986-04-16 Thermos heatable by direct fire Pending JPS62243515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8638486A JPS62243515A (en) 1986-04-16 1986-04-16 Thermos heatable by direct fire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8638486A JPS62243515A (en) 1986-04-16 1986-04-16 Thermos heatable by direct fire

Publications (1)

Publication Number Publication Date
JPS62243515A true JPS62243515A (en) 1987-10-24

Family

ID=13885380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8638486A Pending JPS62243515A (en) 1986-04-16 1986-04-16 Thermos heatable by direct fire

Country Status (1)

Country Link
JP (1) JPS62243515A (en)

Similar Documents

Publication Publication Date Title
US20060219724A1 (en) Thermos heated from the outside
JP3745325B2 (en) Hot water equipment and water heater
JPS62243515A (en) Thermos heatable by direct fire
JP2713008B2 (en) Cooking vessel
JPS6124189Y2 (en)
JPS608803Y2 (en) Inner frame structure of rice cooker
JPS608567Y2 (en) kitchenware
KR19990064490A (en) Heat Pipe Cookwares incorporating Sintered Metal
JPH0752661Y2 (en) Rice cooker
JPS5855774B2 (en) electric water heater
JPH0455045B2 (en)
JPS623085Y2 (en)
JPS6327632Y2 (en)
JPS594889A (en) Heat insutation type hot-water heater
JPH038207Y2 (en)
JPH0141381Y2 (en)
JPS6182718A (en) Cooking container
KR910003685Y1 (en) Lunch-box
JPS5851864Y2 (en) thermal water boiler
KR960010680Y1 (en) Electric pressure cooker
JPS6034357A (en) Heat-insulating vessel
KR100281909B1 (en) Thermosyphon cooker
KR900008402Y1 (en) Cooking-vessel
JP3122393U (en) Electric heat-high vacuum type heating and heat insulation device
TWI310306B (en)