JPS62243342A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62243342A
JPS62243342A JP8648986A JP8648986A JPS62243342A JP S62243342 A JPS62243342 A JP S62243342A JP 8648986 A JP8648986 A JP 8648986A JP 8648986 A JP8648986 A JP 8648986A JP S62243342 A JPS62243342 A JP S62243342A
Authority
JP
Japan
Prior art keywords
contact
insulating film
hole
film
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8648986A
Other languages
Japanese (ja)
Inventor
Hiroko Kuriyama
栗山 宏子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP8648986A priority Critical patent/JPS62243342A/en
Publication of JPS62243342A publication Critical patent/JPS62243342A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably connect wirings with a diffused layer in a semiconductor device by so forming a second insulating film formed by anisotropically etching on the side of a contact hole that the upper portion is thin and the lower portion is thick to form a taper in the hole, thereby eliminating the formation of an extremely thin portion or a disconnected portion at metal wiring depositing time. CONSTITUTION:An insulating film 1 is grown on a diffused layer 3 formed on a substrate 5, a contact hole is formed by anisotropically etching, a second insulating film 6 is grown by a CVD method on the hole, and removed by anisotropically etching. Then, a CVD film remains only on the sidewall of the contact. When wirings 2 are formed thereon, a contact corresponding to miniaturization is obtained. Thus, since a taper is formed at the CVD film without requiring an excess masking step from the edge to the bottom of the contact, the thickness of the deposited film necessary for wirings is obtained also on the sidewall of the hole to suppress the disconnection of the deposited film which feasibly occurs at the edge of the contact, thereby forming the contact without increasing the area of the hole. Accordingly, a miniaturization for raising the integration of a semiconductor device can be performed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は微細なコンタクト孔を有する半導体装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device having fine contact holes.

従来の技術 半導体装置の高集積化に伴ない、半導体装置を構成する
素子の拡散層とこれらを接続する金属膜21、 線のコンタクト部分についても高精度でかつ微細な加工
が要求されている。従来この種のコンタクトの形成には
、絶縁膜を一方向にのみエツチングするいわゆるRIB
のごとき異方性エツチングの手法が用いられていた。こ
のあたりの事情を第2図により説明する。基板5上に形
成された拡散層3上に微細なコンタクトを得るために、
前述した異方性エツチングによシ絶縁膜1上にコンタク
トホールを形成し、しかる後金属配線層2を蒸着し、拡
散層3との接続を行なう。図示するごとく異方性エツチ
ングはほとんど垂直に近い穴が形成でき近辺に拡がらな
いことが、微細なコンタクトの形成を可能ならしめてい
る。
BACKGROUND OF THE INVENTION As semiconductor devices become more highly integrated, the diffusion layers of the elements constituting the semiconductor devices, the metal films 21 that connect them, and the contact portions of the lines are also required to be processed with high accuracy and fineness. Conventionally, this type of contact was formed using the so-called RIB method, in which the insulating film was etched in only one direction.
Anisotropic etching methods were used. The circumstances surrounding this will be explained with reference to FIG. In order to obtain a fine contact on the diffusion layer 3 formed on the substrate 5,
A contact hole is formed on the insulating film 1 by the above-described anisotropic etching, and then a metal wiring layer 2 is deposited and connected to the diffusion layer 3. As shown in the figure, anisotropic etching allows the formation of almost vertical holes and does not spread into the vicinity, making it possible to form fine contacts.

発明が解決しようとする問題点 第2図を用いて示したごとく、異方性エツチングによる
微細なコンタクトホールは垂直に近い側面を有している
。したがって蒸着される金属粒子の方向に対して平行な
面、即ちホールの側面では金属膜が付着しにくい部分、
例えば図中人の様な部分が存在する。このような部分に
おいては、半3 、−− 導体装置の動作中、金属配線に対する電流密度が極めて
太きくなシ、いわゆるエレクトロマイグレーションによ
シ断線に至るという重大な欠点が存在した。また、極端
な場合には、人の部分に全く金属が蒸着されず、拡散層
3と配線2との接続がなされないという問題も存在した
Problems to be Solved by the Invention As shown in FIG. 2, fine contact holes formed by anisotropic etching have nearly vertical sides. Therefore, the surface parallel to the direction of the metal particles to be evaporated, that is, the side surface of the hole, is where the metal film is difficult to adhere.
For example, there is a part that looks like a person in the diagram. In such portions, there is a serious drawback in that during the operation of the half-conductor device, the current density to the metal wiring is extremely low, leading to wire breakage due to so-called electromigration. Furthermore, in extreme cases, there is a problem in that no metal is deposited on the person's part at all, and the connection between the diffusion layer 3 and the wiring 2 is not made.

か\る問題を解決するだめの一つの方法は第3図に示す
ごとく、絶縁膜1を異方性エツチングした後、コンタク
トホール側面にテーパーを付けるためにウェットエツチ
ングをほどこすことによシ図中4で示す部分を除去する
ことである。このようにすることにより第2図を用いて
示したごとき金属膜の薄い部分にか\わる問題は解消す
るのであるが、コンタクトホールの開口部が図中りのご
とく拡大するためコンタクトホールの占有面積が大きく
なる。このことは微細かつ高密度、高集積が要求される
半導体集積回路のコンタクトホールとしては不適当とい
わざるをえないのである。
One way to solve this problem is to perform anisotropic etching on the insulating film 1 and then perform wet etching to taper the sides of the contact hole, as shown in Figure 3. The purpose is to remove the part indicated by 4 in the middle. By doing this, the problem related to the thin part of the metal film as shown in Figure 2 can be solved, but since the opening of the contact hole is enlarged as shown in the figure, the contact hole is occupied. The area becomes larger. This makes it unsuitable for contact holes in semiconductor integrated circuits that require fineness, high density, and high integration.

問題点を解決するだめの手段 前記の問題点を解決するだめに本発明は半導体基板の表
面近傍の所定の領域に不純物拡散領域を有し、前記半導
体基板上に第1の絶縁膜を有し、前記拡散領域上の前記
第1の絶縁膜に側壁が前記半導体基板にほぼ垂直な開孔
を有し、前記開孔の側壁にその深さ方向に漸次膜厚が増
大する第2の絶縁膜を有し、前記開孔の底面の拡散領域
上とその側壁の第2の絶縁膜上と前記開孔部以外の前記
第1の絶縁膜上とに導電層とを有する事を特徴とする半
導体装置を提供する。
Means for Solving the Problems In order to solve the above problems, the present invention has an impurity diffusion region in a predetermined region near the surface of a semiconductor substrate, and a first insulating film on the semiconductor substrate. , the first insulating film on the diffusion region has an opening whose sidewall is substantially perpendicular to the semiconductor substrate, and a second insulating film having a thickness gradually increasing in the depth direction on the sidewall of the opening. and a conductive layer on the diffusion region at the bottom of the opening, on the second insulating film on the side wall thereof, and on the first insulating film other than the opening part. Provide equipment.

作用 コンタクトホール側面に異方性エツチングにより形成さ
れた第2の絶縁膜はコンタクトホールの上部では薄く、
下部では厚くなり、コンタクトホールにテーパーをつけ
る。これにより金属配線の蒸着時に極度に薄い部分や断
線部分が形成されることがなく、配線と拡散層の安定な
接続が可能となるのみならず、微細なコンタクトが形成
できる。
The second insulating film formed on the side surface of the working contact hole by anisotropic etching is thin at the top of the contact hole.
It becomes thicker at the bottom and tapers into the contact hole. This prevents the formation of extremely thin portions or disconnected portions during vapor deposition of the metal wiring, making it possible not only to stably connect the wiring and the diffusion layer, but also to form fine contacts.

実施例 以下に本発明における一実施例を示す。Example An example of the present invention will be shown below.

第1図は、本発明におけるコンタクト部での断5 メ\
−/゛ 面構造を示したものである。
FIG. 1 shows the 5-meter disconnection at the contact portion in the present invention.
-/゛ plane structure is shown.

基板5に拡散層3を形成し、この上に絶縁膜1を成長さ
せる。絶縁膜の異方性エツチングを行なって、コンタク
ト孔を形成した後、このコンタクト孔上にCVD法によ
り第2の絶縁膜6を成長させる。拡散層上のCVD法に
よる第2の絶縁膜を異方性エツチングによシ完全に除去
すると、コンタクトの側壁にのみCVD膜が残る。この
上に配線2を形成すると、微細化に対応したコンタクト
が得られる。
A diffusion layer 3 is formed on a substrate 5, and an insulating film 1 is grown thereon. After a contact hole is formed by anisotropic etching of the insulating film, a second insulating film 6 is grown over the contact hole by CVD. When the second insulating film formed by CVD on the diffusion layer is completely removed by anisotropic etching, the CVD film remains only on the sidewalls of the contacts. When wiring 2 is formed on this, a contact compatible with miniaturization can be obtained.

以上のように本実施例は、コンタクト部のエツジからボ
トム即ち拡散層にかけて、余分なマスク工程を要さずに
CVD膜でテーパーを形成するのでコンタクト孔の側壁
にも配線に必要なだけの蒸着膜厚が得られ、コンタクト
のエツジ部で発生しやすい蒸着膜の断線を抑えることが
可能となる。
As described above, in this embodiment, a taper is formed with the CVD film from the edge of the contact part to the bottom, that is, the diffusion layer, without the need for an extra mask process. A thick film can be obtained, and it is possible to suppress disconnection of the deposited film, which tends to occur at the edge of the contact.

さらに、コンタクト孔面積を増大しないで、コンタクト
を形成できるので、半導体装置の集積度を上げるための
微細化が可能となる。
Furthermore, since contacts can be formed without increasing the contact hole area, miniaturization to increase the degree of integration of semiconductor devices becomes possible.

又、本実施例のコンタクト側壁に形成したCVD膜によ
る、蒸着膜断線の防止に対する効果を確認するために形
状シミュレーションを行なった。コンタクト側壁の蒸着
膜厚の、絶縁膜上の蒸着膜厚に対する比率をコンタクト
側壁での蒸着率とし、この蒸着率の、コンタクト側壁の
テーパー角依存性をシミュレーションした。その結果、
テーパーの全く無いもので蒸着率は10%、これに対し
、テーパーを60°付けたものでは、蒸着率は4o%と
なり、エレクトロマイグレーション等による断線の発生
に対してテーパーによる大巾な効果が得られることが確
認できた。
In addition, a shape simulation was performed to confirm the effect of the CVD film formed on the contact sidewall of this example in preventing disconnection of the deposited film. The ratio of the thickness of the deposited film on the contact sidewall to the thickness of the deposited film on the insulating film was defined as the deposition rate on the contact sidewall, and the dependence of this deposition rate on the taper angle of the contact sidewall was simulated. the result,
The evaporation rate is 10% with no taper at all, whereas the evaporation rate with a 60° taper is 4o%, and the taper has a large effect on the occurrence of wire breakage due to electromigration, etc. It was confirmed that

発明の詳細 な説明したように本発明によればコンタクトのエツジ部
分での断線が防がれ、またコンタクト面積も増大しない
ので半導体集積回路の高集積化に大きく寄与する。
As described in detail, the present invention prevents disconnection at the edge of the contact and does not increase the contact area, thereby greatly contributing to higher integration of semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるコンタクト部の断面図、第2図
は従来の微細コンタクト形成を説明するたL+;ゝ\ °め・の断面図、第3図は第2図に示す問題点を解決7
 ・、−7 する1方法を示す従来例の断面図である。 1・・・・・・絶縁膜、2・・・・・・配線、3・・・
・・・拡散層、4・・・・・・追加エッチで除去される
部分、6・・・・・・基板、6・・・・・CVD法によ
る第2絶縁膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名f−
・IP、a躾 2−一一配蝿 第1図    3−仏助 S−一一基林 6゛−・−cVDn更 第 2 図
Fig. 1 is a sectional view of the contact part in the present invention, Fig. 2 is a sectional view of L+; 7
. , -7 is a cross-sectional view of a conventional example showing one method of doing so. 1... Insulating film, 2... Wiring, 3...
... Diffusion layer, 4 ... Part removed by additional etching, 6 ... Substrate, 6 ... Second insulating film formed by CVD method. Name of agent: Patent attorney Toshio Nakao and 1 other person f-
・IP, a Discipline 2-11 Flies Fig. 1 3-Busuke S-11 Motobayashi 6゛-・-cVDn Edit Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の表面近傍の所定の領域に不純物拡散領域を
有し、前記半導体基板上に第1の絶縁膜を有し、前記拡
散領域上の前記第1の絶縁膜に側壁が前記半導体基板に
ほぼ垂直な開孔を有し、前記開孔の側壁にその深さ方向
に漸次膜厚が増大する第2の絶縁膜を有し、前記開孔の
底面の拡散領域上とその側壁の第2の絶縁膜上と前記開
孔部以外の前記第1の絶縁膜上とに導電層とを有する事
を特徴とする半導体装置。
an impurity diffusion region in a predetermined region near the surface of a semiconductor substrate, a first insulating film on the semiconductor substrate, and a sidewall of the first insulating film on the diffusion region substantially touching the semiconductor substrate; It has a vertical opening, and a second insulating film whose thickness gradually increases in the depth direction on the side wall of the opening, and a second insulating film on the diffusion region at the bottom of the opening and on the side wall of the opening. A semiconductor device comprising a conductive layer on an insulating film and on the first insulating film other than the opening.
JP8648986A 1986-04-15 1986-04-15 Semiconductor device Pending JPS62243342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8648986A JPS62243342A (en) 1986-04-15 1986-04-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8648986A JPS62243342A (en) 1986-04-15 1986-04-15 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62243342A true JPS62243342A (en) 1987-10-23

Family

ID=13888395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8648986A Pending JPS62243342A (en) 1986-04-15 1986-04-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62243342A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127523A (en) * 1990-09-19 1992-04-28 Nec Corp Manufacture of semiconductor device
US5183772A (en) * 1989-05-10 1993-02-02 Samsung Electronics Co., Ltd. Manufacturing method for a DRAM cell
US5441909A (en) * 1992-12-30 1995-08-15 Hyundai Electronics Industries Co., Ltd. Method for constructing charge storage electrode of semiconductor memory device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183772A (en) * 1989-05-10 1993-02-02 Samsung Electronics Co., Ltd. Manufacturing method for a DRAM cell
JPH04127523A (en) * 1990-09-19 1992-04-28 Nec Corp Manufacture of semiconductor device
US5441909A (en) * 1992-12-30 1995-08-15 Hyundai Electronics Industries Co., Ltd. Method for constructing charge storage electrode of semiconductor memory device

Similar Documents

Publication Publication Date Title
JP2740050B2 (en) Groove embedded wiring formation method
EP0523856A2 (en) Method of via formation for multilevel interconnect integrated circuits
JPH09181180A (en) Semiconductor integrated circuit and its manufacture
US4866008A (en) Methods for forming self-aligned conductive pillars on interconnects
JPS63258021A (en) Formation of connection hole
US5593921A (en) Method of forming vias
EP0140817A2 (en) Recessed metallization
JP2004228320A (en) Semiconductor device
JP4057083B2 (en) Manufacturing method of semiconductor integrated circuit
JPH06104341A (en) Semiconductor integrated circuit and its manufacture
US5437763A (en) Method for formation of contact vias in integrated circuits
US5423939A (en) Method for forming contact plugs in integrated circuits
JPS62243342A (en) Semiconductor device
JPS62229959A (en) Method of filling passage or contact hole in layer insulatorin multilayer metal covered very large scale integrated circuit
JPH0831935A (en) Manufacture of semiconductor device
JPH0697288A (en) Manufacture of semiconductor device
KR970003889B1 (en) Trench pillar for wafer processing
JPH09306992A (en) Semiconductor device and manufacture thereof
US5847457A (en) Structure and method of forming vias
KR100278274B1 (en) A method for forming stack contact in semiconductor device
KR960004078B1 (en) Contact forming method by stacked thin layer structure
JPS60227443A (en) Manufacture of semiconductor device
KR100230032B1 (en) Multilayer connector
JPS62299019A (en) Manufacture of semiconductor device
JPH04162719A (en) Semiconductor device