JPS62242913A - One directional refractive index distribution type slab lens array - Google Patents

One directional refractive index distribution type slab lens array

Info

Publication number
JPS62242913A
JPS62242913A JP61085112A JP8511286A JPS62242913A JP S62242913 A JPS62242913 A JP S62242913A JP 61085112 A JP61085112 A JP 61085112A JP 8511286 A JP8511286 A JP 8511286A JP S62242913 A JPS62242913 A JP S62242913A
Authority
JP
Japan
Prior art keywords
refractive index
lens
slab
index distribution
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61085112A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Asahara
浅原 慶之
Shigeaki Omi
成明 近江
Hiroyuki Sakai
裕之 坂井
Shin Nakayama
伸 中山
Yoshitaka Yoneda
嘉隆 米田
Hisayoshi Toratani
虎渓 久良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP61085112A priority Critical patent/JPS62242913A/en
Publication of JPS62242913A publication Critical patent/JPS62242913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To efficiently make an incident light quantity transmit through, by superposing plural pieces of slab-shaped refractive index distribution type lenses of a focusing property, having a refractive index distribution in only one direction, along the direction of the refractive index distribution so that the refractive index distribution and the vertical surface contact, and the refractive index distribution becomes parallel to each other. CONSTITUTION:In the rectangular parallelopiped-shaped glass, the X direction and the Z direction have no refractive index gradient, only the Y direction has such a refractive index gradient as the refractive index decreases to a prescribed quantity from the center surface of the rectangular parallelopiped to the upper and lower directions, and the Z direction is taken in the optical axis, it can be taken greatly in length of the X direction as long as the manufacturing condition of a slab is allowed. Also, with respect to a light beam which has been made incident along the Z axis, the X direction has no lens effect at all, but in only the Y direction, an incident light transmits through as a sine wave. Accordingly, when length of the lens is adjusted to length of 3P.4 from P/2, an image distance and an object distance become equal in the Y direction, and an erect unmagnification real image can be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光通信分野や光情報処理機器分野で使用され
るスラブ状レンズアレーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a slab-shaped lens array used in the field of optical communication and optical information processing equipment.

[従来の技術] 円柱状のガラス体の中心軸から半径方向に沿つて、屈折
率がほぼ n(r) 2=no 2 (1−g2 r2 )   
(11又は n(r)=no  (1−j−Ar2)     +2
1(ここでnrは半径rでの屈折率、noは中心部の屈
折率、Q、Aは定数である。) に従って減少する屈折率分布型ロッドレンズは、光通信
用の各種光部品構成材料として注目を集めている。特に
このレンズを多数個配列したマイクロレンズアレーは作
像用光学系として複写器やミニファックス用の転写レン
ズとして使用され、装置の小型化に寄与している。
[Prior Art] Along the radial direction from the central axis of a cylindrical glass body, the refractive index is approximately n(r) 2 = no 2 (1-g2 r2 )
(11 or n(r)=no (1-j-Ar2) +2
1 (where nr is the refractive index at radius r, no is the refractive index at the center, and Q and A are constants.) The gradient index rod lens, which decreases according to is attracting attention as In particular, microlens arrays in which a large number of such lenses are arranged are used as image-forming optical systems and transfer lenses for copying machines and mini-faxes, contributing to miniaturization of devices.

このような0ラド状レンズ体は、レンズの長さによって
結像状態が変化することは良く知られており、例えば[
ニューセラミックスの発展」 (柳田博明編、北野一部
、175頁化学工業社)に詳しく述べられている。これ
によると、第4図に示すようにロッドレンズ3に入射し
た光線は、メリディオナル断面内では正弦波で透過し、
この光路の一周期長をP=2π/Aとすると、レンズ長
がP/2から3P/4の長さで像距11N2+と物体距
離floが等しくなり、第5図に示すように物体1に対
し、光軸4上に正立等倍実像2が形成されるごとになる
It is well known that the imaging state of such a zero rad lens body changes depending on the length of the lens. For example, [
``Development of New Ceramics'' (edited by Hiroaki Yanagita, Parti Kitano, p. 175, published by Kagaku Kogyosha). According to this, as shown in FIG. 4, the light beam incident on the rod lens 3 is transmitted as a sine wave within the meridional cross section,
If the length of one period of this optical path is P = 2π/A, then when the lens length is from P/2 to 3P/4, the image distance 11N2+ and the object distance flo become equal, and as shown in Fig. 5, the object distance 1 is On the other hand, each time an erect equal-magnification real image 2 is formed on the optical axis 4.

またこの条件を満足するロッド状レンズを、第6図に示
すように2段又は3段に重ね、さらにこの重ねたものの
所要複数個を一方向に配列してロッドレンズアレーを作
製し複数個のロッドレンズを透過した光束を合成して明
るい正立等倍結像が可能となることが述べられている。
In addition, rod-shaped lenses that satisfy this condition are stacked in two or three stages as shown in Figure 6, and a required number of these stacked lenses are arranged in one direction to create a rod lens array. It is stated that a bright erect 1-magnification image can be formed by combining the light beams transmitted through the rod lens.

ここで、であり、王立等倍実像形成条件は!。=f+、
M(倍率)−1である。
Here, the royal life-size real image formation conditions are! . =f+,
M (magnification)-1.

このようなロッドレンズアレーは、物体と像間距l1l
(共波長L”j2o +11 + +7o )が通常の
レンズと比べて短かいので、複写器やファクシミリの転
写光学系を小型化するのに有用である。
Such a rod lens array has a distance between the object and the image of l1l.
(Co-wavelength L"j2o +11 + +7o) is shorter than that of a normal lens, so it is useful for downsizing the transfer optical system of a copier or facsimile.

[発明が解決しようとする問題点コ しかしながら、従来のロッドレンズアレーは第6図に示
すように円柱状レンズがお互いに円周の一点で近接レン
ズと接することになるので、レンズ同士の隙間が多く出
来ることになる。各レンズ間の迷光の出入を防ぐため、
レンズ間の隙間には光を吸収する材料を充填するので、
レンズアレーに入射した光はこの部分だけ透過しなくな
り、光量を損うことになる。
[Problems to be Solved by the Invention] However, in the conventional rod lens array, as shown in Fig. 6, the cylindrical lenses are in contact with the close lens at one point on the circumference, so the gap between the lenses is large. You can do a lot. To prevent stray light from entering and exiting between each lens,
The gap between the lenses is filled with a material that absorbs light, so
The light incident on the lens array is no longer transmitted through this portion, resulting in a loss of light intensity.

レンズアレーのなかには横方向については、まったく等
しい像を転写する場合、たとえばバーコードを読みとる
場合やアレー光源のような直線光源より発光する光と直
線状に集光する場合、必ずしも1コツト状レンズを使う
必要はなく、1コツト状レンズを用いると、上記のよう
に大幅に光量を失うという欠点があった。
In the horizontal direction, some lens arrays do not necessarily require a single tip-shaped lens when transferring exactly the same image, for example when reading a bar code or when condensing light emitted from a linear light source such as an array light source in a straight line. There is no need to use it, and if a single-shaped lens is used, there is a drawback that the amount of light is significantly lost as described above.

[問題点を解決するための手段] 一方、屈折率分布型レンズは、上述の円柱状のレンズ以
外にすでに特公昭61−5661号公報で)ホぺられて
いるごとく、厚さ方向にのみほぼ(1)式あるいは(2
式に従う1方向にのみ屈折率勾配を有する集光性のスラ
ブ状レンズである。
[Means for solving the problem] On the other hand, in addition to the above-mentioned cylindrical lens, the gradient index lens has a refractive index lens that is almost only in the thickness direction, as already described in Japanese Patent Publication No. 61-5661). Equation (1) or (2
It is a light-converging slab-like lens that has a refractive index gradient in only one direction according to the formula.

すなわち、屈折率分布型スラブレンズ5は、第7図に示
す如く直方体形状のガラス内にX方向およびY方向は屈
折率勾配を有せず、Y方向のみ直方体の中心面から上下
方向に向って式(1)又は(2に従って屈折率が減少す
るような屈折率勾配を有するレンズである。
That is, as shown in FIG. 7, the graded index slab lens 5 has no refractive index gradient in the X direction and Y direction in the rectangular parallelepiped-shaped glass, and only in the Y direction from the center plane of the rectangular parallelepiped in the vertical direction. The lens has a refractive index gradient such that the refractive index decreases according to equation (1) or (2).

従って2方向を光軸にとれば、X方向の長さはスラブレ
ンズの製造条件が許す限り大ぎくとることができる。ま
たZ軸に沿って入射した光線に対してX方向はまったく
レンズ効果はない。これに対してY方向は屈折率分布型
ロッドレンズの場合と同様に屈折率勾配を有するので、
入射光はY方向については正弦波で透過することになる
。従って、レンズ長をP/2から3P/4長さに調節す
るとY方向に対しては像距111f。と物体距111I
+が等しくなり、正立等倍実像を形成することができる
。このレンズアレーはまたレンズ入射端より離れた位置
にある光源からの光を効率良く出射側に集光するのにも
有益である。スラブレンズを用いて点光源又は線光源よ
り発する光線を出射側に線状に集光するような場合、第
8図に示す如く光源9とレンズが、ある距離だけ離れて
いるとスラブレズ5の横方向、即ちX方向は!li造条
件が許す限り大きくとることができるが、厚さ方向即ち
Yl)向には限りがあるため光束の一部はケラしてしま
う。
Therefore, if two directions are taken as optical axes, the length in the X direction can be made as large as the manufacturing conditions of the slab lens allow. Furthermore, there is no lens effect at all in the X direction for light rays incident along the Z axis. On the other hand, since the Y direction has a refractive index gradient as in the case of a gradient index rod lens,
The incident light is transmitted as a sine wave in the Y direction. Therefore, when the lens length is adjusted from P/2 to 3P/4, the image distance in the Y direction is 111f. and object distance 111I
+ become equal, and an erect equal-size real image can be formed. This lens array is also useful for efficiently condensing light from a light source located away from the lens entrance end onto the exit side. When using a slab lens to linearly condense light rays emitted from a point light source or a line light source toward the output side, if the light source 9 and the lens are separated by a certain distance as shown in FIG. The direction, that is, the X direction! Although it can be made as large as the lighting conditions allow, there is a limit in the thickness direction, that is, in the Yl direction, so a part of the light beam is eclipsed.

そこで、本発明は入射した光Dをほとんど損うことなく
効率良く透過させつるスラブ状レンズアレーを提供する
ことを目的とし、更に光束のケラレをなくしたスラブ状
レンズアレーを提供することを目的としている。
Therefore, an object of the present invention is to provide a slab-like lens array that efficiently transmits the incident light D with almost no damage, and a further object of the present invention is to provide a slab-like lens array that eliminates vignetting of the luminous flux. There is.

[問題点を解決するための手段] 上記目的を達成するため、本発明はスラブ状レンズをと
垂直な面を接し、屈折率分布が互いに平行になるように
屈折率分布の方向に複数個重ね合せることによって実現
するスラブ状レンズアレーを用い、レンズアレーに入射
した光量をほとんど損うことなく効率良く透過させ、従
来のレンズアレーの持つ問題点を解決するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention comprises stacking a plurality of slab-shaped lenses in the direction of the refractive index distribution so that the perpendicular surfaces of the lenses are in contact with each other and the refractive index distributions are parallel to each other. By using a slab-like lens array realized by combining lenses, the amount of light incident on the lens array can be transmitted efficiently with almost no loss, thereby solving the problems of conventional lens arrays.

レンズアレーを構成する屈折率分布型スラブレンズ5は
、第7図について説明したように直方体形状のガラス内
にX方向およびY方向は屈折率勾配を右Uず、Y方向の
み直方体の中心面から上下方向に向って、式(1)又は
(′2Jに従って屈折率が減少でるような屈折率勾配を
有し、Z方向を光軸にとればX方向の長さにスラブレン
ズの製造条件が許す限り大きくとることができる。また
Z軸に沿つ゛て入射した光線に対してX方向はまったく
レンズ効果はないが、Y方向のみ入射光は正弦波で透過
することになる。従って、レンズ長をP/2から3P/
4の長さに調節するとY方向に対しては像距離!。と物
体距離β1が等しくなり、正立等倍実像を形成すること
ができる。
As explained with reference to FIG. 7, the graded index slab lens 5 constituting the lens array has a refractive index gradient in the rectangular parallelepiped glass in the X direction and the Y direction, but only in the Y direction from the central plane of the rectangular parallelepiped. It has a refractive index gradient such that the refractive index decreases according to formula (1) or ('2J) in the vertical direction, and if the Z direction is taken as the optical axis, the manufacturing conditions of the slab lens allow for the length in the X direction. It can be made as large as possible. Also, for light rays incident along the Z axis, there is no lens effect at all in the X direction, but incident light only in the Y direction is transmitted as a sine wave. Therefore, the lens length can be P/2 to 3P/
If you adjust the length to 4, the image distance in the Y direction! . and object distance β1 become equal, and an erect equal-magnification real image can be formed.

このスラブレンズ5を第1図に示すようにY方向に多数
個(図では3個)重ね合せてレンズアレー10にすると
、Y方向に対してはレンズを透過した光束を合成して明
るい像を形成することが可能となる。そこで、横方向、
即ちX方向についてはまったく等しい像を転写する場合
、例えばバーコードを読みとる場合やアレー光源のよう
な直線状光源より発する光を直線状に集光する場合など
では、第2図にその斜視図を示すようにレンズ同士の間
の隙間は殆/υどなくX方向は一体のガラスで境界がな
いので、光を追うことなく像を形成することが可能とな
る。また製造面においても、円柱レンズを積み上げるの
と比較すると直方体を重ね合せるだけの簡単な工程で作
製可能な利点がある。
As shown in FIG. 1, when a large number of slab lenses 5 (three in the figure) are stacked together in the Y direction to form a lens array 10, the light beams transmitted through the lenses are combined to form a bright image in the Y direction. It becomes possible to form. Therefore, in the horizontal direction,
In other words, when an image that is exactly the same in the X direction is to be transferred, for example when reading a bar code or when condensing light emitted from a linear light source such as an array light source in a straight line, the perspective view is shown in Figure 2. As shown, there is almost no gap between the lenses and there is no boundary in the X direction as the glass is a single piece of glass, so it is possible to form an image without following the light. In terms of manufacturing, it also has the advantage that it can be manufactured through a simple process of stacking rectangular parallelepipeds, compared to stacking cylindrical lenses.

1個のスラブレンズ5を用いて点光源又は線光源より発
する光線を出射側に線状に集光させる場合には、第8図
について述べたように厚さ方向、即ちY方向には限りが
あるため光束の一部はケラしてしまう。しかし、第3図
に示すようにレンズ長がP/2から3P/4の長さのス
ラブレンズを厚さ方向(屈折率分布を有するY方向)に
徂ね合せてレンズアレー10とすることによって等倍結
縁条件を作り出せば、共役長位置にある光源からの光9
は常に反対方向の共役長位置に無駄なく集光することが
可能となる。勿論、結像系として用いる場合でも光源か
らの光線の集光系として用いる場合でも、隣接するレン
ズからレンズの開口角を越えて入射して来る迷光は、レ
ンズアレー10の結像特性や集光特性を悪化させるので
、レンズ間に使用波長を吸収するコート剤を挿入するこ
とが必要となるが、これとても円柱体同士の隙間を充填
するロッドレンズアレーに比較するとあらかじめ上下面
を吸収コート剤を蒸着するかコートしたスラブレンズを
重ね合せるという簡単な工程で迷光を防ぐことができる
When one slab lens 5 is used to condense light rays emitted from a point light source or a line light source into a line on the output side, there is a limit in the thickness direction, that is, in the Y direction, as described with reference to FIG. As a result, part of the luminous flux is vignetted. However, as shown in FIG. 3, by combining slab lenses with a lens length of P/2 to 3P/4 in the thickness direction (Y direction with a refractive index distribution) to form a lens array 10. If we create the same magnification condition, the light from the light source located at the conjugate length position9
It is possible to always focus light on the conjugate length position in the opposite direction without waste. Of course, whether it is used as an imaging system or as a condensing system for light rays from a light source, stray light that enters from adjacent lenses beyond the aperture angle of the lens may be affected by the imaging characteristics of the lens array 10 or the condensing system. To avoid this, it is necessary to insert a coating agent between the lenses that absorbs the wavelength used, but compared to rod lens arrays that fill the gaps between cylinders, it is necessary to insert an absorbing coating agent on the upper and lower surfaces in advance. Stray light can be prevented with a simple process of stacking vapor-deposited or coated slab lenses.

[実施例] 市販のスラブレンズGLS25C(Cl =−、0,0
84〜0、088、n0= 1.47開口数N、 A、
0.22 、ピッチ長71〜75IIIIl11厚さ3
.4n+a )のレンズを幅5mm。
[Example] Commercially available slab lens GLS25C (Cl = -, 0,0
84~0, 088, n0 = 1.47 numerical aperture N, A,
0.22, pitch length 71-75III11 thickness 3
.. 4n+a) lens with a width of 5mm.

長さ44.5mmとし、これを屈折率分布を有する方向
、即ち厚さ方向に3枚重ね合せで厚さ10.2mmのレ
ンズアレーとすることにより、厚さ方向のみ等倍結像条
件を満す共役長95.5mmの光学系を形成することが
できた。同様にして多数個厚さ方向に重ね合せたスラブ
レンズアレー10を第3図に示ずように光集束系に用い
る場合は、光源9とレンズの距離によってスラブレンズ
への最大入射角が決まる。
The length is 44.5 mm, and by stacking three lenses in the direction of the refractive index distribution, that is, in the thickness direction, to form a 10.2 mm thick lens array, the same-magnification imaging condition is satisfied only in the thickness direction. An optical system with a conjugate length of 95.5 mm could be formed. When a plurality of slab lens arrays 10, which are similarly stacked in the thickness direction, are used in a light focusing system as shown in FIG. 3, the maximum angle of incidence on the slab lens is determined by the distance between the light source 9 and the lens.

上記の市販のスラブレンズを用いた場合、および厚さ2
.5mmで上記と同様の光学定数を右するスラブレンズ
を用いた場合のレンズアレーが受光可能な光源との距離
をスラブレンズの間口角と比較して表1にまとめた。
When using the above commercially available slab lens, and thickness 2
.. Table 1 summarizes the distance from the light source that the lens array can receive when using a slab lens having the same optical constant as above at 5 mm, compared with the frontage angle of the slab lens.

表1 スラブレンズアレーの可能な入射開口数と光源距
離の関係*但しスラブレンズの間口数はN、 A、 −
0,22さらに、上記の市販のスラブレンズGL325
Cを重ね合せる時に、光吸収剤として黒色のアクリルラ
ッカーをスプレーを用いて隣接する面、即ち厚さ方向の
上下面に塗布した後、これを重ね合せたところ、光吸収
剤を用いない場合に比べてコントラストの良い像を19
ることができた。
Table 1 Relationship between possible entrance numerical aperture of slab lens array and light source distance *However, the number of frontages of slab lenses is N, A, -
0,22 Furthermore, the above commercially available slab lens GL325
When layering C, a black acrylic lacquer was sprayed as a light absorber to the adjacent surfaces, that is, the upper and lower surfaces in the thickness direction, and when these were layered, it was found that when no light absorber was used, 19 images with good contrast compared to
I was able to

[発明の効果] 以上述べた如く、本発明に基づいて得られた一方向にの
み屈折率勾配を有する集光性スラブレンズアレーは、屈
折率分布のない横方向についてはまった等しい像を転写
する場合にあっては、レンズアレーに入射した光束をほ
とんど損うことなく像を形成することができるばかりで
なく、通常のスラブレンズと同様に点光源又は線光源か
ら発した光線を出射側で線状を集光することが可能とな
る。さらにレンズアレーの!!!造上も、円柱レンズ積
み上げるような困難さを必要とせず直方体を重ね合せる
だけの簡単な工程で作製可能となる。
[Effects of the Invention] As described above, the light-condensing slab lens array having a refractive index gradient in only one direction obtained based on the present invention transfers an equal image that fits in the lateral direction without a refractive index distribution. In some cases, it is possible not only to form an image with almost no damage to the light flux incident on the lens array, but also to form an image on the output side of the light rays emitted from a point or line light source, similar to a normal slab lens. It becomes possible to focus light on the shape of the object. Even more lens array! ! ! In terms of construction, it can be manufactured using a simple process of stacking rectangular parallelepipeds without the difficulty of stacking cylindrical lenses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一方向性屈折率分布型スラブレンズアレ
ーの側面図、第2図はバーコード読取りに利用した同上
スラブレンズの斜視図、第3図は第1図のスラブレンズ
による光源からの集光を説明する側面図、第4図は屈折
率分布型レンズの光学定数を説明する側面図、第5図は
従来の屈折率分布型[1ツドレンズによる王立等倍実像
形成を説明する側面図、第6図はロッドレンズアレーの
断面図、第7図は屈折率分布型スラブレンズの斜視図、
第8図はレンズによる光線のケラレを説明する側面図で
ある。 1・・・物体、2・・・像、3・・・ロッドレンズ、4
・・・光軸、5・・・スラブレンズ、6・・・物体、7
・・・像、8・・・光束、9・・・光源、10・・・レ
ンズアレー。 出 願 人  ホーヤ株式会社 代  理  人   朝 倉 正 幸 第1図 第2図 第3図 第4図 第5図
Figure 1 is a side view of the unidirectional refractive index gradient slab lens array of the present invention, Figure 2 is a perspective view of the same slab lens used for barcode reading, and Figure 3 is a light source from the slab lens of Figure 1. Fig. 4 is a side view illustrating the optical constants of a gradient index lens, and Fig. 5 is a side view illustrating the formation of a royal equal-magnification real image using a conventional gradient index lens. 6 is a cross-sectional view of the rod lens array, and FIG. 7 is a perspective view of the gradient index slab lens.
FIG. 8 is a side view illustrating vignetting of light rays caused by a lens. 1...Object, 2...Image, 3...Rod lens, 4
...Optical axis, 5...Slab lens, 6...Object, 7
...image, 8...luminous flux, 9...light source, 10...lens array. Applicant Hoya Co., Ltd. Agent Masayuki Asakura Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 一方向にのみ屈折率分布を有する集光性のスラブ状
屈折率分布型レンズを、屈折率分布と垂直な面を接し、
屈折率分布が相互に平行になるように屈折率分布の方向
に沿って複数個重ね合せたことを特徴とするスラブレン
ズアレー。 2 重ね合せた複数個のスラブレンズの相互が接する境
界面に、使用する波長の光を吸収する材料を配置したこ
とを特徴とする第1項に記載のスラブ状レンズアレー。
[Claims] 1. A slab-like gradient index lens having a light-concentrating property having a refractive index distribution in only one direction, with a surface perpendicular to the refractive index distribution in contact with the lens,
A slab lens array characterized in that a plurality of slab lenses are stacked along the direction of the refractive index distribution so that the refractive index distributions are parallel to each other. 2. The slab-shaped lens array according to item 1, characterized in that a material that absorbs light of the wavelength to be used is arranged on the boundary surface where the plurality of stacked slab lenses touch each other.
JP61085112A 1986-04-15 1986-04-15 One directional refractive index distribution type slab lens array Pending JPS62242913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61085112A JPS62242913A (en) 1986-04-15 1986-04-15 One directional refractive index distribution type slab lens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61085112A JPS62242913A (en) 1986-04-15 1986-04-15 One directional refractive index distribution type slab lens array

Publications (1)

Publication Number Publication Date
JPS62242913A true JPS62242913A (en) 1987-10-23

Family

ID=13849540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61085112A Pending JPS62242913A (en) 1986-04-15 1986-04-15 One directional refractive index distribution type slab lens array

Country Status (1)

Country Link
JP (1) JPS62242913A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590903A (en) * 1978-12-28 1980-07-10 Canon Inc Projector
JPS5713526U (en) * 1980-06-30 1982-01-23
JPS59146946A (en) * 1983-02-04 1984-08-23 Hoya Corp Manufacture of slab-shaped lens having refractive index gradient only in thickness direction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590903A (en) * 1978-12-28 1980-07-10 Canon Inc Projector
JPS5713526U (en) * 1980-06-30 1982-01-23
JPS59146946A (en) * 1983-02-04 1984-08-23 Hoya Corp Manufacture of slab-shaped lens having refractive index gradient only in thickness direction

Similar Documents

Publication Publication Date Title
CN100363776C (en) Exposure head
WO2002056062A9 (en) Catoptric and catadioptric imaging systems
JP4495942B2 (en) Imaging optical system, image forming apparatus, printer and image reading apparatus
US5323268A (en) Compound lens
JP2006337594A (en) Luminous flux array density transformation method, luminous flux array density transformation member and light source device
JP2007513372A5 (en)
JPS62242913A (en) One directional refractive index distribution type slab lens array
JPS6275414A (en) Optical system for image formation
JP4953661B2 (en) Photoelectric encoder
CN102681399A (en) Exposure device and image forming apparatus
JP3306793B2 (en) Imaging element
TWI817427B (en) Pupil module and inspection device
JP3258085B2 (en) Line imaging device
JPH06250119A (en) Image forming element
JPH0713101A (en) Line image forming element
Takahashi et al. Plastic lens array with the function of forming unit magnification erect image using roof prisms
JP2823908B2 (en) Imaging element
JPS6218531A (en) Scan optical system
JPH06250117A (en) Image forming element
JPH0485516A (en) Image forming element
JPS63231310A (en) Light guide lens array
JPH07120699A (en) Line imaging element
JPH06130325A (en) Surface division projecting element
JPH02201414A (en) Stop plate in unmagnification image forming element
JPH0375721A (en) Unmagnification imaging element