JP4495942B2 - Imaging optical system, image forming apparatus, printer and image reading apparatus - Google Patents

Imaging optical system, image forming apparatus, printer and image reading apparatus Download PDF

Info

Publication number
JP4495942B2
JP4495942B2 JP2003359425A JP2003359425A JP4495942B2 JP 4495942 B2 JP4495942 B2 JP 4495942B2 JP 2003359425 A JP2003359425 A JP 2003359425A JP 2003359425 A JP2003359425 A JP 2003359425A JP 4495942 B2 JP4495942 B2 JP 4495942B2
Authority
JP
Japan
Prior art keywords
lens
image
optical system
line
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003359425A
Other languages
Japanese (ja)
Other versions
JP2005122041A (en
Inventor
健一 石塚
茂 梅木
信一 小菅
雅春 小田嶋
貴幸 石亀
一郎 及川
高橋  彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP2003359425A priority Critical patent/JP4495942B2/en
Publication of JP2005122041A publication Critical patent/JP2005122041A/en
Application granted granted Critical
Publication of JP4495942B2 publication Critical patent/JP4495942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • B41J2/451Special optical means therefor, e.g. lenses, mirrors, focusing means

Description

本発明は、複写機やプリンターに用いられる静電写真式画像形成装置のライン状光源用結像光学系に関する。   The present invention relates to an imaging optical system for a line light source of an electrophotographic image forming apparatus used for a copying machine or a printer.

図6はライン状に配列されている例えばLEDのような微小な光源を、結像光学系を用いて感光体などへ結像させる様子を示す概念図である。同図(a)は側面図、同図(b)は斜視図である。
同図において符号1はライン状光源、2は結像光学系、3は感光体等の受光面をそれぞれ示す。
ライン状光源1の発光点1aから出た光束L0は、結像光学系2を経て結像面(単に像面と呼ぶこともある)に置かれた受光面に結像する。
結像光学系2としては、装置をコンパクト化するため、同図のように複数の光学素子を光軸を互いに平行にしてライン状に並べたいわゆるレンズアレイを用いることが多い。この場合、結像が反転像であると、隣接する光学素子同士の像が個別に反転しているため、相互につながった像にならず、光源ラインが正しく結像できない。そのため、ここに用いる結像光学系は正立実像系でなければならない。正立実像であれば、隣接した光学素子同士の像の向きが正しく接続され、結像倍率を等倍にすれば、光源ラインを正しく結像できる。
FIG. 6 is a conceptual diagram showing how minute light sources such as LEDs arranged in a line are imaged onto a photoconductor using an imaging optical system. The figure (a) is a side view, and the figure (b) is a perspective view.
In the figure, reference numeral 1 denotes a linear light source, 2 denotes an imaging optical system, and 3 denotes a light receiving surface such as a photoconductor.
The light beam L0 emitted from the light emitting point 1a of the line light source 1 forms an image on the light receiving surface placed on the image forming surface (sometimes referred to simply as an image surface) via the image forming optical system 2.
As the imaging optical system 2, in order to reduce the size of the apparatus, a so-called lens array in which a plurality of optical elements are arranged in a line with their optical axes parallel to each other as shown in the figure is often used. In this case, if the image is an inverted image, the images of adjacent optical elements are individually inverted, so that the images are not connected to each other, and the light source line cannot be correctly formed. Therefore, the imaging optical system used here must be an erecting real image system. In the case of an erect real image, the image directions of adjacent optical elements are correctly connected, and if the imaging magnification is made equal, the light source line can be correctly imaged.

従来、このような光学系として屈折率分布型のロッドレンズアレイ(商品名セルフォック)が用いられていた。屈折率分布型のロッドは、端面に入射した光線が、ロッド内を正弦波を描いて進むため、自己収束性があり、正弦波の半波長以下の長さに設定すると倒立像が得られ、その2倍程度の長さに設定すると正立像が得られる特性がある。ロッドに対して光源と像面を対称に置き、ロッドの長さ方向の中央に倒立像が結像するようにロッドの長さを選ぶと、像面には光源の等倍の正立実像が得られる。
ロッドレンズは屈折率の分布曲線がほぼ2次曲線になるよう形成されているが、より高次の項の影響で収差が十分取りきれない。また、光を取り込める範囲を示すニューメリカルアパーチュア(NAと称す)が小さいので、明るい像が得られにくい。これらの問題を有するため、この方式は高解像度用としては使用できなかった。
Conventionally, a refractive index distribution type rod lens array (trade name SELFOC) has been used as such an optical system. The gradient index rod has a self-convergence because the light beam incident on the end face travels in a sine wave in the rod, and an inverted image is obtained when the length is set to a half wavelength or less of the sine wave. If the length is set to about twice that, an erect image can be obtained. Place the light source and the image plane symmetrically with respect to the rod, and select the length of the rod so that an inverted image is formed at the center in the length direction of the rod. can get.
The rod lens is formed so that the refractive index distribution curve is substantially a quadratic curve, but the aberration cannot be sufficiently removed due to the influence of higher-order terms. In addition, since the numerical aperture (referred to as NA) indicating the range in which light can be captured is small, it is difficult to obtain a bright image. Due to these problems, this method cannot be used for high resolution.

高解像度用を目的とした光学系の提案がある(例えば、特許文献1 参照。)。この光学系は、同一構成の光学系を2列の千鳥足状に多数配列してライン状となしたもので、2列の中間にライン状光源を配置している。光学系を千鳥足状に配列するのは像面における光量分布をなるべく均一にするためである。個別の光学系は、例えば焦点距離がFの同一形状の薄肉レンズの4枚構成で形成されている。各レンズは焦点距離と同じFの間隔で配置され、光源と像面はそれぞれ端のレンズから2Fの距離に配置されている。この構成では4枚のレンズの丁度真ん中が中間結像面となり、光源が光軸上にない場合、光源の光軸からの距離(物体高)に対し中間結像面における像の光軸からの高さ(像高)は丁度2分の1になる。光学系は中間結像面に対し対称形に構成されているので、中間結像面にできた像は残りの光学系を経た後、像面において、物体高と同じ高さに、光源と同じ大きさの光源像を結ぶ。
多数の光学系はそれぞれの第1レンズを共通の1枚の板としてアレイ状に形成し、同様に第2、第3、第4レンズもそれぞれを板状に形成し、その4枚の板状レンズアレイを所定の間隔を隔てて重ねることで複数の光学系を構成している。
薄肉レンズ4枚の構成の代わりに、面間距離がFだけ離れた厚肉レンズ2枚構成も、同等の結像効果があることが示されている。中間結像面に対する対称性を崩さなければ、厚肉レンズの両面のそれぞれの焦点距離が必ずしも等しくなくても、同等の効果を得る光学系が構成できることも示されている。
There is a proposal of an optical system intended for high resolution (see, for example, Patent Document 1). In this optical system, a large number of optical systems having the same configuration are arranged in two rows in a staggered pattern to form a line shape, and a linear light source is arranged in the middle of the two rows. The reason why the optical systems are arranged in a staggered pattern is to make the light quantity distribution on the image plane as uniform as possible. The individual optical system is formed of, for example, a four-lens configuration of thin lenses having the same shape with a focal length of F. Each lens is arranged at the same F interval as the focal length, and the light source and the image plane are arranged at a distance of 2F from the end lens. In this configuration, the middle of the four lenses is the intermediate imaging plane, and when the light source is not on the optical axis, the distance from the optical axis of the light source (object height) from the optical axis of the image on the intermediate imaging plane. The height (image height) is exactly half. Since the optical system is configured symmetrically with respect to the intermediate image plane, the image formed on the intermediate image plane passes through the rest of the optical system, and then at the same height as the object height on the image plane, the same as the light source Connect light source images of size.
In many optical systems, each first lens is formed in an array as a common plate, and each of the second, third, and fourth lenses is also formed in a plate shape. A plurality of optical systems is configured by overlapping lens arrays with a predetermined interval.
It has been shown that, instead of the configuration of four thin lenses, a configuration of two thick lenses having an inter-plane distance of F is equivalent to an imaging effect. It is also shown that if the symmetry with respect to the intermediate image plane is not broken, an optical system that can obtain the same effect can be configured even if the focal lengths of both surfaces of the thick lens are not necessarily equal.

上記光学系では、解像度示すMTF(Modulation of Transfer Function)を高めるため、レンズ板間に遮光手段として、レンズ位置に対応して貫通穴が設けられた仕切り板をはさんでいる。しかし、レンズアレイはその長さに比べてレンズピッチが非常に小さいため、別体の仕切り板をはさんだ場合、両者をよほど高い精度で作らないと、ピッチのずれによって、場所によっては不所望の光束の「蹴られ」が発生する。そうでない場合でも、両者の材質が異なる場合は、温度変化による線膨張率の違いによっても同様なことが起こる可能性がある。透明なレンズ板と遮光用の黒い仕切り板では、同じ線膨張率の材質を選ぶことは難しい。   In the above optical system, in order to increase MTF (Modulation of Transfer Function) indicating resolution, a partition plate provided with a through hole corresponding to the lens position is interposed as a light shielding means between the lens plates. However, since the lens pitch of the lens array is very small compared to its length, if a separate partition plate is sandwiched between the two, unless both are made with very high accuracy, it may be undesirable depending on the location due to the deviation of the pitch. “Kicking” of the luminous flux occurs. Even if this is not the case, if the two materials are different, the same may occur due to the difference in the linear expansion coefficient due to temperature changes. It is difficult to select a material with the same linear expansion coefficient between a transparent lens plate and a black partition plate for shading.

特開2000−221445号公報(第3頁、第4図)Japanese Unexamined Patent Publication No. 2000-212445 (page 3, FIG. 4)

高解像度の画像形成装置に用いることのできる新規な結像光学系の実現を課題とする。An object is to realize a novel imaging optical system that can be used in a high-resolution image forming apparatus.

請求項1に記載の発明は、ライン状の光源の正立等倍像を結像させる結像光学系であって、ライン状の光源と、第1〜第4のレンズ板と、薄い遮光手段とを有する。
第1〜第4のレンズ板は、何れも、複数の単体レンズを、ライン状の光源のライン方向に、千鳥足状で、少なくとも2列のレンズ列のレンズアレイに配列一体化し、且つ、上記レンズ列をなす単体レンズの配列が同一である。
第1〜第4のレンズ板のレンズアレイにおいて、配列が互いに対応する単体レンズが共軸の結像レンズ系を構成する。
第2のレンズ板および第3のレンズ板は、片面にレンズアレイが形成され、他面が平面であって、これら第2および第3のレンズ板の平面により上記遮光手段を挟持する。
The invention according to claim 1 is an imaging optical system for forming an erecting equal-magnification image of a line-shaped light source, wherein the line-shaped light source, the first to fourth lens plates, and a thin light shielding means And have.
In each of the first to fourth lens plates, a plurality of single lenses are arranged and integrated into a lens array of at least two lens rows in a staggered pattern in the line direction of the line-shaped light source, and the lens The arrangement of the single lenses forming the row is the same.
In the lens arrays of the first to fourth lens plates, single lenses whose arrangements correspond to each other constitute a coaxial imaging lens system.
The second lens plate and the third lens plate have a lens array formed on one side and the other side is a flat surface, and the light shielding means is sandwiched between the flat surfaces of the second and third lens plates.

第1および第2のレンズ板のレンズアレイは共同して、ライン状の光源の倒立実像を、第2レンズ板の平面上に中間像として結像させ、第3および第4のレンズ板のレンズアレイが、上記倒立実像を物体として、ライン状の光源の正立等倍像を結像する。  The lens arrays of the first and second lens plates jointly form an inverted real image of the linear light source as an intermediate image on the plane of the second lens plate, and the lenses of the third and fourth lens plates. The array forms an erecting equal-magnification image of a linear light source using the inverted real image as an object.

遮光手段は、第1および第2のレンズ板の各共軸の単体レンズによる中間像の結像位置に「ライン状の光源のライン方向を長手方向とするスリット状の開口部」を形成されて、正立等倍像を結像する光を第3のレンズ板の側へ通過させ、開口部以外が遮光部であって、正立等倍像の結像に対して迷光と成る光を遮断する。  The light-shielding means is formed with a “slit-shaped opening having a line direction of a line-shaped light source as a longitudinal direction” at an imaging position of an intermediate image by a single lens of each of the coaxial axes of the first and second lens plates. The light that forms an erecting equal-magnification image is allowed to pass to the third lens plate side, and the light other than the aperture is a light-shielding part that blocks stray light from forming an erecting equal-magnification image. To do.

請求項2に記載の発明は、請求項1に記載の結像光学系において、遮光手段の有するスリット状の開口部の、ライン状の光源のライン方向に対応する長さが、第2レンズ板のレンズアレイをなすレンズのレンズ面の「当該レンズ面を含んで結像される倒立実像の像高に対応する弦の長さ」に等しいことを特徴とする
請求項3に記載の発明は、請求項1または2記載の結像光学系において、前記複数のレンズ板の形状が「中間像の結像面に関し対称形」であることを特徴とする
請求項4記載の発明は、請求項1〜3の任意の1に記載の結像光学系において、
第1〜第4のレンズ板の1以上において、単体レンズの周囲の平面部分を遮光手段で遮光したことを特徴とする。
請求項5に記載の発明は、請求項1ないし4の任意の1に記載の結像光学系におけるライン状の光源が「半導体レーザ、LED、EL素子、光導波路、および光ファイバーのうちのいずれか1つをライン状に配列したもの」であることを特徴とする
According to a second aspect of the present invention, in the imaging optical system according to the first aspect, the length corresponding to the line direction of the line-shaped light source of the slit-shaped opening of the light shielding means is the second lens plate. It is equal to "the length of the string corresponding to the image height of an inverted real image formed including the lens surface" of the lens surface of the lens array .
According to a third aspect of the present invention, in the imaging optical system according to the first or second aspect, the shape of the plurality of lens plates is “symmetrical with respect to the image plane of the intermediate image” .
The invention according to claim 4 is the imaging optical system according to any one of claims 1 to 3,
In one or more of the first to fourth lens plates, the planar portion around the single lens is shielded by the light shielding means.
According to a fifth aspect of the invention, the linear light source in the imaging optical system according to any one of the first to fourth aspects is any one of “semiconductor laser, LED, EL element, optical waveguide, and optical fiber”. One is arranged in a line shape ” .

請求項6に記載の発明は、請求項1ないし5の任意の1に記載の結像光学系を用いたことを特徴とする画像形成装置である。  A sixth aspect of the present invention is an image forming apparatus using the imaging optical system according to any one of the first to fifth aspects.
請求項7に記載の発明は、請求項6に記載の画像形成装置を用いたことを特徴とする複写機である。  A seventh aspect of the present invention is a copying machine using the image forming apparatus according to the sixth aspect.
請求項8に記載の発明は、請求項6に記載の画像形成装置を用いたことを特徴とするプリンターである。  The invention described in claim 8 is a printer using the image forming apparatus described in claim 6.
請求項9に記載の発明は、請求項1ないし5の任意の1に記載の結像光学系を用いたことを特徴とする画像読み取り装置である。  A ninth aspect of the present invention is an image reading apparatus using the imaging optical system according to any one of the first to fifth aspects.

本発明によれば、高解像度の画像形成装置に用いることのできる、新規な結像光学系が得られる。 According to the present invention , a novel imaging optical system that can be used in a high-resolution image forming apparatus can be obtained.

ライン状光源と像面の間に配置する複数のレンズ板からなる等倍正立実像光学系であって、それぞれ複数の単体レンズを有する複数のレンズ板は、中間結像面に関して対称形で、その一部は中間結像面に一致する平面部を有し、該平面部にライン状光源の像が形成される位置にスリット状の開口部を有する遮光手段を設け、各レンズ板の単体レンズ周囲の平面部にも遮光手段を設ける。   An equal magnification erecting real image optical system composed of a plurality of lens plates disposed between a line-shaped light source and an image plane, each of the plurality of lens plates having a plurality of single lenses is symmetrical with respect to the intermediate image plane, A part of the lens plate has a flat portion that coincides with the intermediate image plane, and a light-shielding means having a slit-like opening is provided at the position where the image of the line-shaped light source is formed on the flat portion. A light shielding means is also provided in the surrounding flat portion.

図1は本発明の遮光手段の一実施形態を示す図である。
同図(a)は正面図、同図(b)は同図(a)のA−A矢視、同図(c)は同図(b)のSAを通る光軸に平行な断面の概要図である。ただし、同図(b)、(c)において保持部4は省略した。いずれも、光線を明確にするため破断面のハッチングは省略した。
同図において符号10は光学系、11は第1レンズ板、12は第2レンズ板、13は第3レンズ板、14は第4レンズ板、15は中間結像面、S0は遮光手段をそれぞれ示す。遮光手段S0の厚みは誇張して示してある。
同図(a)において、点線はライン状光源の相対位置を示す。
第1ないし第4の各レンズ板は、細長い板状に形成され、それぞれは複数の同一形状の単体レンズが、この例では「2列の千鳥足状」に配列されてレンズアレイをなしている。ライン状光源は2列のレンズ列の丁度中間に対応するように配置されている。即ち、ライン状光源は、同図(a)の図面に直交する方向において、点線の位置を占めるように配置される。
FIG. 1 is a view showing an embodiment of the light shielding means of the present invention.
(A) is a front view, (b) is an AA arrow view of (a), and (c) is an outline of a cross section parallel to the optical axis passing through SA in (b). FIG. However, the holding part 4 is omitted in FIGS. In both cases, hatching of the fracture surface was omitted to clarify the light rays.
In the figure, reference numeral 10 denotes an optical system, 11 denotes a first lens plate, 12 denotes a second lens plate, 13 denotes a third lens plate, 14 denotes a fourth lens plate, 15 denotes an intermediate image plane, and S0 denotes a light shielding unit. Show. The thickness of the light shielding means S0 is exaggerated.
In FIG. 2A, the dotted line indicates the relative position of the line light source.
Each lens plate of the first to fourth are formed in an elongated plate shape, single lens of a plurality of identical shape each, in this example forms a lens array are arranged in "2 rows of staggered". The line light source is arranged so as to correspond to exactly the middle of the two lens rows. That is, the line light source is arranged so as to occupy the position of the dotted line in the direction orthogonal to the drawing of FIG.

ここで千鳥足状と呼ぶ配列は、2列共配列ピッチは等しいが、一方の配列と他方の配列が配列の長手方向に関して半ピッチ分ずれている状態の配列を言う。同図(a)の例では互いに最短距離の位置にある任意の3個の単体レンズがほぼ正3角形の頂点に位置するような配列にしてある。光量の利用効率を上げるため、同様な配列方法でレンズ列を3列にすることもできる。その場合のライン状光源の位置は中央のレンズ列に対応させる。
各単体レンズは球面レンズ、非球面レンズを問わず、開口部が互いに同径である。
第1のレンズ板11と第4のレンズ板14は両凸レンズとして、第2のレンズ板と第3のレンズ板は平凸レンズとして構成されている。第1ないし第4の4枚のレンズ板を所定の関係で重ね合わせたとき、各単体レンズは各板相互で対応する位置関係に形成されており、対応する4個の単体レンズは共軸に構成され、1組のレンズ系をなす。1組のレンズ系内において、各単体レンズを、それぞれのレンズ板に対応させて、第1レンズないし第4レンズと呼ぶことにする。
即ち、第1〜第4のレンズ板11〜14は、何れも、複数の単体レンズが、ライン状の光源のライン方向に、千鳥足状で、2列のレンズ列のレンズアレイに配列一体化され、且つ、「レンズ列をなす単体レンズの配列」が同一であって、第1〜第4のレンズ板11〜14のレンズアレイにおいて「配列が互いに対応する単体レンズが共軸の結像レンズ系」を構成する。
同図に示された例では、第1レンズと第4レンズは、中間結像面15に関し対称に構成され、第2レンズと第3レンズも同様対称に構成されている。
Here, an array called a staggered pattern refers to an array in which two columns have the same array pitch, but one array and the other array are shifted by a half pitch with respect to the longitudinal direction of the array. In the example of FIG. 6A, an arrangement is made such that any three single lenses located at the shortest distance from each other are positioned at the apex of a regular triangle. In order to increase the use efficiency of the light amount, the lens array can be made into three by the same arrangement method. In this case, the position of the line light source is made to correspond to the center lens array.
Regardless of whether the single lens is a spherical lens or an aspheric lens, the openings have the same diameter .
The first lens plate 11 and the fourth lens plate 14 are configured as biconvex lenses, and the second lens plate and the third lens plate are configured as plano-convex lenses. When the first to fourth lens plates are overlapped with each other in a predetermined relationship, each single lens is formed in a positional relationship corresponding to each other, and the corresponding four single lenses are coaxial. Configured to form a set of lens systems. In a set of lens systems, each single lens is referred to as a first lens to a fourth lens, corresponding to each lens plate.
That is, in each of the first to fourth lens plates 11 to 14, a plurality of single lenses are arranged in a zigzag pattern in a line direction of a line-shaped light source and are integrated into a lens array of two lens rows. In addition, in the lens arrays of the first to fourth lens plates 11 to 14 having the same “array of single lenses forming a lens array”, an “imaging lens system in which the single lenses corresponding to the arrays are coaxial” Is configured.
In the example shown in the figure, the first lens and the fourth lens are configured symmetrically with respect to the intermediate image plane 15, and the second lens and the third lens are configured symmetrically as well.

ライン状の光源1の発光部1aから出た光束の一部は、第1レンズ板11の表面側の凸レンズ面に入射し、裏面側の凸レンズ面から出射し、第2のレンズ板の表面側の凸レンズ面に入射し、裏面側の平面部に結像する。この光路のうち主光線は第2のレンズ板に入射した後光軸に平行になるよう各レンズのパワーが配分されている。
中間結像面を透過した光束は第3レンズ板13、第4レンズ板14を経て像面3に到って結像する。中間結像面15から像面3までの光路は、発光点1aから中間結像面15までの光路と、中間結像面15に関してほぼ対称になっている。
同図(b)に示すように、発光部1aからの光束は第1レンズ板11の複数のレンズ系に同時に入射しうる。同一点から異なるレンズ系に入射した光束は、像面3上において同一点に結像する。
A part of the light beam emitted from the light emitting unit 1a of the line-shaped light source 1 enters the convex lens surface on the front surface side of the first lens plate 11, exits from the convex lens surface on the back surface side, and is on the surface side of the second lens plate. Is incident on the convex lens surface and forms an image on a flat surface portion on the back surface side. In this optical path, the power of each lens is distributed so that the principal ray is incident on the second lens plate and becomes parallel to the optical axis.
The light beam that has passed through the intermediate imaging plane reaches the image plane 3 through the third lens plate 13 and the fourth lens plate 14 and forms an image. The optical path from the intermediate image plane 15 to the image plane 3 is substantially symmetric with respect to the optical path from the light emitting point 1 a to the intermediate image plane 15 and the intermediate image plane 15.
As shown in FIG. 5B, the light beam from the light emitting unit 1a can be incident on the plurality of lens systems of the first lens plate 11 simultaneously. Light beams incident on different lens systems from the same point are imaged at the same point on the image plane 3.

任意のレンズ系にとって、ライン状の光源1の中間結像面15における像は、第1のレンズ板11および第2のレンズ板12によって定まる結像倍率に従った像高に、ライン状にできる。この像のライン方向は光源1のライン方向に平行であり、ラインの太さは光源1のラインの太さに結像倍率を掛けたものになる。そのレンズ系にとって、本来、このライン状の像以外には光が通らない筈であるが、第1レンズ板11は、単体レンズ以外に平面部を有しており、光源1からこの平面部に入射した光は、レンズ系の所望の光学的作用とは全く異なる光学的作用を受けるので、所謂迷光となって中間結像面15に達する。
迷光は最終的には像面3に達し、結像光以外の光として場合によっては光源像に重畳してしまい、解像力を低下させる原因になったりする。そこで、極力迷光を遮断するために、中間結像面15のライン状の像ができる位置以外を遮光手段S0によって遮光する。ライン方向に関しては、後述する理由により、同図(c)に示すように、像高に対応するレンズ系の入射開口部の弦の長さとほぼ等しい範囲まで光が透過できるように開口させ、それ以外を遮光する。
For an arbitrary lens system, the image on the intermediate image plane 15 of the line-shaped light source 1 can be formed into a line shape with an image height according to the image magnification determined by the first lens plate 11 and the second lens plate 12. . The line direction of this image is parallel to the line direction of the light source 1, and the line thickness is obtained by multiplying the line thickness of the light source 1 by the imaging magnification. For the lens system, light should not pass through except for the line-shaped image. However, the first lens plate 11 has a flat portion other than the single lens, and the light source 1 has this flat portion. The incident light is subjected to an optical action that is completely different from the desired optical action of the lens system, and thus reaches the intermediate imaging plane 15 as so-called stray light.
The stray light eventually reaches the image plane 3 and may be superimposed on the light source image as light other than the imaging light, which may cause a reduction in resolving power. Therefore, in order to block stray light as much as possible, the light shielding means S0 shields light other than the position where the line-shaped image of the intermediate imaging surface 15 is formed. With respect to the line direction, for the reason described later, as shown in FIG. 5C, an opening is made so that light can be transmitted to a range substantially equal to the chord length of the entrance opening of the lens system corresponding to the image height. Shield light from other areas.

図2は遮光手段の形状を示す図である。参考のため、位置関係が分かるように光源の対応位置を点線で、レンズ系の対応位置を破線で示した。
同図において符号SAは開口部、Lは開口部のライン方向の長さを示す。
同図に示すように、開口部SAは複数のスリット状に形成される。各レンズ系中心からライン状光源までの距離と、レンズ系中心から開口部中心までの距離の比が結像倍率となっている。
光源1の各発光点から出た光束の主光線は、第2レンズに入射したあとは、光軸に平行になっている。従って、本来はこの光線に対応する光源より外の像は仮に形成されたとしてもその光線は第3レンズを通過できないので、第2レンズの開口の、ライン像の像高に対応する弦の長さに等しい大きさの像が、実用できる像の大きさの限界となる。実用できる像の大きさの限界とは、通過する光量が0になる限界であるので、開口部がこの長さにほぼ等しければ、それより若干小さくても結像性能にはあまり関係しない。逆にそれより長くした場合、例えば隣接する開口部と連続させた場合は、不所望な迷光が入り込む可能性があるのであまり好ましくない。
本例では全ての単体レンズの径を等しくなるよう構成しているので、第2レンズの口径は、第1レンズのそれと等しい。
仮に像高が単体レンズの半径の3分の2に等しいとすると、遮光手段S0の開口部のライン方向の長さLは単体レンズ直径の約0.75倍になる。
レンズ系の倍率にもよるが、例えば、中間結像面15における結像倍率が2分の1倍であったとし、像高が上記の通りであったとすると、単体レンズ口径の大きさの約1.5倍の長さまで光源の光束を取り込める。
FIG. 2 shows the shape of the light shielding means. For reference, the corresponding position of the light source is indicated by a dotted line and the corresponding position of the lens system is indicated by a broken line so that the positional relationship can be understood.
In the figure, symbol SA indicates the opening, and L indicates the length of the opening in the line direction.
As shown in the figure, the opening SA is formed in a plurality of slit shapes. The ratio of the distance from the center of each lens system to the line light source and the distance from the center of the lens system to the center of the aperture is the imaging magnification.
The principal ray of the light beam emitted from each light emitting point of the light source 1 is parallel to the optical axis after entering the second lens. Accordingly, even if an image outside the light source corresponding to this light beam is originally formed, the light beam cannot pass through the third lens. Therefore, the length of the chord corresponding to the image height of the line image at the opening of the second lens. An image having a size equal to that is the limit of the size of a practical image. The limit of the size of an image that can be practically used is a limit in which the amount of light passing therethrough becomes zero. Therefore, if the aperture is approximately equal to this length, even if it is slightly smaller, it does not significantly affect the imaging performance. On the contrary, if it is longer than that, for example, if it is made to be continuous with an adjacent opening, undesired stray light may enter, which is not so preferable.
In this example, since all the single lenses have the same diameter, the aperture of the second lens is equal to that of the first lens.
Assuming that the image height is equal to two-thirds of the radius of the single lens, the length L in the line direction of the opening of the light shielding means S0 is about 0.75 times the diameter of the single lens.
Depending on the magnification of the lens system, for example, assuming that the imaging magnification at the intermediate imaging surface 15 is 1/2 and the image height is as described above, the size of the single lens aperture is about The light flux from the light source can be captured up to 1.5 times longer.

遮光手段S0は薄い板状のもので構成しても良いが、レンズ系との線膨張係数の違いが問題になるので、本発明では、例えば印刷手法などによって、第2レンズ板もしくは第3レンズ板の平面部に直接形成する。フォトレジストを利用する方法もある。例えば、平面部に均一にフォトレジストを塗布し、光源と第1レンズ板と第2レンズ板を所定の位置関係に配置し、光源を発光させることでフォトレジストを所望の開口部の形に露光させ、露光部のレジストを除去した後、残ったフォトレジストを黒く染めるなどして遮光手段S0を形成しても良い。露光のとき迷光も同時にフォトレジストに当たるが、フォトレジストの感度の関係で、結像光のように、エネルギーが集中したところだけが後工程で除去できる。   Although the light shielding means S0 may be formed of a thin plate, a difference in linear expansion coefficient from the lens system becomes a problem. Therefore, in the present invention, the second lens plate or the third lens is used by, for example, a printing method. Form directly on the flat part of the plate. There is also a method using a photoresist. For example, a photoresist is uniformly applied to a flat surface portion, a light source, a first lens plate, and a second lens plate are arranged in a predetermined positional relationship, and light is emitted from the light source to expose the photoresist in a desired opening shape. The light shielding means S0 may be formed by removing the resist in the exposed portion and then dyeing the remaining photoresist black. During exposure, stray light also strikes the photoresist at the same time, but due to the sensitivity of the photoresist, only where the energy is concentrated, such as imaging light, can be removed in a later step.

図3は、参考例を説明するための図である。
同図において符号S1ないしS6は遮光手段をそれぞれ示す。
各レンズ板の単体レンズ以外の平面部全てを遮光手段Sn(nは1ないし6)で遮光する。像面3に必要な光束はレンズ系を正しく通った光束だけであるから、平面部を通る光束は全て遮断して構わない。この実施例は第2のレンズ板と第3のレンズ板が一体の両凸レンズとして形成されている場合に適用できる。遮光手段の形成方法は、第1の実施例において示したのと同様である。
S1ないしS6は必ずしも全て備えなくとも良い。たとえばS1ないしS3のみを設けて、S4ないしS6を省略したり、その逆にしても良い。レンズ系は中間結像面15に関して対称であるから、その片側のレンズ板の平面部だけを正しく遮光すれば、他方の側のレンズ板の平面部を通る光束が像面に到ることはない。
同様の理由で、例えば、S1、S3、S5のみを残して他の遮光手段を省略することもできる。要は、中間結像面15に関して対称であるため、対応する遮光手段同士、すなわち、S1とS6、S2とS5、S3とS4の各組み合わせからそれぞれ1つ選べばよい。
後述の非対称形のレンズ系であっても、中間結像面に関して一方のレンズ系の形状が他方のレンズ系の形状に対して比例関係にある場合は同様である。
第2のレンズ板と第3のレンズ板が別体で形成されている場合には、第2の実施例に第1の実施例の遮光手段S0も同時に採用すればより確かな遮光が期待できる。
FIG. 3 is a diagram for explaining a reference example .
In the figure, reference numerals S1 to S6 denote light shielding means, respectively.
All flat portions other than the single lens of each lens plate are shielded by the light shielding means Sn (n is 1 to 6). Since the light beam necessary for the image plane 3 is only the light beam correctly passing through the lens system, all the light beam passing through the plane portion may be blocked. This embodiment can be applied when the second lens plate and the third lens plate are formed as an integral biconvex lens. The method for forming the light shielding means is the same as that shown in the first embodiment.
All of S1 to S6 are not necessarily provided. For example, only S1 to S3 may be provided, and S4 to S6 may be omitted or vice versa. Since the lens system is symmetric with respect to the intermediate image plane 15, if only the plane portion of the lens plate on one side is properly shielded, the light beam passing through the plane portion of the lens plate on the other side will not reach the image plane. .
For the same reason, for example, it is possible to omit other light shielding means while leaving only S1, S3, and S5. In short, since it is symmetrical with respect to the intermediate image plane 15, it is only necessary to select one from each of the corresponding light shielding means, that is, each combination of S1 and S6, S2 and S5, and S3 and S4.
The same applies to an asymmetric lens system described later when the shape of one lens system is proportional to the shape of the other lens system with respect to the intermediate image plane.
When the second lens plate and the third lens plate are formed separately, more reliable light shielding can be expected if the light shielding means S0 of the first embodiment is also employed in the second embodiment. .

図4は他の参考例を説明するための図である。
同図において符号16、17は遮光補助板、S7、S8は遮光手段をそれぞれ示す。
遮光補助板16、17は第1ないし第4のレンズ板と同じ材質の透明部材で形成された板であり、所望の開口部を残して遮光手段が形成されている。遮光手段の形成方法は既述の通りである。開口部の形状は、遮光手段の配置位置によって変わるが、一般に、第1実施例の遮光手段S0の開口よりは幅、長さとも大きくなる。この構成は第2レンズ板と第3レンズ板が一体でも別体でも構わない。別体の場合は、第2レンズ板と第3レンズ板の接触面が平面の場合第1実施例で示した遮光手段S0を併用することができる。第2レンズと第3レンズが共に両凸の場合は、両者の間にも遮光補助板16に類似の遮光補助板を挟んで中間結像面の位置にS0と同様な遮光手段を配置することができる。ここでは遮光補助板の材質をレンズ板と同じ材質としたが、温度変化によって両者の伸縮の差があまり大きく出なければよいので、実際には、両者の線膨張係数がほぼ等しければ、異なる材質でも構わない。
FIG. 4 is a diagram for explaining another reference example .
In the figure, reference numerals 16 and 17 denote light shielding auxiliary plates, and S7 and S8 denote light shielding means, respectively.
The light shielding auxiliary plates 16 and 17 are plates formed of a transparent member made of the same material as the first to fourth lens plates, and light shielding means is formed leaving a desired opening. The method for forming the light shielding means is as described above. The shape of the opening varies depending on the arrangement position of the light shielding means, but generally the width and length are larger than the opening of the light shielding means S0 of the first embodiment. In this configuration, the second lens plate and the third lens plate may be integrated or separated. In the case of a separate body, when the contact surface of the second lens plate and the third lens plate is flat, the light shielding means S0 shown in the first embodiment can be used in combination. When both the second lens and the third lens are biconvex, a light shielding means similar to S0 is disposed at the position of the intermediate image plane with a light shielding auxiliary plate similar to the light shielding auxiliary plate 16 interposed therebetween. Can do. Here, the light shielding auxiliary plate is made of the same material as the lens plate. However, the difference in expansion and contraction between the two does not have to be large due to temperature changes. It doesn't matter.

遮光補助板の厚さは図に示した厚さよりもさらに厚くして、レンズ部より外側で各レンズ板を支えるスペーサ兼保持部として用いても良い。光学系の光路内に透明板を挟むと光路長が変化するので、設計に当たっては遮光補助板の厚さも考慮しなければならない。
遮光補助板をもちいると当然部品点数も増えるので、使用個数は極力減らし、実施例2にS1ないしS6で示したような、単体レンズ周囲の平面部に遮光手段を設ける方法を併用するのが好ましい。
以上の各実施例に示したように、本発明に係わる遮光手段は、印刷その他の手法により、レンズ板もしくはそれと同じ材質の遮光補助板に直接密着形成されているので、温度変化があっても、遮光手段がずれることはなく、常に所望の遮光が達成できる。
The light shielding auxiliary plate may be made thicker than the thickness shown in the drawing, and may be used as a spacer / holding portion that supports each lens plate outside the lens portion. Since the optical path length changes when a transparent plate is sandwiched in the optical path of the optical system, the thickness of the light shielding auxiliary plate must be taken into consideration in designing.
When the light shielding auxiliary plate is used, the number of parts is naturally increased, so that the number of parts used is reduced as much as possible, and a method of providing a light shielding means on the plane portion around the single lens as shown in S1 to S6 in Example 2 is used together. preferable.
As shown in the above embodiments, the light-shielding means according to the present invention is formed in direct contact with the lens plate or the light-shielding auxiliary plate of the same material by printing or other methods, so that even if there is a temperature change. The light shielding means does not shift and the desired light shielding can always be achieved.

図5は図1に示したレンズ構成および遮光手段を有する結像光学系のMTFを、計算により算出したグラフである。
同図において、太線はレンズ系に最も近い光源の、単一レンズ系による像面でのMTFを示す曲線、細線はレンズ系に最も遠い光源の、同様のMTFを示す曲線である。符号Tはタンジェンシャル方向のMTF曲線(実線)、Rはラジアル方向のMTF曲線(1点鎖線)をそれぞれ示す。
計算に用いたレンズ系の仕様の概略を示すと、各面の単体レンズは球面で、その半径は2mm、第1面と第2面の面間距離は1.2mm、第2面と第3面の面間距離(空気間隔)は0.5mm、第3面と中間像面の距離は1.6mm、材質の屈折率を1.49とした。
同図において光源波長は560nmとし、空間周波数は1200dpiにほぼ近い49lp/mmに対するMTFとして計算した。
像面位置が正しく設定されている場合、すなわちデフォーカス量が0の場合、最低でもMTFは約58%ある。デフォーカス量の設計上の許容範囲である±0.15mmではプラス側の方が低くなって、最低は約23%となった。
FIG. 5 is a graph obtained by calculating the MTF of the imaging optical system having the lens configuration and the light shielding unit shown in FIG.
In the figure, the thick line is a curve showing the MTF on the image plane of the single lens system of the light source closest to the lens system, and the thin line is a curve showing the same MTF of the light source farthest from the lens system. Reference symbol T represents an MTF curve (solid line) in the tangential direction, and R represents an MTF curve (one-dot chain line) in the radial direction.
The outline of the specifications of the lens system used for the calculation is as follows. The single lens on each surface is a spherical surface, the radius is 2 mm, the distance between the first surface and the second surface is 1.2 mm, and the second surface and the third surface. The distance between the surfaces (air interval) was 0.5 mm, the distance between the third surface and the intermediate image surface was 1.6 mm, and the refractive index of the material was 1.49.
In the figure, the light source wavelength was set to 560 nm, and the spatial frequency was calculated as MTF for 49 lp / mm which is almost close to 1200 dpi.
When the image plane position is set correctly, that is, when the defocus amount is 0, the MTF is at least about 58%. At ± 0.15 mm, which is a design tolerance of the defocus amount, the positive side is lower, and the minimum is about 23%.

図1以下に示した光学系はすべて「中間結像面に関して対称形」であったが、これは作りやすさやコストダウンのために選んだ形であって、等倍の正立実像光学系としては上記のような対称形に限定されるものではない。要は、非対称形であっても、光源の中間結像面における結像倍率と、中間結像面の像の最終像面における結像倍率の積が1になればよい。例えば中間結像面における像が2分の1の縮小になっているのなら、そこから像面3に到る結像倍率が2倍になっていれば、最終の像の大きさは光源の大きさに等しくなる。
そのような光学系は、例えば、中間結像面に関し、一方の側におけるレンズ系の構成に対して、他方の側におけるレンズ系の構成が、比例拡大ないし比例縮小の関係になっていれば可能である。さらに言えば、等倍の正立実像という条件さえ崩さなければ、レンズ系の構成枚数やレンズ面の枚数についても非対称性が許容できることは明らかである。ただし、光束の利用効率の面から見ると対称形の方が良い。非対称形は、何らかの事情で光源から光束入射面までの距離と、光束出射面から像面までの距離を異ならせたい場合などに用いる。
例えば、光源を均一に発光させて、像面に読み取りたい原稿を置いて画像読み取り装置として用いる場合に、像面側に反射光を検出するセンサを置くためのスペースを確保する場合に使える。
All of the optical systems shown in FIG. 1 and below were “symmetrical with respect to the intermediate image plane” , but this was selected for ease of production and cost reduction. Is not limited to the symmetrical shape as described above. In short, the product of the imaging magnification at the intermediate image plane of the light source and the imaging magnification at the final image plane of the image on the intermediate image plane should be 1 even if it is asymmetric. For example, if the image on the intermediate image plane is reduced by a factor of two, if the image formation magnification from there to the image plane 3 is doubled, the final image size will be Equal to size.
Such an optical system is possible, for example, with respect to the intermediate image plane, as long as the lens system configuration on one side is proportionally expanded or reduced with respect to the configuration of the lens system on one side. It is. Furthermore, it is obvious that asymmetry can be allowed for the number of lens systems and the number of lens surfaces as long as the condition of an upright real image is not broken. However, the symmetric shape is better from the viewpoint of luminous flux utilization efficiency. The asymmetric shape is used when, for some reason, it is desired to make the distance from the light source to the light incident surface different from the distance from the light exit surface to the image surface.
For example, it can be used to secure a space for placing a sensor for detecting reflected light on the image plane side when a light source is uniformly emitted and an original to be read is placed on the image plane and used as an image reading apparatus.

非対称形光学系の場合にも本発明の遮光手段は、対称形光学系と同様に適用できる。ここでいう対称形、非対称形とは遮光手段を施す前の状態のことを言う。
なお、各レンズ板に形成する単体レンズの径を全て同一として説明してきたが、例えば、第1レンズ板の光束入射面側のレンズ径よりも、光束出射側のレンズ径を大きくすると光束の利用効率が上がる場合がある。このように、非対称形の場合も含めて、構成によっては各レンズ板間の単体レンズ径は必ずしも同一でなくて良いことになる。勿論、同一レンズ板の同一面内では同一径である必要がある。
Even in the case of an asymmetric optical system, the light shielding means of the present invention can be applied in the same manner as in the symmetric optical system. The symmetric and asymmetric shapes here refer to the state before the light shielding means is applied.
Although the single lenses formed on each lens plate have been described as having the same diameter, for example, if the lens diameter on the light beam exit side is larger than the lens diameter on the light beam incident surface side of the first lens plate, the use of the light beam Efficiency may increase. Thus, depending on the configuration, including the asymmetric type, the single lens diameter between the lens plates may not necessarily be the same. Of course, the same lens plate needs to have the same diameter in the same plane.

本発明の結像光学系の実施の1形態を示す図である。It is a figure which shows one Embodiment of the imaging optical system of this invention. 遮光手段の形状を示す図である。It is a figure which shows the shape of a light-shielding means. 参考例を説明するための図である。It is a figure for demonstrating a reference example . 他の参考例を説明するための図である。It is a figure for demonstrating another reference example . 図1に示したレンズ構成および遮光手段を有する結像光学系のMTFを、計算により算出したグラフである。It is the graph which computed MTF of the imaging optical system which has a lens structure shown in FIG. 1, and a light-shielding means by calculation. ライン状に配列されている微小な光源を、結像光学系を用いて感光体などへ結像させる様子を示す概念図である。It is a conceptual diagram which shows a mode that the micro light source arranged in the line form is imaged on a photoreceptor etc. using an imaging optical system.

1 ライン状の光源
2 光学系
3 像面
10 光学系
11 第1レンズ板(第1のレンズ板)
12 第2レンズ板(第2のレンズ板)
13 第3レンズ板(第3のレンズ板)
14 第4レンズ板(第4のレンズ板)
15 中間結像面
S0 遮光手段
1 Line-shaped light source
2 Optical system
3 Image plane
10 Optical system
11 First lens plate (first lens plate)
12 Second lens plate (second lens plate)
13 Third lens plate (third lens plate)
14 Fourth lens plate (fourth lens plate)
15 Intermediate imaging plane
S0 shading means

Claims (9)

ライン状の光源の正立等倍像を結像させる結像光学系であって、
ライン状の光源と、第1〜第4のレンズ板と、薄い遮光手段とを有し、
第1〜第4のレンズ板は、何れも、複数の単体レンズを、上記ライン状の光源のライン方向に、千鳥足状で、少なくとも2列のレンズ列のレンズアレイに配列一体化し、且つ、上記レンズ列をなす単体レンズの配列が同一であって、
第1〜第4のレンズ板のレンズアレイにおいて、配列が互いに対応する単体レンズが共軸の結像レンズ系を構成し、
上記第2のレンズ板および第3のレンズ板は、片面にレンズアレイが形成され、他面が平面であって、これら第2および第3のレンズ板の平面により上記遮光手段を挟持し、
第1および第2のレンズ板のレンズアレイが共同して、上記ライン状の光源の倒立実像を、上記第2レンズ板の平面上に中間像として結像させ、
第3および第4のレンズ板のレンズアレイが、上記倒立実像を物体として、上記ライン状の光源の正立等倍像を結像し、
上記遮光手段は、上記第1および第2のレンズ板の各共軸の単体レンズによる上記中間像の結像位置に、ライン状の光源のライン方向を長手方向とするスリット状の開口部を形成されて上記正立等倍像を結像する光を上記第3のレンズ板の側へ通過させ、上記開口部以外が遮光部であって、上記正立等倍像の結像に対して迷光と成る光を遮断することを特徴とする結像光学系
An imaging optical system that forms an erecting equal-magnification image of a line-shaped light source,
A linear light source, first to fourth lens plates, and a thin light-shielding means;
In each of the first to fourth lens plates, a plurality of single lenses are arranged and integrated in a lens array of at least two lens rows in a staggered pattern in the line direction of the line-shaped light source, and The arrangement of the single lenses forming the lens array is the same,
In the lens arrays of the first to fourth lens plates, single lenses whose arrangements correspond to each other constitute a coaxial imaging lens system,
The second lens plate and the third lens plate have a lens array formed on one side and the other side is a flat surface, and the light shielding means is sandwiched between the flat surfaces of the second and third lens plates,
The lens arrays of the first and second lens plates jointly form an inverted real image of the line-shaped light source as an intermediate image on the plane of the second lens plate,
The lens arrays of the third and fourth lens plates form an erecting equal-magnification image of the line-shaped light source using the inverted real image as an object,
The light shielding means forms a slit-like opening having a line direction of a line-like light source as a longitudinal direction at a position where the intermediate image is formed by a single lens of each of the coaxial axes of the first and second lens plates. The light that forms the erecting equal-magnification image is allowed to pass to the third lens plate side, and the light shielding portion other than the opening is a stray light with respect to the imaging of the erecting equal-magnification image. An imaging optical system characterized by blocking the light that becomes
請求項1に記載の結像光学系において、
遮光手段の有するスリット状の開口部の、ライン状の光源のライン方向に対応する長さが、第2レンズ板のレンズアレイをなすレンズのレンズ面の、当該レンズ面を含んで結像される倒立実像の像高に対応する弦の長さに等しいことを特徴とする結像光学系
The imaging optical system according to claim 1,
The length corresponding to the line direction of the line-shaped light source of the slit-shaped opening of the light shielding means is imaged including the lens surface of the lens surface of the lens forming the lens array of the second lens plate. An imaging optical system characterized by being equal to the length of a string corresponding to the height of an inverted real image .
請求項1または2記載の結像光学系において、
前記複数のレンズ板の形状は、中間像の結像面に関し対称形であることを特徴とする結像光学系
The imaging optical system according to claim 1 or 2,
An imaging optical system, wherein the plurality of lens plates are symmetrical with respect to an imaging plane of the intermediate image .
請求項1〜3の任意の1に記載の結像光学系において、The imaging optical system according to any one of claims 1 to 3,
第1〜第4のレンズ板の1以上において、単体レンズの周囲の平面部分を別の遮光手段で遮光したことを特徴とする結像光学素子。  An imaging optical element characterized in that, in one or more of the first to fourth lens plates, a planar portion around the single lens is shielded by another light shielding means.
請求項1ないし4の任意の1に記載の結像光学系において、
ライン状の光源は、半導体レーザ、LED、EL素子、光導波路、および光ファイバーのうちのいずれか1つをライン状に配列したものであることを特徴とする結像光学系
The imaging optical system according to any one of claims 1 to 4,
The line-shaped light source is an imaging optical system in which any one of a semiconductor laser, an LED, an EL element, an optical waveguide, and an optical fiber is arranged in a line .
請求項1ないし5の任意の1に記載の結像光学系を用いたことを特徴とする画像形成装置 An image forming apparatus using the imaging optical system according to any one of claims 1 to 5 . 請求項6に記載の画像形成装置を用いたことを特徴とする複写機。 A copier using the image forming apparatus according to claim 6 . 請求項6に記載の画像形成装置を用いたことを特徴とするプリンター A printer using the image forming apparatus according to claim 6 . 請求項1ないし5の任意の1に記載の結像光学系を用いたことを特徴とする画像読み取り装置 An image reading apparatus using the imaging optical system according to any one of claims 1 to 5 .
JP2003359425A 2003-10-20 2003-10-20 Imaging optical system, image forming apparatus, printer and image reading apparatus Expired - Fee Related JP4495942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359425A JP4495942B2 (en) 2003-10-20 2003-10-20 Imaging optical system, image forming apparatus, printer and image reading apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359425A JP4495942B2 (en) 2003-10-20 2003-10-20 Imaging optical system, image forming apparatus, printer and image reading apparatus

Publications (2)

Publication Number Publication Date
JP2005122041A JP2005122041A (en) 2005-05-12
JP4495942B2 true JP4495942B2 (en) 2010-07-07

Family

ID=34615660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359425A Expired - Fee Related JP4495942B2 (en) 2003-10-20 2003-10-20 Imaging optical system, image forming apparatus, printer and image reading apparatus

Country Status (1)

Country Link
JP (1) JP4495942B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873114B2 (en) 2012-12-27 2014-10-28 Canon Kabushiki Kaisha Lens array, imaging apparatus, and image reading apparatus

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110596A (en) * 2006-10-03 2008-05-15 Seiko Epson Corp Line head and image formation device using it
JP5087239B2 (en) * 2006-06-26 2012-12-05 株式会社ミツトヨ Photoelectric encoder
NL1032066C2 (en) * 2006-06-27 2008-01-02 Univ Delft Tech Method and device for forming an image.
JP5098623B2 (en) * 2007-02-02 2012-12-12 セイコーエプソン株式会社 Line head, exposure method using the line head, image forming apparatus, image forming method, and method for adjusting the line head
JP5256796B2 (en) * 2007-05-14 2013-08-07 セイコーエプソン株式会社 Line head and image forming apparatus using the same
JP2009051194A (en) * 2007-07-31 2009-03-12 Seiko Epson Corp Linehead and imaging apparatus using the same
JP4950103B2 (en) * 2007-08-20 2012-06-13 日本板硝子株式会社 Erecting equal-magnification lens array plate, image sensor unit and image reading apparatus
US8014072B2 (en) 2007-08-20 2011-09-06 Nippon Sheet Glass Co., Ltd. Erecting equal-magnification lens array plate, image sensor unit, and image reading device
JP4490494B2 (en) * 2007-09-10 2010-06-23 株式会社沖データ Lens array manufacturing method, lens array, LED head, exposure apparatus, image forming apparatus and reading apparatus
JP2009139487A (en) 2007-12-04 2009-06-25 Nippon Sheet Glass Co Ltd Erecting equal-magnification lens array plate
JP4906798B2 (en) 2008-07-01 2012-03-28 株式会社沖データ Lens array, LED head, exposure apparatus, image forming apparatus, and reading apparatus
JP5243161B2 (en) * 2008-09-18 2013-07-24 日本板硝子株式会社 Image reading device
JP2009151339A (en) * 2009-04-06 2009-07-09 Oki Data Corp Lens array, exposure device, image forming apparatus and led head
DE102011076752A1 (en) * 2011-05-31 2012-12-06 Carl Zeiss Smt Gmbh Imaging optics
EP2856234A4 (en) * 2012-05-25 2015-09-30 Gemex Systems Inc Engraved gemstone viewer for personal communications devices
AU2017296073B2 (en) 2016-07-15 2019-02-14 Light Field Lab, Inc. Energy propagation and transverse Anderson localization with two-dimensional, light field and holographic relays
JP6734169B2 (en) * 2016-09-28 2020-08-05 株式会社沖データ Lens unit, exposure device, LED head, and image forming device
JP7026104B2 (en) * 2017-03-24 2022-02-25 日本板硝子株式会社 Image sensor unit and image reader

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677801A (en) * 1979-11-29 1981-06-26 Ricoh Co Ltd Image-forming element of electrophotographic copier
JPS57104923A (en) * 1980-12-23 1982-06-30 Fuji Xerox Co Ltd Aggregate optical system of copying machine
JPS61226701A (en) * 1985-03-29 1986-10-08 Sharp Corp Lens array
JPH0777667A (en) * 1993-09-10 1995-03-20 Matsushita Electric Ind Co Ltd Image transfer device
JPH09171101A (en) * 1995-12-20 1997-06-30 Fujitsu Ltd Optical device
JPH09244254A (en) * 1996-03-13 1997-09-19 Nikon Corp Exposure device for liquid crystal
JP2000214411A (en) * 1998-10-14 2000-08-04 Hitachi Ltd Image-formation unit, image enlarging unit, optical parts and picture display device using them
JP2000321526A (en) * 1999-05-17 2000-11-24 Rohm Co Ltd Lens array assembly and optical device using the same
JP2001021703A (en) * 1999-07-12 2001-01-26 Nippon Sheet Glass Co Ltd Forming method for erect image formation lens array and stray light suppressing stop
JP2001091877A (en) * 1999-07-21 2001-04-06 Fuji Photo Film Co Ltd Exposure head
JP2001249274A (en) * 2000-03-02 2001-09-14 Mark:Kk Small-sized lens array for preventing stray light
JP2004070268A (en) * 2002-06-12 2004-03-04 Nippon Sheet Glass Co Ltd Erecting and unmagnifying lens array

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677801A (en) * 1979-11-29 1981-06-26 Ricoh Co Ltd Image-forming element of electrophotographic copier
JPS57104923A (en) * 1980-12-23 1982-06-30 Fuji Xerox Co Ltd Aggregate optical system of copying machine
JPS61226701A (en) * 1985-03-29 1986-10-08 Sharp Corp Lens array
JPH0777667A (en) * 1993-09-10 1995-03-20 Matsushita Electric Ind Co Ltd Image transfer device
JPH09171101A (en) * 1995-12-20 1997-06-30 Fujitsu Ltd Optical device
JPH09244254A (en) * 1996-03-13 1997-09-19 Nikon Corp Exposure device for liquid crystal
JP2000214411A (en) * 1998-10-14 2000-08-04 Hitachi Ltd Image-formation unit, image enlarging unit, optical parts and picture display device using them
JP2000321526A (en) * 1999-05-17 2000-11-24 Rohm Co Ltd Lens array assembly and optical device using the same
JP2001021703A (en) * 1999-07-12 2001-01-26 Nippon Sheet Glass Co Ltd Forming method for erect image formation lens array and stray light suppressing stop
JP2001091877A (en) * 1999-07-21 2001-04-06 Fuji Photo Film Co Ltd Exposure head
JP2001249274A (en) * 2000-03-02 2001-09-14 Mark:Kk Small-sized lens array for preventing stray light
JP2004070268A (en) * 2002-06-12 2004-03-04 Nippon Sheet Glass Co Ltd Erecting and unmagnifying lens array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873114B2 (en) 2012-12-27 2014-10-28 Canon Kabushiki Kaisha Lens array, imaging apparatus, and image reading apparatus

Also Published As

Publication number Publication date
JP2005122041A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4495942B2 (en) Imaging optical system, image forming apparatus, printer and image reading apparatus
KR100738284B1 (en) Exposure head
KR101728464B1 (en) Lens array, linear light exposure device, optical apparatus employing the linear light exposure unit
JP4450689B2 (en) Exposure head
EP0040548A1 (en) Gradient index lens array
US10054790B2 (en) Imaging optical system
US8089695B2 (en) Line head and image forming apparatus using the same
JP5531130B2 (en) Optical device
JP5584262B2 (en) Lens unit, LED head, exposure apparatus, image forming apparatus, and reading apparatus
JP6344933B2 (en) Photoelectric encoder
JP5196145B2 (en) Line head and image forming apparatus using the same
JP2016130757A (en) Lens array optical system, and image forming apparatus including the same, and image reading device
KR20090019706A (en) Line head and image forming apparatus using the same
US8022975B2 (en) Line head and image forming apparatus using the same
US20140240795A1 (en) Light scanning apparatus and image forming apparatus using the same
JP2010164717A (en) Lens array, lens unit, led head, exposure device, image forming apparatus, and reader
JP3555018B2 (en) LED printer head, rod lens array and image forming apparatus
CN102681399B (en) Exposure device and image processing system
JP4953661B2 (en) Photoelectric encoder
JP2010253882A (en) Image forming apparatus and lens array
JP6677439B2 (en) Image forming optical system, image forming apparatus including the same, and image reading apparatus
JP2008122811A (en) Diffraction optical element, optical scanner and image forming apparatus
JP2014126751A (en) Lens array optical system, image forming device, and image reading device
JP2001194585A (en) Image-forming optical device
JP2006250672A (en) Photoelectric encoder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Ref document number: 4495942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160416

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees