JPS62242201A - Controlling method for industrial robot - Google Patents

Controlling method for industrial robot

Info

Publication number
JPS62242201A
JPS62242201A JP8503186A JP8503186A JPS62242201A JP S62242201 A JPS62242201 A JP S62242201A JP 8503186 A JP8503186 A JP 8503186A JP 8503186 A JP8503186 A JP 8503186A JP S62242201 A JPS62242201 A JP S62242201A
Authority
JP
Japan
Prior art keywords
corrected
deflection
amount
path
course position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8503186A
Other languages
Japanese (ja)
Inventor
Takeshi Toritsuka
鳥塚 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8503186A priority Critical patent/JPS62242201A/en
Publication of JPS62242201A publication Critical patent/JPS62242201A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately perform high precision work by correcting each acting course position according to the amount of flexure of moving parts at the time of teaching, correcting halfway course position at the time of reproduction according to the amount of flexure of the moving parts, and correcting acting course position again when moving to the next acting course position. CONSTITUTION:Angle of flexure DELTAtheta, DELTApsi of the first and second arms 3, 5 are calculated respectively for each acting course position at the time of teaching, and each acting course position is corrected according to calculated angles of flexure DELTAtheta, DELTApsi. At the time of reproduction, a predetermined halfway course position is determined from the corrected acting course position and acting course position to be moved next, and angles of flexure DELTAtheta, DELTApsi of the first and second arms 3, 5 are calculated at each halfway course position, and respective halfway course position is corrected according to the calculated angles of flexure DELTAtheta, DELTApsi. The next acting course position is further corrected according to the calculated amounts of flexure at the time of shifting from the final position of corrected halfway course position to the next acting course position and moved to corrected acting course position.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明ば、予め記憶された動作経路位置に従って動作部
を移動制御させる産業用ロボットの制御力″aミに係り
、特に動作経路の精度を向上させるのに好適な制御方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the control force "a" of an industrial robot that controls the movement of a motion part according to a pre-stored motion path position, and in particular improves the accuracy of the motion path. This invention relates to a control method suitable for improving the control method.

〔従来の技術〕[Conventional technology]

従来の産業用ロボットは、教示の際にロボットの動作す
べき経路位置を順次記憶させ、再成時、記憶させた動作
経路位置に従ってロボットを移動制御するように構成さ
れている。
Conventional industrial robots are configured to sequentially memorize the path positions on which the robot should move during teaching, and to control the movement of the robot in accordance with the memorized movement path positions when regenerating the robot.

ところが、そのような産業用ロボットでは、動作部が完
全な剛性して考えられ制御されているので、各々の動作
経路において、教示時に指令された位置指令値と、再成
時に位置検出器から読み出された目標値とが一致してい
ても、第5図に示すように動作部5に重量によってたわ
みが生じるため、実際にたわみが生じたままで制御され
た位置である制御点S′と、本来制御されるべき位置で
ある被制御点Sとが一致しない不具合がある。
However, in such industrial robots, the operating parts are considered and controlled as being completely rigid, so in each operating path, the position command value commanded at the time of teaching and the position command value read from the position detector at the time of regeneration are Even if the calculated target value matches, as shown in FIG. 5, the operating part 5 is deflected by the weight, so the control point S' is the position where the control is performed while the deflection actually occurs. There is a problem that the controlled point S, which is the position that should originally be controlled, does not match.

これを解決するため、例えば特公昭53−44746号
公報に示される公知技術がある。この公知技術は、各々
の動作経路位置において位置指令値と目標値とが一致し
、なおかつ再成時では実際の制御点S′と被制御点Sと
が一致するように構成されている。
To solve this problem, there is a known technique disclosed in Japanese Patent Publication No. 53-44746, for example. This known technique is configured so that the position command value and the target value match at each motion path position, and furthermore, the actual control point S' and the controlled point S match at the time of regeneration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記に示す従来技術では、各々の動作経路位
置で制御点S′と被制御点Sとが一致するものの、各々
の動作経路位置間では途中経路位置の制御点S′と被制
御点Sとに誤差がある。即ち補間経路上で誤差がある。
By the way, in the above-mentioned conventional technology, although the control point S' and the controlled point S match at each movement path position, the control point S' and the controlled point S at the intermediate path position match between each movement path position. There is an error in this. That is, there is an error on the interpolation path.

このような補間経路に誤差があると、溶接、シーリング
、塗装等と云うような精度が要求される作業では正確に
行い難い問題がある。
If there is an error in such an interpolation path, there is a problem in that it is difficult to accurately perform operations that require precision, such as welding, sealing, painting, etc.

本発明の目的は、前記従来技術の問題点に鑑み。The object of the present invention is to solve the problems of the prior art described above.

補間経路精度を高めて、高精度作業を正確に行い得る産
業用ロボットの制御方法を提供することにある。
An object of the present invention is to provide a control method for an industrial robot that can improve the accuracy of interpolation paths and perform high-precision work accurately.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、予め、記憶させた動作経路位置毎に動作部の
たわみ量を演算し、該たわみ量に応じて各々の動作経路
位置を補正しておく。
In the present invention, the amount of deflection of the operating portion is calculated in advance for each stored motion path position, and each motion path position is corrected in accordance with the deflection amount.

そして再成時には、前記補正された初期位置である補正
動作経路位置において、その位置での動作部のたわみ量
及び該たわみ量に応じ再補正する位置を計算してこの再
補正動作経路位置に補正する。
When regenerating, the amount of deflection of the operating part at that position and the position to be re-corrected according to the amount of deflection are calculated at the corrected movement path position, which is the corrected initial position, and the correction is made to this re-corrected movement path position. do.

次いで、再補正動作経路位置と次に移動すべき補正動作
経路位置間の距離から予め定められた途中経路位置を夫
々求めると共に、該夫々の途中経路位置毎にその位置に
おける動作部のたわみ量及び該たわみ量に応じ補正する
位置を計算して、この補正途中経路位置に動作部を順次
補間移動させる。
Next, predetermined intermediate route positions are determined from the distance between the re-correction operation route position and the next correction operation route position, and for each intermediate route position, the amount of deflection of the operating part at that position and the A position to be corrected is calculated according to the amount of deflection, and the operating section is sequentially interpolated and moved to the corrected intermediate path position.

その後、該補正された最終位置である補正途中経路位置
から前記法に移動すべき補正動作経路位置へ移動する時
点で、その補正動作経路位置における動作部のたわみ量
及び該たわみ量に応じ再補正する位置を計算してこの再
補正動作経路位置に動作部を移動させる。
Thereafter, at the time of moving from the corrected intermediate path position, which is the corrected final position, to the corrected movement path position to be moved to the corrected movement path position, re-correction is made according to the amount of deflection of the operating part at that corrected movement path position and the amount of deflection. The operating section is then moved to this re-corrected operating path position.

そして、前記動作部の補間移動の処理と再補正動作経路
位置の移動の処理とを動作部が最終の動作経路位置に達
するまで順次繰り返して実行させる。
Then, the processing of interpolation movement of the operating section and the processing of movement of the re-corrected operating path position are sequentially repeated until the operating section reaches the final operating path position.

〔作用〕[Effect]

本発明では、教示時に各々の動作経路位置がたわみ量に
応じて補正され、再成時、初期の補正動作経路位置がた
わみ量に応じて再補正されるので、この再補正動作経路
位置に動作部を位置決め制御させることができる。また
初期の再補正動作経路位置から次の補正動作経路位置に
移動するとき、両者間の途中経路位置が計算され、その
途中経路位置毎にたわみ量に応じて補正経路位置に補正
されるので、補間経路上での実際の制御点と被制御点と
を一致させることができる。
In the present invention, each movement path position is corrected according to the amount of deflection during teaching, and when regenerating, the initial corrected movement path position is re-corrected according to the amount of deflection, so that the movement path position is adjusted to this re-corrected movement path position. The positioning of the parts can be controlled. Furthermore, when moving from the initial re-correction movement path position to the next correction movement path position, the intermediate path position between the two is calculated, and each intermediate path position is corrected to the correction path position according to the amount of deflection. Actual control points and controlled points on the interpolation path can be matched.

さらに最終位置の補正途中経路位置から次の補正動作経
路位置へ移動するとき、その補正動作経この再補正動作
経路位置に動作部を移動させるので、補間経路から動作
経路への移動でも制御点と被制御点とを一致させること
ができる。従って。
Furthermore, when moving from the correction intermediate path position of the final position to the next correction operation path position, the operating part is moved to this re-correction operation path position after the correction operation, so even when moving from the interpolation path to the operation path, the control point The controlled point can be matched with the controlled point. Therefore.

動作経路上は勿論の他、補間経路上でも動作部を高精度
に移動させることができる結果、特に溶接。
As a result, the operating part can be moved with high precision not only on the operating path but also on the interpolation path, especially for welding.

シーリング、塗装等のように補間経路精度が要求される
作業を正確に行い得る。
Works that require interpolated path accuracy, such as sealing, painting, etc., can be performed accurately.

〔実施例〕〔Example〕

以下1本発明の実施例を添付図面により説明する。第1
−図は本発明方法を適用した関節ロボットを示す全体図
、第2図は関節ロボットにおけるたわみの説明図、第3
図及び第4図は本発明方法の一実施例を示すフローチャ
ートである。
An embodiment of the present invention will be described below with reference to the accompanying drawings. 1st
- The figure is an overall view of an articulated robot to which the method of the present invention is applied, Figure 2 is an explanatory diagram of deflection in the articulated robot, and Figure 3 is an illustration of deflection in the articulated robot.
FIG. 4 is a flowchart showing an embodiment of the method of the present invention.

本発明方法を適用した関節ロボットは、旋回台が垂直回
りに回転する旋回軸1を有し、その旋回台に第1の回転
軸2を介して第1アーム3が取り付けられ、第1アーム
3の先端に第2の回転軸4を介して第2アーム5が取り
付けられ、第1アーム3が第1の回転軸2の中心位置O
Iを中心として回転し、第2アーム5が第2の回転軸4
の中心位置o2を中心として回転するように構成されて
いる。
In the articulated robot to which the method of the present invention is applied, the swivel table has a swivel axis 1 that rotates vertically, a first arm 3 is attached to the swivel table via a first rotation axis 2, and the first arm 3 A second arm 5 is attached to the tip of the rotating shaft 4 via the second rotating shaft 4, and the first arm 3 is located at the center position O of the first rotating shaft 2.
The second arm 5 rotates around the second rotation axis 4.
It is configured to rotate around the center position o2.

このように構成された関節ロボットは、第1゜第2アー
ム3,5の各々に重量が作用するため、第11第2アー
ム3,5がたわんでしまう。具体的に述べると、第2ア
ーム5は、これの全重量即ち第2アーム5の自重及びこ
れに装着すべきワークの重量が作用するので、第2図に
示すように、J、l1r(Q線6に対し重量に応じたた
わみ角6戸が生じる。一方、fjSlアーム3は、これ
の自重の他、第2アーム5の全重量が作用するので、第
2図に示すように、基準線7に対しその重量に応じたた
わみ角Δ0が生じる。なお、前記たわみ角Δθとは第1
図に示すように、垂直線Xに対し第1アーム3の基準線
7が角度Oとした場合であり、前記たわみ角Δ芦とは同
図に示すように、水平線Yに対し第2アーム5の基準線
6が角度Pとした場合であり、これらのたわみ角Δ0.
Δ戸は夫々第1゜第2アーム3,5の角度によって異な
る。
In the articulated robot configured in this way, since the weight acts on each of the first and second arms 3 and 5, the eleventh and second arms 3 and 5 are bent. Specifically, the second arm 5 is affected by the total weight of the second arm 5, that is, the weight of the second arm 5 and the weight of the workpiece to be attached to it, so as shown in FIG. Six deflection angles corresponding to the weight are generated with respect to the line 6. On the other hand, the fjSl arm 3 is affected by the full weight of the second arm 5 in addition to its own weight, so as shown in FIG. 7, a deflection angle Δ0 corresponding to its weight occurs. Note that the deflection angle Δθ is the first
As shown in the figure, the reference line 7 of the first arm 3 is at an angle O with respect to the vertical line This is the case where the reference line 6 of the angle P is the angle P, and these deflection angles Δ0.
The Δdoors differ depending on the angles of the first and second arms 3 and 5, respectively.

そこで1本発明方法では、まず教示時に各々の動作経路
位置を教示する際に、各々の動作経路位置毎に第1.第
27−ム3,5のたわみ角Δ0゜ΔPを夫々計算し、計
算したたわみ角6096戸に応じて各々の動作経路位置
を補正している。
Therefore, in the method of the present invention, first, when teaching each motion path position at the time of teaching, the first . The deflection angles Δ0°ΔP of the 27th beams 3 and 5 are calculated, and the respective operating path positions are corrected according to the calculated deflection angles of 6096.

前記だねみ角Δθ、Δ戸は、第1アーム3の自重の曲げ
モーメントをW、LG、、第2アーム5の自重の曲げモ
ーメントをW2LG2、第2アーム5の自重にワーク重
量を加えた値である第27−45の全重量をMl、ワー
ク重量をMl、第17−43の長さをL+、第2アーム
5の長さをL2、第1アーム3のばね定数をに、、第2
アーム5のばね定数をKzとすると、下記の式より求め
られる。
The deflection angles Δθ and Δdoor are calculated by adding the bending moment of the first arm 3's own weight to W, LG, the bending moment of the second arm 5's own weight to W2LG2, and the weight of the workpiece to the dead weight of the second arm 5. The total weight of 27-45, which is the value, is Ml, the work weight is Ml, the length of 17-43 is L+, the length of second arm 5 is L2, the spring constant of first arm 3 is, 2
If the spring constant of arm 5 is Kz, it can be obtained from the following formula.

また1本発明方法では、再成時、補正された動作経路位
置と次に移動すべき動作経路位置との間から予め定めら
れた途中経路位置を求め、該途中経路位置毎に第1.第
2アーム3,5のたわみ角へ〇、ΔPを夫々演算し、演
算したたわみ角ΔO2八?に応じて夫々の途中経路位置
を補正し、かつこの補正された途中経路位置の最終位置
から次の動作経路位置への移動時に、該次の動作経路位
置を演算されたたわみ量に応じさらに補正し、該補正さ
れた動作経路位置に移動させるようにしている。
Furthermore, in the method of the present invention, when regenerating, a predetermined intermediate route position is determined from between the corrected operation route position and the next operation route position to be moved, and the first . Calculate 〇 and ΔP to the deflection angles of the second arms 3 and 5, respectively, and calculate the calculated deflection angle ΔO28? Each intermediate route position is corrected according to the calculated deflection amount, and when moving from the final position of the corrected intermediate route position to the next operation route position, the next operation route position is further corrected according to the calculated deflection amount. Then, it is moved to the corrected movement path position.

次に、本発明方法の実施例を第3図及び第4図より具体
的に述べる。
Next, an embodiment of the method of the present invention will be described in detail with reference to FIGS. 3 and 4.

教示時においては、まずワーク重量M2を入力しくSL
)、次いで最初の動作経路位置である教示点の角度ε、
θ、pを検出する(s2)。これは位置検出器により第
1.第2の駆動軸2,4の角度を検出して得られる。
When teaching, first input the workpiece weight M2.SL
), then the angle ε of the teaching point which is the initial motion path position,
θ and p are detected (s2). This is detected by the position detector. It is obtained by detecting the angle of the second drive shafts 2 and 4.

そして、第1.第2アーム3,5の夫々のたわみ角Δθ
、ΔPを(I)式により演算する(s3)。
And the first. Deflection angle Δθ of each of second arms 3 and 5
, ΔP are calculated using equation (I) (s3).

なお、(I)式において、W、LG、、W2LG2及び
LlyL2は予め設定され重量計は入力されたMlによ
り求められる。
Note that in equation (I), W, LG, , W2LG2, and LlyL2 are set in advance, and the weight scale is determined based on the input Ml.

たわみ角Δ0.Δ芦を演算した後、そのたわみ角に応じ
次の(2)式より第1.第2の駆動軸2゜4の角度(θ
′、r′)を補正、即ち第1.第2アーム3,5の補正
される位置を求める(s4)。
Deflection angle Δ0. After calculating ΔAshi, the first. The angle of the second drive shaft 2°4 (θ
', r'), that is, the first. The corrected positions of the second arms 3 and 5 are determined (s4).

これにより各々の動作経路位置が補正動作経路位置とし
て補正される。
As a result, each motion path position is corrected as a corrected motion path position.

また補正した後、次の(3)式から制御点Sの直角座標
を演算しくS5)、この値を教示データとして記憶する
(S6)。
After the correction, the orthogonal coordinates of the control point S are calculated from the following equation (3) (S5), and this value is stored as teaching data (S6).

なお、S5の処理を実行する理由は、関節ロボットでは
駆動軸の回転角度で制御する関節座標形式を持っている
ため、関節座標から直交座標に変換する必要がある。た
めである。
Note that the reason for executing the process in S5 is that the articulated robot has a joint coordinate format that is controlled by the rotation angle of the drive shaft, so it is necessary to convert the joint coordinates to Cartesian coordinates. It's for a reason.

その後、全教示処理が終了したか否かが判定され(S7
)、終了していない場合には終了するまでS2以降の処
理が繰り返し実行される。
After that, it is determined whether all teaching processing has been completed (S7
), if the process is not completed, the processes from S2 onwards are repeatedly executed until the process is completed.

これにより、各々の補正動作経路位置がたわみ角を考慮
して補正されたことになる。
As a result, each correction operation path position is corrected in consideration of the deflection angle.

一方、再成時においては、第4図(a)に示すように、
まずワーク重量M2が入力された(S8)後、移動方向
に沿って隣り合う2点間の教示データを求める。即ち、
教示時に記憶された最初の教示データと次の教示データ
との2点A、B間の距離りを計算する(S9)。
On the other hand, during regeneration, as shown in Figure 4(a),
First, after the workpiece weight M2 is input (S8), teaching data between two adjacent points along the moving direction is obtained. That is,
The distance between two points A and B between the first teaching data and the next teaching data stored at the time of teaching is calculated (S9).

ここで、最初の教示データAを(X++ yI+ z+
)、次の教示データBを(X2+ yZ+ 22)とす
ると、距離りは下記の(4)式より求まる。
Here, the first teaching data A is (X++ yI+ z+
), and the next teaching data B is (X2+yZ+22), then the distance can be found from the following equation (4).

L= JCx+  xz)’+(y+  yz)’+(
zl−zz)’   (4)即ち、(4)式より初期の
補正動作経路位置Aと次に移動すべき補正動作経路位置
Bとの間の距離りが求まる。
L= JCx+ xz)'+(y+ yz)'+(
zl-zz)' (4) That is, the distance between the initial correction movement path position A and the correction movement path position B to be moved next is determined from equation (4).

次に、前記距離りから途中経路位置を指令する回数nを
計算する。例えば、ロボットの指令値がm秒毎に1回ず
つ指令されるとし、移動速度をVとすると、教示データ
A、B間の指令回数nは、次の(5)式より求まる。
Next, the number n of commands for intermediate route positions is calculated from the distance. For example, assuming that the command value of the robot is commanded once every m seconds and the moving speed is V, the number of commands n between the teaching data A and B can be determined from the following equation (5).

これにより、2点A、B間の距離りから途中の経路位置
が求まる。
As a result, the route position along the way can be determined from the distance between the two points A and B.

そして、カウンタをセットした(Sll)後、初回の途
中経路位置への直角座標を計算しく812)。
Then, after setting the counter (Sll), the orthogonal coordinates to the initial intermediate route position are calculated (812).

これを逆変換して旋回軸及び第1.第2の駆動軸の角度
を求める( S 13)。これを(6)式に示す。
This is inversely transformed to create the rotation axis and the first. The angle of the second drive shaft is determined (S13). This is shown in equation (6).

K1 = K、” + Z”     K4=JKx 
 x、20H’:x≧013’≧0→O X≧0 + y < O→π xく0.y〉0→O x < O* y < O→π ・この(6)式により求めた第1.第2の駆動軸2゜4
の角度が最初の途中経路位置の角度となり、例えば第2
アーム5では第6図に示すように、制御点S′の位置と
なる。
K1=K,"+Z" K4=JKx
x, 20H': x≧013'≧0→O X≧0 + y < O→π xku0. y〉0→O x < O* y < O→π ・The first. Second drive shaft 2゜4
is the angle of the first intermediate route position, for example, the second
The arm 5 is at the control point S' as shown in FIG.

しかし、点S′の位置は完全剛性として考えられた位置
であるため、第2アーム5のたわみ角を考慮すると、実
際に制御される被制御点Sと異なる。 そこで1次に第
1.第2アーム3,5の途中経路位置におけるたわみ角
Δ03.ΔPiを求め(S14)、このたわみ角Δ03
.Δ戸、に応じ第1゜第2の駆動軸2.5の角度’i、
Oi、Piを計算する( S tS)。
However, since the position of point S' is considered to be completely rigid, it differs from the controlled point S that is actually controlled when the deflection angle of the second arm 5 is taken into account. Therefore, the first step is the first step. Deflection angle Δ03 at the intermediate path position of the second arms 3 and 5. ΔPi is determined (S14), and this deflection angle Δ03
.. Δdoor, according to the 1° angle of the second drive shaft 2.5 'i,
Calculate Oi and Pi (S tS).

この場合、たわみ角Δ01.Δr、は前記(I)式より
求まり、また角度εi+ J+ Piは次の(7)式よ
り求まる。
In this case, the deflection angle Δ01. Δr is found from the above equation (I), and the angle εi+J+Pi is found from the following equation (7).

そして、S15の後、+1をカウントしく516)、S
15で計算された角度に従い第1.第2の駆動軸2.5
を指令し駆動する(S17)。これにより、初期の再補
正動作経路位置P1から初回の補正途中経路位置ε2.
θ+yPiに旋回軸1及び第1゜第2のア゛−ム3,5
が移動する。
Then, after S15, count +1 (516), S
1 according to the angle calculated in step 15. Second drive shaft 2.5
is commanded and driven (S17). Thereby, from the initial re-correction operation path position P1 to the initial correction intermediate path position ε2.
Rotating axis 1 and 1st and 2nd arms 3 and 5 at θ+yPi
moves.

さらに、S17の後、所定回数か否かが判定され、所定
回数に達したときには次の処理に移行し、また達してい
ない場合にはS12以降の処理を繰り返し実行する。そ
の結果、夫々の途中経路位置毎に第1.第2アーム3,
5の位置が補正されるので、補正途中経路位置となる。
Furthermore, after S17, it is determined whether the predetermined number of times has been reached, and when the predetermined number of times has been reached, the process moves to the next process, and if the predetermined number of times has not been reached, the processes from S12 onwards are repeatedly executed. As a result, the first . second arm 3,
Since the position No. 5 is corrected, it becomes the corrected intermediate route position.

しかる後、次に移動すべき教示点Bを読み出して逆変換
し、その教示点Bにおける第1.第2の駆動軸2,4の
角度εBe  OBs PBを計算しく5t9)、その
位置における第1.第2アーム3,5のたわみ角ΔOB
tΔ9’nを計算しく520)、該たわみ角ΔOB、Δ
pBら応じて旋回軸1及び第1.第2の駆動軸2,4の
角度εB+ OBs Paを計算しく521)、該角度
ε[1+  OBs PBに従って旋回軸1及び第1.
第2の駆動軸2,4を制御する(S22)。
After that, the teaching point B to be moved next is read out and inversely transformed, and the first . Calculating the angle εBe OBs PB of the second drive shafts 2, 4, the first . Deflection angle ΔOB of second arms 3 and 5
Calculate tΔ9'n520), the deflection angles ΔOB, Δ
The pivot axis 1 and the 1st . Calculate the angle εB+ OBs Pa of the second drive shafts 2, 4 (521), and calculate the angle ε[1+ OBs PB of the rotation axis 1 and the first drive shaft 521).
The second drive shafts 2 and 4 are controlled (S22).

これにより、2つの動作経路位置A、B間において、最
終の補正途中経路位置から補正動作経路位置Bに移動す
るときには、その補正動作経路位置Bでのたわみ角ΔO
BtΔPBを考慮して動作経路位置を再補正するので、
この再補正された動作経路位置Bに旋回台及び第1.第
2アーム3,5が移動制御される。
As a result, when moving from the final correction intermediate path position to the correction movement path position B between the two movement path positions A and B, the deflection angle ΔO at the correction movement path position B
Since the motion path position is re-corrected in consideration of BtΔPB,
At this re-corrected motion path position B, the swivel base and the first. Movement of the second arms 3 and 5 is controlled.

そして、第1.第2アーム3,5が最終位置である動作
経路位置に達するまでS2以降の処理が順次繰り返され
る。(S23)。
And the first. The processes from S2 onwards are sequentially repeated until the second arms 3, 5 reach the final position of the movement path. (S23).

従って、再成時には、各々の動作経路位置A〜Pでの実
際の制御点S′と被制御点Sとが一致すると共に、各々
の動作経路位置間における途中経路位置での実際の制御
点Sと被制御点S′とも一致するので、動作経路及び補
間経路を高精度にすることができる。
Therefore, at the time of regeneration, the actual control point S' at each operation path position A to P matches the controlled point S, and the actual control point S at an intermediate path position between each operation path position and the controlled point S', the motion path and interpolation path can be made highly accurate.

その結果、溶接、シーリング、塗装等のように補間経路
精度が要求される作業を正確に行い得る。
As a result, operations that require interpolation path accuracy, such as welding, sealing, painting, etc., can be performed accurately.

また、可成の際には、ワーク重量M2が入力されると、
夫々の途中経路位置が、入力されたワーク重量M2に基
づくたわみ角に応じて補正され。
In addition, when the workpiece weight M2 is input when it is possible,
Each intermediate route position is corrected according to the deflection angle based on the input workpiece weight M2.

実際の制御点S′と被制御点Sとが常に一致するように
しているので、ワーク重量M2が教示時と異なった場合
、即ち溶接トーチの重量、シーリングトーチの重量、塗
装ガンの重量が各々変わっても、動作経路位置並びに途
中経路位置の位置が常に一定となる結果、教示が不要に
なる。
Since the actual control point S' and the controlled point S always match, if the workpiece weight M2 is different from that at the time of teaching, that is, the weight of the welding torch, the weight of the sealing torch, and the weight of the painting gun are Even if the movement path position and the intermediate path position change, the positions of the movement path position and the intermediate path position are always constant, so that no teaching is required.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明方法は、教示時に。 As described above, the method of the present invention can be used at the time of teaching.

各々の動作経路位置を動作部のたわみ量に応じて補正し
ておき、再成時に、補正された動作経路位置と次に移動
すべき動作経路位置との間から求めた夫々の途中経路位
置を、動作部のたわみ量に応じて補正し、かつその動作
経路位置における補正された最終途中経路位置から次の
動作経路位置への移動時に、該動作経路位置を再び補正
してこの補正した動作経路位置に動作部を移動制御させ
るようにしたので、動作経路及び補間経路を高精度にで
きる結果、補間経路精度が要求される作業を正確に行い
得る。
Each movement path position is corrected according to the amount of deflection of the movement part, and when regenerating, each intermediate path position found between the corrected movement path position and the movement path position to be moved next is calculated. , is corrected according to the amount of deflection of the operating part, and when moving from the corrected final intermediate route position at that operating route position to the next operating route position, the operating route position is corrected again to create this corrected operating route. Since the movement of the operating unit is controlled according to the position, the operating path and the interpolation path can be made highly accurate, and as a result, work requiring interpolation path accuracy can be performed accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を適用した関節ロボットを示、す全
体図、第2図は関節ロボットにおけるたわみの説明図、
第3図は本発明方法の一実施例を示す教示時のフローチ
ャート、第4図(a)及び(b)は同じく再成時のフロ
ーチャート、第5図は制御点と被制御点との関係説明図
である。 1・・・旋回台、2・・・第1の駆動軸、3・・・第1
アーム、4・・・第2の駆動軸、5・・・第2のアーム
、ΔO・・・第1アームのたわみ角、Δr・・・第2ア
ームのたわみ角。 代理人弁理士 秋  本  正  実 第2図 栴3図
FIG. 1 is an overall view showing an articulated robot to which the method of the present invention is applied; FIG. 2 is an explanatory diagram of deflection in the articulated robot;
FIG. 3 is a flowchart at the time of teaching showing an embodiment of the method of the present invention, FIGS. 4(a) and (b) are flowcharts at the time of regeneration, and FIG. 5 is an explanation of the relationship between control points and controlled points. It is a diagram. 1... Swivel base, 2... First drive shaft, 3... First
Arm, 4... Second drive shaft, 5... Second arm, ΔO... Deflection angle of first arm, Δr... Deflection angle of second arm. Representative Patent Attorney Tadashi Akimoto Figure 2, Figure 3

Claims (1)

【特許請求の範囲】 1、教示時、動作部が移動すべき経路位置を予め順次記
憶させ、再成時、前記記憶させた動作経路位置に従って
動作部を移動制御する産業用ロボットの制御方法におい
て、 ( I )教示時、前記記憶させた各々の動作経路位置毎
にその位置における動作部のたわみ量を演算し、かつ該
たわみ量に応じて各々の動作経路位置を補正しておき、 (II)再成時、前記補正された初期位置である補正動作
経路位置において、その位置での動作部のたわみ量及び
該たわみ量に応じ再補正する位置を計算してこの再補正
動作経路位置に補正し、 (III)該再補正動作経路位置と次に移動すべき補正動
作経路位置間の距離から予め定められた途中経路位置を
夫々求めると共に、該それぞれの途中経路位置毎にその
位置における動作部のたわみ量及び該たわみ量に応じ補
正する位置を計算して、この補正途中経路位置に動作部
を順次補間移動させた後、 (IV)該補正された最終位置である補正途中経路位置か
ら前記次に移動すべき補正動作経路位置へ移動する時点
で、その補正動作経路位置における動作部のたわみ量及
び該たわみ量に応じ再補正する位置を計算してこの再補
正動作経路位置に動作部を移動させ、 (V)以下、前記(III)と(IV)との処理を動作部が
最終の動作経路位置に達するまで順次繰り返して実行さ
せることを特徴とする産業用ロボットの制御方法。
[Scope of Claims] 1. A method for controlling an industrial robot, which sequentially stores path positions along which the movement section should move during teaching, and controls the movement of the movement section according to the stored movement path positions during regeneration. (I) At the time of teaching, calculate the amount of deflection of the operating part at each of the memorized motion path positions at that position, and correct each motion path position according to the amount of deflection, (II ) At the time of regeneration, at the corrected operation path position which is the corrected initial position, calculate the amount of deflection of the operating part at that position and the position to be re-corrected according to the amount of deflection, and correct to this re-corrected operation path position. (III) Determine each predetermined intermediate route position from the distance between the re-correction operation route position and the next correction operation route position, and calculate the operation unit at that position for each intermediate route position. (IV) After calculating the amount of deflection of At the time of moving to the corrected motion path position to be moved next, calculate the amount of deflection of the moving part at that corrected motion path position and the position to be re-corrected according to the deflection amount, and move the moving part to this re-corrected motion path position. (V) A method for controlling an industrial robot, characterized in that the steps (III) and (IV) are sequentially repeated until the operating section reaches the final operating path position.
JP8503186A 1986-04-15 1986-04-15 Controlling method for industrial robot Pending JPS62242201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8503186A JPS62242201A (en) 1986-04-15 1986-04-15 Controlling method for industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8503186A JPS62242201A (en) 1986-04-15 1986-04-15 Controlling method for industrial robot

Publications (1)

Publication Number Publication Date
JPS62242201A true JPS62242201A (en) 1987-10-22

Family

ID=13847332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8503186A Pending JPS62242201A (en) 1986-04-15 1986-04-15 Controlling method for industrial robot

Country Status (1)

Country Link
JP (1) JPS62242201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241604A (en) * 1987-03-28 1988-10-06 Kawasaki Heavy Ind Ltd Method for generating teaching data of robot
JPH04233602A (en) * 1990-12-28 1992-08-21 Fanuc Ltd Deflection correcting system for robot
US6826450B2 (en) 2001-04-16 2004-11-30 Fanuc Ltd. Robot controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241604A (en) * 1987-03-28 1988-10-06 Kawasaki Heavy Ind Ltd Method for generating teaching data of robot
JPH04233602A (en) * 1990-12-28 1992-08-21 Fanuc Ltd Deflection correcting system for robot
US6826450B2 (en) 2001-04-16 2004-11-30 Fanuc Ltd. Robot controller

Similar Documents

Publication Publication Date Title
EP2014405B1 (en) Positioning method of spot welding robot
JPH08505091A (en) System and method for tracking features on an object using redundant axes
CN105798431A (en) Online welding line tracking method of welding curved line of arc welding robot
JPH04233602A (en) Deflection correcting system for robot
JPH07261821A (en) Robot track planning method taking deflection due to load into consideration
CN111687838A (en) Online compensation method and system for manipulator track following error and storage medium
JPS62242201A (en) Controlling method for industrial robot
JPS6243701A (en) Robot control system
JPH01205880A (en) Weaving control system
JPS6218316B2 (en)
JPS61190604A (en) Position control method for feedback control
JPS60118478A (en) Controller for position of joint type robot
JPS6010648B2 (en) Control method for robot external force compensation
JP2002144034A (en) Device for checking reference position in working tool with robot
JPS5844512A (en) Controlling method of teaching and preproduction type robot
JPH0318478A (en) Method for controlling weld line profile
JPH04229309A (en) Method for controlling movable system
JPS6249405A (en) Teaching method for robot
JP2832630B2 (en) Welding line profiling control method
JP2692043B2 (en) How to create robot teaching data
JPS6054275A (en) Method for controlling driving of welding torch
JPH0375271B2 (en)
JPH02218574A (en) Correction of locus in industrial robot
CN116587274A (en) Welding robot dragging and teaching tracking method based on force control compensation
JPH06250714A (en) Method for teaching robot