JPS6054275A - Method for controlling driving of welding torch - Google Patents

Method for controlling driving of welding torch

Info

Publication number
JPS6054275A
JPS6054275A JP16111083A JP16111083A JPS6054275A JP S6054275 A JPS6054275 A JP S6054275A JP 16111083 A JP16111083 A JP 16111083A JP 16111083 A JP16111083 A JP 16111083A JP S6054275 A JPS6054275 A JP S6054275A
Authority
JP
Japan
Prior art keywords
welding
torch
welding torch
weld line
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16111083A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takagi
啓行 高木
Sakae Tanahashi
棚橋 栄
Nobuaki Kido
木戸 信明
Satoshi Nishida
智 西田
Masakazu Kozono
小園 正和
Toshiichi Hotta
堀田 敏一
Hitoshi Nakagawa
均 中川
Akira Matsuda
松田 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP16111083A priority Critical patent/JPS6054275A/en
Publication of JPS6054275A publication Critical patent/JPS6054275A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/425Teaching successive positions by numerical control, i.e. commands being entered to control the positioning servo of the tool head or end effector

Abstract

PURPOSE:To perform exactly operation for correcting profiling of a weld line in the direction normal to said line by detecting the direction of the weld line during welding in accordance with teaching data and correcting data for profiling and correcting the moving direction of a welding torch by profiling control so as to bring the same in the direction normal to the direction of the detected weld line. CONSTITUTION:A mechanism for controlling driving of a welding torch 1 provided with a wrist part 2 having an S-axis to oscillate the torch 1 and a B-axis to bend the torch 1 and an arm part 3 having plural axes to control the position of the part 2 is operated in the following way: the directions X, Y, Z of the weld line presently under welding are detected by the teaching data for controlling the driving of the respective axes S, B to move the top end of the torch 1 along the weld line and the correction data for profiling by the detected deviation are preliminarily detected. The axes S, B of the arm part 3 are simultaneously controlled in such a way that the moving direction along the actual weld line of the torch 1 is brought to the normal X', Y', Z' of the weld line in accordance with the direction of the detected weld line mentioned above. In the figure, 4 denotes a control device for a welding robot and 5 a teaching box, respectively.

Description

【発明の詳細な説明】 本発明は溶接ロボットにおける溶接トーチの駆動制御方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the drive of a welding torch in a welding robot.

この種の溶接ロボットとしては、第1図に示すよ5な構
成の・らのがある。この溶接ロボットは、溶接トーチl
を具備し、この溶接トーチlの姿勢を制御する2つり回
動軸、すなわち溶接トーチlを左右に振るS軸と溶接ト
ーチ1を上下に曲げるB軸(第2図(a)および(b)
参照)を有する手首部2と、横送り(勾、水平(Y)、
垂直(→の直交座標系の腕部3とからなるロボット本体
、溶接ロボット制御装置4、ティーチングボックス5、
溶接電源供給装置6および溶接ワイヤボックス7から構
成され゛〔いる。
As this type of welding robot, there are five types of welding robots, as shown in FIG. This welding robot has a welding torch l
The welding torch 1 is equipped with two rotating axes that control the attitude of the welding torch 1, that is, an S axis that swings the welding torch 1 left and right and a B axis that bends the welding torch 1 up and down (Fig. 2 (a) and (b)).
(see), and a horizontal (Y)
A robot body consisting of an arm 3 in a vertical (→) orthogonal coordinate system, a welding robot control device 4, a teaching box 5,
It consists of a welding power supply device 6 and a welding wire box 7.

かかる溶接ロボットにおいてティーチング1プレイバツ
ク方式により溶接トーチを駆動制御する場合には、まず
ティーチングボックス5によりて溶接トーチlのX、Y
、Z軸方向の移動を指示し\溶接トーチlの先端を所望
のティーチング点まで移動させ、この点のX、Y、Z軸
の位置およびS軸、B軸の角度θB、θBを浴接ロボッ
ト制御装置首4のメモリにティーチングデータどしてJ
t4次書き込み、ティーチング終了後、溶接トーチ先端
を前記ティーチングデータによって教示した溶接線に沿
って移動させる場合には、前記各軸の位置データ(ティ
ーチングデータ)から2つのティーチン点の位置データ
をめ、この2点間の距離を計算し、これを等分割して補
間の点数を決定したのち補間演算を行ない、この結果、
2点間を直線(または円)でトレースするような補間が
得られるので1.これに対して逆の座標変換を行ない各
軸の位置データをめ、この位置データ例より各軸を制御
し、また溶接に際してはアークセンサ等の溶接線検出手
段によって実際の溶接線を検出し、この溶接線検出手段
の出力により更に前記各軸を制御して前記浴接トーチが
実際の溶接線に沿うようKしている。
When controlling the welding torch using the teaching 1 playback method in such a welding robot, first the X, Y of the welding torch 1 is controlled by the teaching box 5.
, instruct movement in the Z-axis direction, move the tip of the welding torch l to the desired teaching point, and set the position of the X, Y, and Z axes at this point and the angles θB and θB of the S and B axes to the bath welding robot. Transfer the teaching data to the memory of the controller head 4.
After completing the fourth writing and teaching, when moving the welding torch tip along the welding line taught by the teaching data, find the position data of the two teaching points from the position data of each axis (teaching data), Calculate the distance between these two points, divide it equally to determine the number of interpolation points, and then perform interpolation calculations. As a result,
1. Interpolation can be obtained by tracing a straight line (or circle) between two points. On the other hand, reverse coordinate transformation is performed to obtain the position data of each axis, and each axis is controlled based on this position data example.In addition, when welding, the actual weld line is detected by a weld line detection means such as an arc sensor, The output of the welding line detection means further controls each of the axes so that the welding torch follows the actual welding line.

ところで、従来上記溶接線検出手段の出力によって溶接
トーチを倣い制御する場合には、溶接トーチ先端を座標
原点とし、B軸を回動させるとき溶接トーチ先端の描く
円弧の接線方向をx / (第2図(a)参照)、B軸
を回動させるとき溶接トーチ先端の描く円弧の接線方向
をY′、溶接トーチの延長方向ya:z’c第2図(b
)参照)として定義さ社るトーチ座標糸を用い、上記検
出した溶接線とのずれ負をトーチ座標系に変換して倣い
制御するようにしていた。
By the way, conventionally, when controlling the welding torch by following the output of the welding line detecting means, the tip of the welding torch is set as the coordinate origin, and the tangential direction of the arc drawn by the tip of the welding torch when rotating the B axis is x / (th 2 (a)), the tangential direction of the arc drawn by the tip of the welding torch when rotating the B axis is Y', and the extension direction of the welding torch ya:z'c in Figure 2 (b
Using the torch coordinate thread defined as (see ), the negative deviation from the weld line detected above was converted into the torch coordinate system for tracing control.

したがって、溶接1・−チが第3図に示すように溶接線
からずれている場合には、浴接トーチをY′力方向移動
させて溶接トーチが1点鎖線上(溶接線上〕にくるj:
うに倣い制御している。
Therefore, if the welding torch 1 - is deviated from the welding line as shown in Fig. 3, move the bath welding torch in the direction of the Y' force so that the welding torch is on the dashed-dotted line (on the welding line). :
It is controlled by imitating sea urchins.

かかる倣い制御は、第4図に示すように前進角、後退角
がない場合あるいは非常例小さい場合沈はティーチング
した溶接線と実際の溶接線とが若干ずれていてもそれ程
問題はないが(第5図参照)第6図に示すようにティー
チングした溶接線(点線)と実際の溶接線とがずれてお
り、溶接トーチが前進角、後退角な有する場合には、溶
接線の隅部で矢印Aに示ずようにオーバーシュートする
ことがあり、ここで著しくm接品質が劣下する。なな、
f6接を矢印B方向に行なう場合には角度αが前進角で
あり、矢印1方向に行なう場合には角度αが後退角であ
る。また、溶接線の隅部では溶接トーチとワークとの干
渉を回避するために1第5図に示すような溶接トーチの
姿勢はとらず、第6図(て示すように前進角、後退角を
設けて対処するのが普通である。
As shown in Fig. 4, in such tracing control, if there is no advancing angle or receding angle, or if the sinking angle is small, there is no problem even if there is a slight deviation between the taught welding line and the actual welding line. (See Figure 5) As shown in Figure 6, if the taught welding line (dotted line) and the actual welding line are misaligned, and the welding torch has an advancing angle or a receding angle, the arrow will appear at the corner of the welding line. Overshoot may occur as shown in A, and the quality of the m-contact is significantly degraded here. seven,
When the f6 tangent is performed in the direction of arrow B, the angle α is the advancing angle, and when the f6 tangent is performed in the direction of arrow 1, the angle α is the receding angle. In addition, in order to avoid interference between the welding torch and the workpiece at the corners of the welding line, the welding torch should not be held in the position shown in Figure 1 and Figure 5, but the advancing and receding angles should be adjusted as shown in Figure 6 (Figure 6). It is normal to set this up and deal with it.

したがって、従来の倣い制御は、溶接トーチのオーバー
シュートや前進角、後退角に制限を受けるといった問題
があった。
Therefore, conventional tracing control has problems such as being limited by overshoot, advancing angle, and receding angle of the welding torch.

本2発明は上記問題点を解決することができる溶接トー
チの駆動制御方法を提供することを目的と−「ろ。
The second invention aims to provide a welding torch drive control method that can solve the above problems.

この発明によれば、現在溶接している溶接線の方向をテ
ィーチングデータおよび倣い補正データに基づいて検出
し、倣い制御による溶接トーチの移動方向を前記検出し
た溶接線の方向を法線方向とするようにし、上記不具合
を解決するようにしている。
According to this invention, the direction of the welding line currently being welded is detected based on teaching data and scanning correction data, and the moving direction of the welding torch by scanning control is set to the normal direction of the detected welding line. We are trying to resolve the above problems.

以下、本発明を添付図面を参照して詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第7図は本発明に係る溶接トーチの制御方法を実施する
ための制御装置の構成例を示すブロック図である。今、
第8図に示すようにティーチング線片らと実際の溶接線
iIiとがずれて(・る場合について説明する。
FIG. 7 is a block diagram showing an example of the configuration of a control device for implementing the welding torch control method according to the present invention. now,
As shown in FIG. 8, a case where the teaching wire pieces and the actual welding line iIi are misaligned will be described.

第1メそりlOは予め各ティーチング点p、 、 p。The first mesori lO has each teaching point p, , p in advance.

におけるロボットの腕部3および手首部2の各軸のティ
ーチングデータ(xrY*zHQ”tθりを記憶してい
る。
The teaching data (xrY*zHQ''tθ) of each axis of the arm 3 and wrist 2 of the robot in is stored.

中央処理装置C0PU ) 11は、前記ティーチング
データからティーチング点P1・P2の位置データハ 
(XH+7t +z+ ) +Pt (zntyt 、
zl)’をめ、この2点間の距離を計算し、これを等分
割して補間の点数を決定したのち補間演算を行なう。そ
の結果、点ハ 、P、とその間の微小距離zl毎の位置
データは、第1表に示すようになる。
The central processing unit C0PU) 11 extracts position data of teaching points P1 and P2 from the teaching data.
(XH+7t +z+) +Pt (zntyt,
zl)', calculate the distance between these two points, divide it equally, determine the number of interpolation points, and then perform interpolation calculation. As a result, the position data for each minute distance zl between points C and P are as shown in Table 1.

第1表 第1表の位置データは第1メモ!JIOK記憶される。Table 1 The position data in Table 1 is the first memo! JIOK will be remembered.

CPUIIは、上記第1表の位置データを順次入力し、
各軸の移動指令値を算出してこれを減算器12に加える
。減算器12の他の入力にはエンコーダ13から軸の移
動距離、すなわち軸駆動用モータ140回動量に応じた
数のパルス信号が加えられるようになりており、減算器
12は2人力信号の偏差をとってこれを位置偏差カウン
タ15に導(。位置偏差カウンタ150カウント値はD
/A変換器16でアナログ信号に変換されて減算器17
に加えられる。減算器20の他の入力には速度検出器1
8から軸駆動用モーター40回転速度に対応づ゛るアナ
ログ信号が加えられており、減算器17は2人力信号の
偏差なとってこれをサーボアンプ19を介して軸駆動用
モーター4に導く。
The CPU II sequentially inputs the position data in Table 1 above,
A movement command value for each axis is calculated and added to the subtracter 12. To the other input of the subtractor 12, a number of pulse signals corresponding to the moving distance of the shaft, that is, the amount of rotation of the shaft drive motor 140, is applied from the encoder 13, and the subtractor 12 is configured to receive a deviation between the two human power signals. and leads it to the position deviation counter 15 (The count value of the position deviation counter 150 is D
/A converter 16 converts it into an analog signal and subtracter 17
added to. The other input of the subtractor 20 is the speed detector 1.
An analog signal corresponding to the rotational speed of the shaft drive motor 40 is added from 8, and the subtracter 17 takes the deviation of the two human power signals and leads it to the shaft drive motor 4 via the servo amplifier 19.

また、アーク電流値14は、ウィービング重接中におけ
るウィービング両端のアーク電流値に基づいて実際の溶
接線を検出し、溶接トーチ先端が実際の溶接線に沿うよ
5に補正データを出力1−る。
In addition, the arc current value 14 detects the actual welding line based on the arc current value at both ends of the weaving during weaving overlap, and outputs correction data 1-5 so that the welding torch tip follows the actual welding line. .

0PUI 1は上記補正データに基づき各軸の移動指令
値を出力し、溶接トーチ先端を後述する倣い制N−fる
とともに、第8図に示すようにティーチングした溶接線
と実際の溶接線とのずれ量(ΔYi )を溶接線を距離
Δlで等分割した位置毎に第2メモリ21に記憶させる
。なお、Δl毎のセンサ補正量をEχとすると、ティー
チングした溶接、線と実際の溶接線とのずれ量(ΔYi
)は、ΔYi−aΣ Kχ ・・・・・・ (1)χ=
1 で表わすことができる。すなわち、位置Qを溶接してい
るときの第2メモリ21の倣い補正データは)第2表に
示すようになる。
0PUI 1 outputs movement command values for each axis based on the above correction data, performs a tracing control N-f on the tip of the welding torch, which will be described later, and compares the taught welding line with the actual welding line as shown in Figure 8. The amount of deviation (ΔYi) is stored in the second memory 21 for each position where the welding line is equally divided by the distance Δl. Note that if the sensor correction amount for each Δl is Eχ, then the amount of deviation between the taught welding line and the actual welding line (ΔYi
) is ΔYi−aΣ Kχ ・・・・・・ (1) χ=
It can be expressed as 1. That is, the scanning correction data in the second memory 21 when welding the position Q is as shown in Table 2.

第 2 表 したがって、実際の溶接線の位置データは、第1メモリ
lOと第2メモリ21の内容からめることができるゆ さて、位置Qで溶接しているときの実際の溶接線のX軸
に対する傾きQをめる方法について説明する。いま、第
9図に示すように、第2メモリ21より最も新しい所定
数(この場合4つ)の倣い補正データ(ΔY Q −s
 、ΔYQ−、、ΔYCL−,、ΔYQ)を抽出し、こ
れらの相S S−ΔYQ−葬十ΔYQ−!+ΔYQ−1+ΔYQ・・
・・・・(2)をit算する。もし、ΔYQ−3、ΔY
Q−2.ΔYQ−1.ΔY(が全て角度θの一直線上に
あるならば1次式%式% が成立する。したがって、第(3)式の左辺と右辺の相
をとると、 Δ′1q−1+ΔYQ−1+ΔY Q −1+ΔYQ。
Table 2 Therefore, the position data of the actual welding line can be determined from the contents of the first memory IO and the second memory 21. Therefore, the inclination of the actual welding line with respect to the X-axis when welding at position Q is I will explain how to set Q. Now, as shown in FIG. 9, the newest predetermined number (four in this case) of scanning correction data (ΔY
, ΔYQ-, , ΔYCL-, , ΔYQ), and these phases S S-ΔYQ-Fuju ΔYQ-! +ΔYQ-1+ΔYQ・・
...Calculate (2) by it. If ΔYQ-3, ΔY
Q-2. ΔYQ-1. If ΔY( are all on the straight line of angle θ, then the linear formula % formula % holds true. Therefore, taking the phases of the left and right sides of equation (3), Δ′1q−1+ΔYQ−1+ΔY Q −1+ΔYQ .

−+1+2+3−1−4)Δl−θ−10×ΔI!−〇
 ・・・・・・(4)となる。上記第(2)式と第(4
)式から角度θをめると1  uxbt となる。なお、実際には、ΔYcl−8.ΔYQ−1.
ΔYQすΔyt4はバラツキによる誤差を含んでいるが
、上記第(5)式によって算出される角度0の値では、
これらのバラツキは平準化される。また、この実施例で
は簡単のために、ティーチングした溶接線がX軸方向と
一致している場合について説明したが、不一致の場合に
は、第1表に示したティーチングデータおよび第2表に
示した倣い補正データを用いて上記と同様にして現在溶
接しているm接線の傾きをめることができる。
-+1+2+3-1-4)Δl-θ-10×ΔI! −〇 ・・・・・・(4). The above formula (2) and the formula (4)
) Subtracting the angle θ from the equation gives 1 uxbt. In addition, in reality, ΔYcl-8. ΔYQ-1.
Although ΔYQ and Δyt4 include errors due to variations, the value of angle 0 calculated by the above equation (5) is
These variations are leveled out. In addition, in this example, for the sake of simplicity, the case where the taught welding line coincides with the Using the tracing correction data, the inclination of the m tangent currently being welded can be adjusted in the same manner as described above.

こ、のようにして検出したm接線の傾きθに基づいて)
第1O図(a)および(b)に示すように溶接トーチを
実際の溶接線の法線方向θχに移動させることができる
。ここでθχは、 θχ=90″十〇 (’、’o≦θ〈90°)θ −9
0° (’、” 90≦θ< 180 ”)で表わすこ
とができる。
Based on the slope θ of the m tangent detected in this way)
As shown in FIGS. 1O (a) and (b), the welding torch can be moved in the normal direction θχ of the actual welding line. Here, θχ is θχ=90″10 (','o≦θ〈90°)θ −9
It can be expressed as 0° (', "90≦θ<180").

0PUl lは、アークセンサ2oからの補正データに
よる溶接トーチ先端の倣い制御方向が、上記のようにし
てめた溶接線の法線方向になるよ5に基軸の移動指令値
を算出してこれを出力する。
0PUl l calculates the base axis movement command value in step 5 so that the direction of tracing control of the welding torch tip based on the correction data from the arc sensor 2o is the normal direction of the welding line drawn as described above. Output.

なお、本実施例では腕部をX、Y、Z軸の直交3軸とし
たが、手首部の位置を移動させるものであれば他の軸構
成からなる腕部でもよい。
In this embodiment, the arm has three orthogonal axes, X, Y, and Z, but the arm may have other axial configurations as long as it moves the position of the wrist.

以上説明したように本発明によれば、溶接トーチの姿勢
にかかわらず、正確に溶接線に対して法線方向に倣い補
正動作を行なうため、補正動作によるオーバーシーート
がな(なり、溶接品質の向上が期待できる。また、溶接
トーチの姿勢が制限されなくなり、溶接が可能な継手の
範囲を拡大することができる。
As explained above, according to the present invention, the correction operation is performed by accurately following the normal direction to the welding line regardless of the orientation of the welding torch. In addition, the posture of the welding torch is no longer restricted, and the range of joints that can be welded can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用されるm接口ボットのシステム構
成図、第2図(a)および第2図(b)はそれぞれ溶接
ロボットの手首部の平面図および側面図、第3図乃至第
6図は従来の倣い補正動作の不具合を説明するために用
いた溶接トーチとワークとの相対位置を示す図、第7図
は本発明に係る溶接トーチの駆動制御方法を実施するた
めの制御装置の構成例を示すブロック図、第8図はティ
ーチングしたm接線と実際の溶接線との関係を示す図、
第9図は溶接線の傾きをめる一例を説明するために用い
た図、第1θ図@)および第1O図(b、)はそれぞれ
溶接トーチを倣い補正する際の整動方向を説明するため
に用いた図である。 l・・・溶接ト・−チ、2・・・手首部、3・・・腕部
、4・・・浴接ロボット制御装置、5・・・ティーチン
グボックス、lO・・・第1メモ’J、11・・・中央
処理装置(CPU)20・・・アークセンサ、21・・
・第2メモリ。 第8図
FIG. 1 is a system configuration diagram of an m-welding robot to which the present invention is applied, FIGS. 2(a) and 2(b) are a plan view and a side view of the wrist of the welding robot, respectively, and FIGS. FIG. 6 is a diagram showing the relative positions of the welding torch and workpiece used to explain the defects in the conventional scanning correction operation, and FIG. 7 is a control device for implementing the welding torch drive control method according to the present invention. 8 is a block diagram showing a configuration example of , and FIG. 8 is a diagram showing the relationship between the taught m tangent and the actual welding line.
Fig. 9 is a diagram used to explain an example of adjusting the inclination of the welding line, and Fig. 1θ @) and Fig. 1O (b,) respectively explain the alignment direction when correcting the welding torch by copying it. This is a diagram used for this purpose. l...Welding torch, 2...Wrist part, 3...Arm part, 4...Bath contact robot control device, 5...Teaching box, lO...First memo'J , 11... central processing unit (CPU) 20... arc sensor, 21...
-Second memory. Figure 8

Claims (1)

【特許請求の範囲】[Claims] 溶接トーチを振るS軸および溶接1・−チを曲げるB@
を有する手6部と、該手錠部の位置を制御するa数の軸
を有する腕部とを具備し、溶接トーチの先端が予めティ
ーチングデータによって教示した溶接線に沿うように前
記各軸を駆動制御するとともに、ウィービング溶接中r
c溶接1・−チと実際の溶接線とのずれを検出し、この
検出したずれに基づいて前記溶接トーチが実際の溶接線
に沿うように倣い制御する溶接トーチの駆動制御方法に
おいて、前記ティーチングデータおよび前記検出したず
れによる倣い補正データによって現在溶接中の溶接線の
方向を検出し、前記倣い制御における宕接トーチの移動
方向を、前記検出した溶接線の方向に基づいて該溶接線
の法線方向となるよう忙前記腕部の各軸を同時制御する
ことをllI′f、徴とする溶接トーチの駆動制御方法
Swing the welding torch S axis and welding 1 - bend B @
and an arm having a number of axes for controlling the position of the handcuffs, and drives each of the axes so that the tip of the welding torch follows a welding line taught in advance by teaching data. While controlling, weaving welding r
c Welding 1. - In the welding torch drive control method, the welding torch is controlled to follow the actual welding line by detecting a deviation between the welding tip and the actual welding line based on the detected deviation, and the teaching The direction of the welding line currently being welded is detected based on the data and copying correction data based on the detected deviation, and the moving direction of the welding torch in the copying control is determined based on the detected direction of the welding line. A method for controlling the drive of a welding torch, the feature of which is to simultaneously control each axis of the arm so that the axis is in the linear direction.
JP16111083A 1983-09-01 1983-09-01 Method for controlling driving of welding torch Pending JPS6054275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16111083A JPS6054275A (en) 1983-09-01 1983-09-01 Method for controlling driving of welding torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16111083A JPS6054275A (en) 1983-09-01 1983-09-01 Method for controlling driving of welding torch

Publications (1)

Publication Number Publication Date
JPS6054275A true JPS6054275A (en) 1985-03-28

Family

ID=15728792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16111083A Pending JPS6054275A (en) 1983-09-01 1983-09-01 Method for controlling driving of welding torch

Country Status (1)

Country Link
JP (1) JPS6054275A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056482A (en) * 1983-09-06 1985-04-02 Mitsubishi Electric Corp Method for correcting deviation in follow-up device for weld line
JPH01205880A (en) * 1988-02-10 1989-08-18 Fanuc Ltd Weaving control system
JPH02122036U (en) * 1989-03-22 1990-10-04
CN107486838A (en) * 2017-08-21 2017-12-19 上海智殷自动化科技有限公司 A kind of tow-armed robot of special-shaped arm

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151647A (en) * 1975-06-23 1976-12-27 Toyota Motor Co Ltd Torch angle input into memory of arc welder robot machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151647A (en) * 1975-06-23 1976-12-27 Toyota Motor Co Ltd Torch angle input into memory of arc welder robot machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056482A (en) * 1983-09-06 1985-04-02 Mitsubishi Electric Corp Method for correcting deviation in follow-up device for weld line
JPH01205880A (en) * 1988-02-10 1989-08-18 Fanuc Ltd Weaving control system
US5063281A (en) * 1988-02-10 1991-11-05 Fanuc Ltd. Weaving welding method
JPH02122036U (en) * 1989-03-22 1990-10-04
CN107486838A (en) * 2017-08-21 2017-12-19 上海智殷自动化科技有限公司 A kind of tow-armed robot of special-shaped arm

Similar Documents

Publication Publication Date Title
US4761596A (en) Method of detecting and controlling work start point of robot
Baeten et al. Hybrid vision/force control at corners in planar robotic-contour following
JP2512099B2 (en) Robot motion teaching method and control device
JP3207409B2 (en) Robot tool attitude control method
JPH08505091A (en) System and method for tracking features on an object using redundant axes
JP2728399B2 (en) Robot control method
EP0601206B1 (en) Method for controlling operation of a robot arm
KR0180953B1 (en) Method of controlling the normal direction of the main shaft of the numerical machine tool
JPH0252592B2 (en)
JP2012135835A (en) Robot control device, and robot posture interpolation method
JPS6054275A (en) Method for controlling driving of welding torch
JPS6054011A (en) Position control method of industrial robot
JP2020171989A (en) Robot teaching system
JPH0146276B2 (en)
JPS61164788A (en) Industrial robot
JPS63251182A (en) Method of detecting position of bevel of working-line start end
JPS6125210A (en) Industrial joint robot
JPH05261546A (en) Control method for welding robot
JPS58221672A (en) Copying control system of welding robot
JPH0511825A (en) Correction device for track of robot
JPH0747472A (en) Contact type profiling sensor device
JPS61285506A (en) Method for correcting teaching point of industrial robot
JP2537469Y2 (en) Control device for industrial robot with rotating external axis
JPH0741418B2 (en) Control method for welding robot
JPH08383B2 (en) Robot controller