JPS62241991A - 石炭の低温接触水蒸気ガス化による高カロリ−ガス製造法 - Google Patents

石炭の低温接触水蒸気ガス化による高カロリ−ガス製造法

Info

Publication number
JPS62241991A
JPS62241991A JP61084928A JP8492886A JPS62241991A JP S62241991 A JPS62241991 A JP S62241991A JP 61084928 A JP61084928 A JP 61084928A JP 8492886 A JP8492886 A JP 8492886A JP S62241991 A JPS62241991 A JP S62241991A
Authority
JP
Japan
Prior art keywords
coal
steam
gas
gasification
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61084928A
Other languages
English (en)
Inventor
Akira Tomita
彰 富田
Yasukatsu Tamai
玉井 康勝
Yasuo Otsuka
大塚 康夫
Yasuyuki Takarada
寶田 恭之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP61084928A priority Critical patent/JPS62241991A/ja
Publication of JPS62241991A publication Critical patent/JPS62241991A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Industrial Gases (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は石炭の低温接触水蒸気ガス化により高カロリー
ガスを製造する方法に関するものである。
(従来の技術) 従来石炭のガス化法としては、石炭の水性ガス化法、発
生炉ガス化法、部分酸化法等が、古くより研究開発され
ており、既に実用化され、合成ガス製造、水素製造等に
利用されている。石油危機以後、石炭のガス化による高
カロリーガス(メタンリッチガス)製造が注目され、研
究開発が行なわれている。従来の石炭ガス化によるメタ
ン製造の方法は、第一段階で副原料として水、酸素を用
いて1000℃以上の高温で石炭のガス化を行ない、主
に水素、−酸化炭素を得、最終段階でニッケルなどの触
媒を用いて水素と一酸化炭素からメタンを合成するもの
である。近年、新しい高カロリーガス製造法として接触
ガス化法、水添ガス化法が注目され、開発されている。
(発明が解決しようとする問題点) 石炭の接触ガス化法は、アルカリ土類金属等の触媒作用
を有するものを石炭の粉末と共にガス化炉に供給し、゛
石炭と水蒸気等のガス化剤との間に介在させ、接触的に
ガス化反応を促進させる方法である。石炭と水蒸気が反
応すると1000℃以上の高温では、主に水素と一酸化
炭素を生成するが、反応温度を低くすればするほど、平
衡的にガス化反応炉出口ガス中のメタン濃度は高くなり
、最終製品ガスが代替天然ガス等の様にメタンリッチガ
スが望ましい場合には極めて有利である。しかしながら
、反応温度を低くすると反応速度が遅くなる。そこで、
触媒を用いて反応速度を促進する接触ガス化法が注目さ
れてきた。これまで石炭の水蒸気ガス化に対しては、炭
酸カリウムが最も有効な触媒とされてきた。炭酸カリウ
ムを触媒として石炭の水蒸気ガス化を行った場合、反応
温度700℃、反応圧力35気圧でメタン濃度21%の
生成ガスが得られると報告されている。炭酸カリウムを
用いた場合、適当な反応速度を得るためにはこの程度の
温度が必要である。そのため生成ガス中にはかなりの濃
度の水素、−酸化炭素が含まれ、一段でメタンリッチな
ガスを製造することができないという問題点がある。
(問題点を解決するための手段) 本発明者等は石炭の水蒸気ガス化によって一段でメタン
リッチな高カロリーガスを製造する方法を開発すべく種
々研究を行ったところ、石炭の水蒸気ガス化によって一
段でメタンリッチなガスを製造するためには、さらに低
温で反応を行うことが必要であり、より活性の高い触媒
の開発を要することを確かめた。そこで更に、種々の石
炭につき、各種触媒による石炭の水蒸気ガス化の実験を
行った結果、低炭化度の石炭を用い、Ni触媒を添加し
、低温、加圧下で水蒸気と反応させると、一段で高濃度
のメタンを含む高カロリーガスが得られることを見出し
、本発明を達成するに至った。
従って本発明は低炭化度の石炭の粉末を、石炭1kg当
り50〜200gのニッケル触媒と400〜700℃の
温度、1〜100気圧の圧力の条件下で、スチーム比[
:H20/石炭(g/g):l 1〜10で接触水蒸気
ガス化を行うことを特徴とする石炭の低温接触水蒸気ガ
ス化法による高カロリーガス製造法に関するものである
本発明において用いられる石炭は、亜炭、褐炭、亜瀝青
炭等の低炭化度の石炭、例えばライン褐炭(西独産)、
ヤルーン炭(豪州産褐炭)、マレイシア・ピート(マレ
イシア産泥炭)、ワンドアン炭(豪州産亜瀝青炭う、等
であり、この内亜炭および褐炭が好ましい。これ等の石
炭は粒径が2 mm以下のものが用いられるが、粒径が
小さいほど効果が大きく、0.5mm以下のものが好ま
しく用いられる。
また触媒としては周期律表第■族のNi等の遷移金属が
使用され、石炭1kgに上記触媒金属を50〜200g
、好ましくは100〜120g添加する。触媒が50g
より少くなると添加率が低下し、一方200gより多く
なると経済性の問題があり好ましくない。Ni触媒は通
常N1(NH3)6CO3,NlNO3,N1(CH3
C口0)2等として添加される。
本発明においては、上記触媒を添加した石炭を通常40
0〜700℃の温度、1〜100気圧、好ましくは10
〜100気圧の圧力条件下で、スチーム比1〜10、好
ましくは1.0〜2.0820/石炭軸/g) として
水蒸気によりガス化を行う。反応は通常10〜30分の
滞留時間で行われる。反応温度が400℃より低くなる
と反応速度が著しく遅くなり、一方700℃より高くし
ても添加率の顕著な上昇は認められないし、また、メタ
ン生成には平衡論的に不利となる。圧力は高い方がメタ
ン生成には有利であるが、あまり高くなると操作性、経
済性の問題があり上記1〜100気圧の範囲とする。ま
たスチーム比は1.0より小ではスチーム量が少なすぎ
、一方10より大きくなるとスチーム量が士くなり過ぎ
、いずれの場合も好ましくない。
更に、ガス化剤には水蒸気を用いるが、水蒸気中に水素
ガス、−酸化炭素ガス、二酸化炭素ガス、酸素、空気等
の中の1種または2種以上を混合することができる。
(実施例) 本発明を次の実施例につき説明する。
実施例1 ヤルーン褐炭(豪州炭)の0.25〜0.5o+m粒径
あるいは0.074〜O,15mm粒径のものに炭酸ア
ンミンニッケル(Ni (NH3) 1lcO3)をN
iとして11〜13%担持させ、インコロイ製加圧流動
層ガス化装置(流動層部は内径50mm、溢流管の位置
は分散板から75mmあるいは150mJTl)により
次の条件下で石炭の接触ガス化を行った。温度490〜
730℃、圧力3〜19気圧、流速/最小流動化速度5
〜30、粒子平均滞留時間10〜30分、スチーム比1
〜10゜スチーム比軸/g)は水蒸気および石炭の供給
速度を変えることにより調節した。反応後の残渣はロッ
クホッパーシステムにより半連続的に反応器より系外に
取り出された。石炭転化率は反応前後の灰分含有量を比
較することにより求めた。
第1図に種々の条件下で得られた石炭転化率を示す。第
1図より転化率は反応温度に強く依存し、反応圧力、ス
チーム比の影響は小さかった。すなわち、いずれの条件
下においても600℃という低温で約80%の転化率が
得られた。また転化率に対して石炭粒径、流動層高の影
響はほとんど認められなかった。
実施例2 実施例1と同様にして石炭の接触ガス化を行った。但し
、ガスクロマトグラフィーとIRガス分析計を用いて生
成ガス組成を分析し、生成ガス組成に対するスチーム比
の影響を調べた。反応温度600℃、反応圧力11気圧
の条件下で得られた結果を表1に示す。
表   1 上表より、スチーム比を小さくすると、水素(H2)濃
度が減少し、メタン(CI14) 、−酸化炭素(CD
)濃度が増加す°ることがわかる。スチーム比1.2の
条件下で、生成ガス中のメタン濃度は23%にも達した
。スチーム比が大きい場合に82a度が高< 、CH4
゜COa度が低いのは系内に残存する過剰の水蒸気によ
って、CH4のリフォーミング反応およびCDのシフト
反応が進んだためと考えられる。
実施例3 実施例1と同様にして石炭の接触ガス化を行った。但し
、反応温°度を500℃、600℃および700℃とし
て反応温度の影響を調べた。反応圧力は11気圧スチー
ム比は、およそ1である。各反応温度で得られた生成ガ
ス中のメタン濃度を第2図に示す。第4図かられかるよ
うに反応温度を下げると、メタン濃度が増加し、500
℃では31%のメタン濃度が得られた。
実施例4 実施例1と同様にして石炭の接触ガス化を行った。但し
反応温度500℃および600℃とし各温度で反応圧力
を3.6.11および19気圧、として反応圧力の影響
を調べた。スチーム比はおよそ1である。各反応圧力で
得られた生成ガス中のメタン濃度を第3図に示す。第3
図かられかるように、反応圧力を上げるとメタン濃度が
増加し、反応圧力を19気圧とすると500℃では36
%、600℃では31%のメタン濃度が得られ、本発明
が生成ガス中のメタン濃度を増加させるのに極めて有効
であることがわかる。
(発明の効果) 以上説明してきたように、本発明の方法により石炭の低
温接触水蒸気ガス化を行なうと、反応炉出口の生成ガス
中のメタン濃度を高くできることがわかった。そこで、
最終製品が都市ガスや代替天然ガス(SNG)等の高カ
ロリーガスを製造する場合、後段のメタネーション工程
等を含めて考えると有利である。また、ガス化炉を低温
で運転できるので、ガス化炉材料の耐熱性のグレードを
下げることができ、設備費を節減できるという効果も得
られる。
【図面の簡単な説明】
第1図は実施例1におけるガス化温度と石炭の転化率の
関係を示すグラフ、 第゛2図は実施例3における反応温度と生成ガス中のメ
タン含有率の関係を示す線図、 第3図は実施例4の反応温度500℃と600℃におけ
る反応圧力と生成ガス中のメタン含有率の関係を示す線
図である。 第1図 ヲ星 肩 (’C) 圧27:O,マ3:0θ: ○、△2ロ、、◇ll: ・、マノ9気圧 第2図

Claims (1)

  1. 【特許請求の範囲】 1、低炭化度の石炭の粉末を、石炭1kg当り50〜2
    00gのニッケル触媒と400〜700℃の温度、1〜
    100気圧の圧力の条件下で、スチーム比〔H_2O/
    石炭(g/g)〕1〜10で接触水蒸気ガス化を行うこ
    とを特徴とする石炭の低温接触水蒸気ガス化による高カ
    ロリーガス製造法。
JP61084928A 1986-04-15 1986-04-15 石炭の低温接触水蒸気ガス化による高カロリ−ガス製造法 Pending JPS62241991A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61084928A JPS62241991A (ja) 1986-04-15 1986-04-15 石炭の低温接触水蒸気ガス化による高カロリ−ガス製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61084928A JPS62241991A (ja) 1986-04-15 1986-04-15 石炭の低温接触水蒸気ガス化による高カロリ−ガス製造法

Publications (1)

Publication Number Publication Date
JPS62241991A true JPS62241991A (ja) 1987-10-22

Family

ID=13844355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61084928A Pending JPS62241991A (ja) 1986-04-15 1986-04-15 石炭の低温接触水蒸気ガス化による高カロリ−ガス製造法

Country Status (1)

Country Link
JP (1) JPS62241991A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503088A (ja) * 2008-09-19 2012-02-02 グレイトポイント・エナジー・インコーポレイテッド 炭素質フィードストックのガス化のための方法
JP2012526909A (ja) * 2009-05-13 2012-11-01 グレイトポイント・エナジー・インコーポレイテッド 炭素質フィードストックの水素添加メタン化のための方法
US8999020B2 (en) 2008-04-01 2015-04-07 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
US9012524B2 (en) 2011-10-06 2015-04-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9034061B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9234149B2 (en) 2007-12-28 2016-01-12 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US9273260B2 (en) 2012-10-01 2016-03-01 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
US9353322B2 (en) 2010-11-01 2016-05-31 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
CN108517227A (zh) * 2018-06-27 2018-09-11 华东理工大学 工业燃气的制备系统及工业燃气的制备方法
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52903A (en) * 1975-06-18 1977-01-06 Battelle Memorial Institute Fuel conversion process
JPS5575488A (en) * 1978-11-28 1980-06-06 Metallgesellschaft Ag Gasification for granular solid fuel
JPS5667393A (en) * 1979-11-07 1981-06-06 Univ Tohoku Catalytic gasification of coal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52903A (en) * 1975-06-18 1977-01-06 Battelle Memorial Institute Fuel conversion process
JPS5575488A (en) * 1978-11-28 1980-06-06 Metallgesellschaft Ag Gasification for granular solid fuel
JPS5667393A (en) * 1979-11-07 1981-06-06 Univ Tohoku Catalytic gasification of coal

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234149B2 (en) 2007-12-28 2016-01-12 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US8999020B2 (en) 2008-04-01 2015-04-07 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
JP2012503088A (ja) * 2008-09-19 2012-02-02 グレイトポイント・エナジー・インコーポレイテッド 炭素質フィードストックのガス化のための方法
JP2012526909A (ja) * 2009-05-13 2012-11-01 グレイトポイント・エナジー・インコーポレイテッド 炭素質フィードストックの水素添加メタン化のための方法
US9353322B2 (en) 2010-11-01 2016-05-31 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9012524B2 (en) 2011-10-06 2015-04-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9273260B2 (en) 2012-10-01 2016-03-01 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9034061B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
CN108517227A (zh) * 2018-06-27 2018-09-11 华东理工大学 工业燃气的制备系统及工业燃气的制备方法
CN108517227B (zh) * 2018-06-27 2023-09-15 华东理工大学 工业燃气的制备系统及工业燃气的制备方法
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea

Similar Documents

Publication Publication Date Title
US3615300A (en) Hydrogen production by reaction of carbon with steam and oxygen
US3847567A (en) Catalytic coal hydrogasification process
JPS62241991A (ja) 石炭の低温接触水蒸気ガス化による高カロリ−ガス製造法
US3759036A (en) Power generation
AU633470B2 (en) Production of fuel gas
CA1079972A (en) Process for production of synthesis gas
AU2010258840B2 (en) Systems and methods for solar-thermal gasification of biomass
US4597776A (en) Hydropyrolysis process
Zhou et al. Steam-gasification of biomass with CaO as catalyst for hydrogen-rich syngas production
Li et al. Simulation of sorption enhanced staged gasification of biomass for hydrogen production in the presence of calcium oxide
US4710483A (en) Novel carbonaceous material and process for producing a high BTU gas from this material
CA2661493A1 (en) Gasification and steam methane reforming integrated polygeneration method and system
CN106629600A (zh) 粗合成气吸附催化制氢工艺及其设备
Zhang et al. Gasification integrated with steam co-reforming of agricultural waste biomass over its derived CO2/O2/steam-mediated porous biochar for boosting H2-rich syngas production
Oni et al. Experimental investigation of steam-air gasification of Cymbopogon citratus using Ni/dolomite/CeO2/K2CO3 as catalyst in a dual stage reactor for syngas and hydrogen production
US3615299A (en) Hydrogen production by reaction of carbon with steam or steam and oxygen
JPH0229111B2 (ja)
JP5574367B2 (ja) 混合ガスの製造方法
JPS59210995A (ja) 硫黄分を含有する粗ガス又は合成ガスからのパイプライン・ガスの製造方法
EP0105190A1 (en) Process for producing methane
US3850588A (en) Production of synthesis gas rich in carbon monoxide
Timpe et al. Catalytic gasification of coal for the production of fuel cell feedstock
Schlinger Coal gasification development and commercialization of the texaco coal gasification process
US8771388B2 (en) Method to produce methane rich fuel gas from carbonaceous feedstocks using a steam hydrogasification reactor and a water gas shift reactor
US11697107B2 (en) Process for gasification of a carbonaceous raw material of low value as a fuel using a nanocatalyst