JPS62241894A - Wafer holder - Google Patents

Wafer holder

Info

Publication number
JPS62241894A
JPS62241894A JP8087786A JP8087786A JPS62241894A JP S62241894 A JPS62241894 A JP S62241894A JP 8087786 A JP8087786 A JP 8087786A JP 8087786 A JP8087786 A JP 8087786A JP S62241894 A JPS62241894 A JP S62241894A
Authority
JP
Japan
Prior art keywords
wafer
annular
wafer holder
heating member
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8087786A
Other languages
Japanese (ja)
Inventor
Kunimitsu Yajima
国光 矢島
Shigeo Murai
重夫 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8087786A priority Critical patent/JPS62241894A/en
Publication of JPS62241894A publication Critical patent/JPS62241894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:When a thin film of single crystal is allowed to grow on a wafer by the molecular ray epitaxy method, the wafer holder is constituted from heating part, a uniformly heating material which is fixed through an adhesive layer to the heating part and a ring for holding the wafer to ensure the fixation of the wafer to the holder. CONSTITUTION:When a thin film of single crystal of compound semiconductor such as GaAs or the like is allowed to grow on a wafer as a base plate by the molecular ray epitaxy method, the wafer holder is constituted from a heater 1 which is made of a material of high thermal conductivity and heat resistance such as Mo or the like, a uniformly heating material 5 made of elements of groups V and VI of the periodic table such as Ga or As which is welded to the heater with In adhesive layer 3 and a ring press 9 which is made of BN, Si3N4, SiO2 and the wafer is held between the uniformly heating material 5 and the ring 9. The ring 9 is fixed by setting several male screws on its periphery to the female screws on the circular depression to hold the wafer with its projection on the ring edge without contamination of the wafer with the adhesive of In.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ウェハホルダーに関し、更に詳しくは分子線
エピタキシー法により単結晶薄膜をウェハ上に育成する
際のウェハの固定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a wafer holder, and more particularly to a wafer fixing device for growing a single crystal thin film on a wafer by molecular beam epitaxy.

従来の技術 高速集積回路は、その各素子の微小化を進め、集積度を
ますます高めつつある。このような現状において、さら
に高性能の高速デバイスへの要請があり、例えば、高い
電子移動度を持つ、異なる1ff−V族化合物半導体か
らなる多層へテロ構造結晶を用いた超高速デバイスの開
発が・現在、活発に行われている。
BACKGROUND OF THE INVENTION Conventional Technology High-speed integrated circuits are becoming increasingly miniaturized and have higher degrees of integration. Under these circumstances, there is a demand for higher performance, higher speed devices. For example, there is a need to develop ultrahigh speed devices using multilayer heterostructure crystals made of different 1ff-V group compound semiconductors with high electron mobility. -Currently being actively carried out.

上記超高速デバイスの作製には、I[[−V族化合物半
導体の薄膜成長において、膜厚、組成比、不純物ドーピ
ング等に対する高精度の制御性が要求され、その最も有
効な方法として、分子線エピタキシー法が注目されてい
る。
To fabricate the above-mentioned ultra-high-speed devices, highly accurate control over film thickness, composition ratio, impurity doping, etc. is required in the thin film growth of I[[-V group compound semiconductors, and the most effective method for this is molecular beam growth. Epitaxy method is attracting attention.

また、デバイスの寸法が、固体中の電子の平均自1+工
f:1i(1(15)へのオーダ)以下になると、今ま
で観測されなかった効果、即し量子効果が現われて、全
く新しい物理現象によるデバイスを作製し11トる。
Furthermore, when the dimensions of the device become smaller than the average electron density of electrons in the solid, 1 + f: 1i (of the order of 1 (15)), a previously unobserved effect, namely a quantum effect, appears, creating a completely new Create a device based on physical phenomena and complete 11 tests.

分子線エピタキシーは、この様な非常に薄い層を周期的
に、しかも均一に作製することのできる方法であり、た
とえば多層膜の量子効果を応用した超格子素子を再現性
良く実現できる唯一の方法であるといっても過言ではな
い。
Molecular beam epitaxy is a method that can create such extremely thin layers periodically and uniformly, and is the only method that can realize, for example, superlattice devices that apply the quantum effect of multilayer films with good reproducibility. It is no exaggeration to say that it is.

以上述べたように、分子線エピタキシー法は、要求され
るデバイスを精度良く作製できるばかりでなく、さらに
新しいデバイスを開発し得る方法であり、この方法の改
良、応用等を行うことは、今後の半導体産業にとって大
きな意味を持つ。
As mentioned above, molecular beam epitaxy is a method that not only allows the required devices to be fabricated with high precision, but also enables the development of new devices. This has great significance for the semiconductor industry.

分子線エピタキシー法は、真空蒸着法の一種である。即
ち、超高真空中で、結晶側々の構成元素をそれぞれ別々
の蒸発るつぼに入れ、るつぼを加熱して構成元素を蒸発
させ、蒸発した蒸気を分子線の形で、加熱された基板に
照射してその基板上に単結晶膜を成長させる方法である
Molecular beam epitaxy is a type of vacuum deposition method. That is, in an ultra-high vacuum, the constituent elements on each side of the crystal are placed in separate evaporation crucibles, the crucible is heated to evaporate the constituent elements, and the evaporated vapor is irradiated in the form of molecular beams onto the heated substrate. In this method, a single crystal film is grown on the substrate.

Ga八へ薄膜の結晶成長を例にとると、添付第4図に示
すように、真空fail 11内の上部に(+a八へi
rL結晶基板13、下部ににaを入れたるつぼ15およ
び八sを入れたるつぼ17をそれぞれ配置する。真空鐘
11内を真空にした後にるつぼ15.17を加熱し、加
熱した基板13にむけてGaおよび八sを蒸発させる。
Taking the crystal growth of a thin film on Ga8 as an example, as shown in the attached Figure 4, there is a
An rL crystal substrate 13, a crucible 15 containing a and a crucible 17 containing an 8s are placed at the bottom thereof, respectively. After evacuating the inside of the vacuum bell 11, the crucible 15.17 is heated, and Ga and 8S are evaporated toward the heated substrate 13.

Gaに比べAsの分子線を十分強くしておくと、まず6
aが基板13に付着し次にこの付着したGaと同じ数の
八sがGaと結合して基板13に付着される。また、過
剰のΔSは、基板から離脱し排気管19からポンプ系へ
と運び去られる。
If the molecular beam of As is made sufficiently strong compared to Ga, first 6
A is attached to the substrate 13, and then the same number of 8s as the attached Ga is bonded to Ga and attached to the substrate 13. Further, the excess ΔS is separated from the substrate and carried away through the exhaust pipe 19 to the pump system.

かくして、基板上にGa八への化合物半導体単結晶膜が
形成されるが、上述したように、分子線エピタキシー法
は、固相からの昇華または液相からの蒸発による蒸気を
分子線として用いる方法である。
In this way, a Ga8 compound semiconductor single crystal film is formed on the substrate, but as mentioned above, the molecular beam epitaxy method uses vapor from sublimation from a solid phase or evaporation from a liquid phase as a molecular beam. It is.

ところが、これら蒸発物原料は、重力にさからってるつ
ぼ内に保持することはできない。従って、るつぼは、そ
の配置に大きな制限を受けることになる。るつぼの配置
に制限がある場合、基板は必然的にその位置に制限を受
け、例えば、るつぼから発する分子線と基板との相対関
係で最も初期から用いられる垂直型では、基板表面を下
に向けて保持固定される。また、水平型、傾斜型等にお
いても、基板は真横あるいは斜め下方に向けて支持され
る。
However, these evaporated raw materials cannot be held in the crucible against gravity. Therefore, the placement of the crucible is subject to significant restrictions. If there are restrictions on the placement of the crucible, the substrate will inevitably be restricted in its position. For example, in the vertical type, which was used from the earliest times due to the relative relationship between the molecular beam emitted from the crucible and the substrate, the substrate surface should face downward. It is held and fixed. Furthermore, in the horizontal type, tilted type, etc., the substrate is supported right sideways or diagonally downward.

また、膜厚が均一で高品質の単結晶膜を成長させるため
には、基板を分子線に対して最適の位置に向けること、
および基板の面内回転を行うことが必要である。従って
、最近では、取り付けられた基板を精度よく位置決めお
よび面内回転させ得るマニピュレータが用いられるよう
になった。
In addition, in order to grow a high-quality single-crystal film with uniform thickness, it is necessary to orient the substrate in the optimal position relative to the molecular beam.
and it is necessary to perform in-plane rotation of the substrate. Therefore, recently, manipulators that can precisely position and in-plane rotate the attached substrate have come into use.

しかしながら、基板が、マニピュレータに確実に保持固
定されない場合、マニピュレータの動作精度が高くても
正確に基板を位置決めあるいは回転させることは不可能
である。
However, if the substrate is not reliably held and fixed by the manipulator, it is impossible to accurately position or rotate the substrate even if the manipulator has high operating accuracy.

従来では、この基板であるウェハの固定は、ウェハホル
ダー(多くはモリブデン板)にウェハをIn (インジ
ウム)でろう付し、該ウェハホルダーをマニピュレータ
に装若することにより行われている。単結晶膜の成長温
度においては、Inは液状となっているが、表面張力に
よってウェハとウェハホルダーを接着していた。
Conventionally, the wafer, which is the substrate, has been fixed by brazing the wafer to a wafer holder (often a molybdenum plate) with In (indium) and mounting the wafer holder on a manipulator. Although In was in a liquid state at the single crystal film growth temperature, the wafer and wafer holder were bonded together by surface tension.

発明が解決しようとする問題点 上記したように、従来はInによってウェハの固定を行
っていたが、必ずしもそれが最良であるからではなく、
他の適切な方法が開発されなかったためである。例えば
、従来のInによる固定方法は、以下に説明するような
問題点があった。
Problems to be Solved by the Invention As mentioned above, wafers have traditionally been fixed using In, but this is not necessarily the best method;
This is because no other suitable method has been developed. For example, the conventional fixing method using In has the following problems.

即ち、ウェハの固定、脱離に際して、Inは溶融状態と
なっているため、溶融Inの滴が基板表面に付着する場
合があった。その結果、育成した単結晶膜の品質を極度
に低下させるという問題点があった。
That is, when the wafer is fixed and detached, since In is in a molten state, droplets of molten In may adhere to the substrate surface. As a result, there was a problem in that the quality of the grown single crystal film was extremely degraded.

また、成膜を行った後、基板には種々の加工が施される
が、その際、基板の裏面に残されるInを除去するため
に大きな努力を必要とした。
In addition, after film formation, the substrate is subjected to various processing, which requires great effort to remove In remaining on the back surface of the substrate.

更に、基板は、上述の如く単結晶膜成長中に溶融Inの
表面張力によって固定されている。ところが、固定が確
実に行われず、しばしば単結晶膜成長中に基板がウェハ
ホルダーから剥離するという欠点があった。
Furthermore, the substrate is fixed by the surface tension of the molten In during single crystal film growth as described above. However, there was a drawback that the fixation was not performed reliably and the substrate often peeled off from the wafer holder during single crystal film growth.

また、単結晶膜成長時には、ウェハ裏面からの揮発性元
素のぬけがあり、ウェハ裏面の荒れ、ウェハ組成比の変
化等があり、問題となっていたが、従来はこれに対する
対策を何等施していなかった。
Additionally, during single crystal film growth, volatile elements escape from the backside of the wafer, causing problems such as roughening of the backside of the wafer and changes in the wafer composition ratio, but no countermeasures have been taken in the past. There wasn't.

本発明の目的は以上説明したような、従来技術における
上記問題点を解決することにある。即ち、基板からの揮
発性元素のぬけ、1nによる汚染がなく、基′板を確実
に保持・固定できるウェハホルダーを開発することにあ
る。
An object of the present invention is to solve the above-mentioned problems in the prior art as explained above. That is, the object of the present invention is to develop a wafer holder that can reliably hold and fix a substrate without leakage of volatile elements from the substrate or contamination by 1n.

問題点を解決するための手段 本発明者は、上記従来技術の問題点を解決すべく、種々
検討した結果、単結晶基板等のウェハを溶融Inで直接
ろう付せずに保持固定することが、上記本発明の目的を
達成する上で非常に有利であるとの知見を得、本発明を
完成した。
Means for Solving the Problems In order to solve the above-mentioned problems of the prior art, the inventor of the present invention has made various studies and has discovered that it is possible to hold and fix wafers such as single crystal substrates without directly brazing them with molten In. The present invention was completed based on the finding that it is very advantageous in achieving the above object of the present invention.

即ち、本発明は、分子線エピタキシー法に用いられるウ
ェハホルダーであって、加熱部材と、その上面に接着層
を介して固定され、ウェハと接する均熱部材と、一方の
j+A:部に該ウェハ支持用突出部を有し、上記加熱部
材と共に該ウェハを支持・固定する環状部材とで構成さ
れることを特徴とする。     ゛ 上記加熱部材の材料としては、熱伝導性が良好で、耐熱
性に1登れた材料が好ましく、モリブデン等を例示でき
る。
That is, the present invention provides a wafer holder used in molecular beam epitaxy, which includes a heating member, a heating member fixed to the upper surface of the wafer via an adhesive layer and in contact with the wafer, and a heating member fixed to the upper surface of the wafer holder in contact with the wafer; The wafer is characterized by having a supporting protrusion and comprising an annular member that supports and fixes the wafer together with the heating member.゛The material for the heating member is preferably a material that has good thermal conductivity and one level of heat resistance, such as molybdenum.

また、上記接着層としては、10を好ましい例として挙
げることができる。
Further, as the adhesive layer, 10 can be cited as a preferable example.

更に、環状部材の材料としては、窒化開票、窒化硅素お
よび酸化硅素を好ましい例として挙げられる。
Furthermore, preferable examples of the material for the annular member include nitrided glass, silicon nitride, and silicon oxide.

更に、上記環状部材および上記加熱部材によるウェハの
固定は、環状部材が加熱部材に確実に固定され、かつ、
環状部材の上記ウェハ支持部が、ウェハを破壊しない程
度に支持できるように微妙に調節できるものであればよ
く、以下の様々な方法を好ましい例として挙げることが
できる。
Furthermore, the fixing of the wafer by the annular member and the heating member is such that the annular member is reliably fixed to the heating member, and
The wafer support portion of the annular member may be finely adjusted so as to be able to support the wafer without destroying it, and the following various methods can be cited as preferred examples.

即ち、上記加熱部材の上部周縁部に上記ウェハの径より
大きな内径の環状凸部を設け、更に環状凸部の内周壁に
雌ねじを、環状部材の外周壁に雄ねじをそれぞれ設け、
環状凸部に環状部材を螺入して、支持用突出部によりウ
ェハを押圧支持することができる。
That is, an annular convex portion having an inner diameter larger than the diameter of the wafer is provided on the upper peripheral edge of the heating member, and a female thread is provided on the inner circumferential wall of the annular protrusion, and a male thread is provided on the outer circumferential wall of the annular member.
By screwing the annular member into the annular projection, the wafer can be pressed and supported by the support protrusion.

また、環状凸部の外周壁に雄ねじを、環状部材の内周壁
に雄ねじをそれぞれ設け、環状部材に環状凸部を螺入し
ても同様の効果が得られる。
Further, the same effect can be obtained by providing a male thread on the outer circumferential wall of the annular protrusion and a male thread on the inner circumferential wall of the annular member, and screwing the annular protrusion into the annular member.

更に、環状凸部の外径よりわずかに大きな内径を有する
環状部材、あるいは環状凸部の内径よりわずかに小さな
外径を有する環状部材のいずれかを、環状凸部に嵌合し
、これら両者をその軸方向に沿ってねじ止めすることも
可能である。
Furthermore, either an annular member having an inner diameter slightly larger than the outer diameter of the annular protrusion or an annular member having an outer diameter slightly smaller than the inner diameter of the annular protrusion is fitted into the annular protrusion, and both of these are fitted. It is also possible to screw it along its axial direction.

また、上記加熱部材をディスク状とし、加熱部材の外周
部に雄ねじを、環状部材の内周壁に雌ねじをそれぞれ設
け、加熱部材を環状部材に螺入するか、あるいは加熱部
材の径よりもわずかに大きな内径を有する環状部材に、
加熱部材を嵌合し、その両者の軸方向に沿ってねじ止め
することによっても、目的を達成し1ひる。
Alternatively, the heating member may be in the shape of a disk, a male thread may be provided on the outer circumferential portion of the heating member, and a female thread may be provided on the inner circumferential wall of the annular member, and the heating member may be screwed into the annular member, or the heating member may be screwed into the annular member. An annular member with a large inner diameter,
The purpose can also be achieved by fitting the heating members and screwing them together along the axial direction.

上記ウェハ支持用突出部は、ウェハと線あるいは面で接
触し、ウェハを破壊せずに押圧支持することができ、さ
らにウェハ、加熱部材および環状部材により閉じた空間
が構成できる形状であればよく、例えば環状部材の1端
に設けられたウェハの径よりもわずかに小さな内径を有
する環状張出部を好ましい例として挙げられる。
The wafer supporting protrusion may be in any shape as long as it can contact the wafer in a line or plane, can press and support the wafer without destroying it, and can form a closed space between the wafer, the heating member, and the annular member. For example, a preferable example is an annular protrusion provided at one end of the annular member and having an inner diameter slightly smaller than the diameter of the wafer.

また、上記均熱部材の設置位置を明らかにし、ウェハの
保持・固定作業を容易かつ正確にするために、加熱部材
の中央に均熱部材の径よりもわずかに大きな径を有する
中央凹部を設けることが可能である。
In addition, in order to clarify the installation position of the heat equalizing member and to make the work of holding and fixing the wafer easier and more accurate, a central recess with a diameter slightly larger than the diameter of the heat equalizing member is provided in the center of the heating member. Is possible.

更に、本発明のもう一つの大きな特徴として、基板から
の揮発性元素ぬけの防止がある。即ち、上記ウェハが■
−■族またはTI−VI族化合物半導体単結晶である場
合、均熱部材を■族または■族元素を含むものとするこ
とにより、V族又は■族元素のぬけを防止できる。
Furthermore, another major feature of the present invention is prevention of volatile elements from being removed from the substrate. That is, the above wafer is
In the case of a -■ group or TI-VI group compound semiconductor single crystal, the escape of group V or group II elements can be prevented by making the heat-uniforming member contain an element of group II or group II.

ウェハからの揮発性元素のぬけを防止するために、均熱
部材は、上部平面に凹凸を有することが好ましい。
In order to prevent volatile elements from leaking out from the wafer, it is preferable that the heat equalizing member has an uneven upper surface.

上記均熱部材としては、■族またはVI族元素そのもの
、または+n −v族もしくは■]族化合物半導体その
もの、あるいはこれらのいずれかにより表面を被覆した
もの、あるいはこれらを含む多孔質材料等を好ましい例
として挙げることができる。
As the above-mentioned heat-uniforming member, it is preferable to use a group (Ⅰ) or VI group element itself, a +n-v group or [■] group compound semiconductor itself, a surface coated with any of these, or a porous material containing these. This can be cited as an example.

具体的な例としては、GaAs単結晶基板に単結晶膜を
育成する場合、Δs、 GaAs均熱部材または八s。
As a specific example, when growing a single crystal film on a GaAs single crystal substrate, Δs, a GaAs soaking member, or 8s.

GaAsを被覆した均熱部祠等が好適に使用できる。A heat absorbing part coated with GaAs or the like can be suitably used.

詐月 従来技術の問題を解決し、単結晶基板を確実に固定でき
、か7)I nによる汚染を防止し得るウェハホルダー
を得るためには、その構成を上記のようにすることが好
ましい。
In order to solve the problems of the prior art, to obtain a wafer holder that can securely fix a single crystal substrate and prevent contamination by (7) In, it is preferable to configure the wafer holder as described above.

即ち、従来のウェハホルダーは、ウェハをInを用いて
直接加熱部材にろう付していたため、10によるウェハ
の汚染、例えば、ウェハの脱着のときに、In滴がウェ
ハ表面に付着したり、ウェハを取りはずした後にウェハ
表面にInが残るという問題を有していた。
That is, in conventional wafer holders, the wafer is brazed directly to the heating member using In, so that contamination of the wafer by 10, for example, when the wafer is attached or detached, In droplets may adhere to the wafer surface or the wafer may be There was a problem in that In remained on the wafer surface after the wafer was removed.

本発明によるウェハホルダーにおいて、ウェハはIn等
の接着層を介して加熱部材上に固定された均熱部材上に
配置され、さらに環状部材のウェハ支持用突出部により
上部より押圧支持されている。
In the wafer holder according to the present invention, the wafer is placed on a heat equalizing member fixed to the heating member via an adhesive layer such as In, and is further pressed and supported from above by the wafer supporting protrusion of the annular member.

従って、ウェハは直接接着層、例えばInに接触せず、
ウェハの表面あるいは裏面にInが付着することがない
Therefore, the wafer does not directly contact the adhesive layer, e.g.
In is not attached to the front or back surface of the wafer.

また、従来では、ウェハは成膜中は、1nの表面張力に
より加熱部材上に接続されているため、成膜中のウェハ
の脱離が問題となっていた。しかしながら、本発明のウ
ェハホルダーでは、ウェハは環状支持部により確実かつ
微妙に押圧支持されているため、単結晶膜成長中にウェ
ハがホルダーから剥離することはない。
Furthermore, conventionally, during film formation, the wafer is connected to the heating member by a surface tension of 1n, so that detachment of the wafer during film formation has been a problem. However, in the wafer holder of the present invention, since the wafer is firmly and delicately pressed and supported by the annular support portion, the wafer does not separate from the holder during single crystal film growth.

本発明のウェハホルダーでは、均熱部材がウェハと加熱
部材との間に置かれている。この均熱部材は、10金属
によって加熱部材に固定されているので、これとの十分
な接触面積が得られるために、均一な温度分布を有する
。更に、この均熱部材表面には凹凸が設けられ、その上
に基板が環状部材のウェハ固定用突出部によって固定さ
れている。
In the wafer holder of the present invention, a heat equalizing member is placed between the wafer and the heating member. Since this heat equalizing member is fixed to the heating member by the metal, a sufficient contact area with the heat equalizing member is obtained, so that a uniform temperature distribution is obtained. Further, the surface of the heat equalizing member is provided with irregularities, and the substrate is fixed thereon by the wafer fixing protrusion of the annular member.

ウェハは、均熱部材からの熱伝導および熱輻射によって
一様に加熱されるため、一様な基板面内の温度分布が達
成される。
Since the wafer is uniformly heated by heat conduction and heat radiation from the heat equalizing member, a uniform temperature distribution within the substrate surface is achieved.

また、従来では成膜中での揮発性元素のぬけに対して防
止策を何等施していなかった。本発明においては、環状
部材、ウェハおよび加熱部材によって形成される閉空間
には、基板組成物内の揮発性元素を含む均熱部材が存在
するため、このウェハからの揮発性元素のぬけを防ぐこ
とができる。
Furthermore, conventionally, no measures have been taken to prevent the escape of volatile elements during film formation. In the present invention, in the closed space formed by the annular member, the wafer, and the heating member, there is a heat equalizing member containing volatile elements in the substrate composition, so that volatile elements are prevented from escaping from the wafer. be able to.

均熱部材は、単結晶基板より温度が高いため、十分な揮
発性元素蒸気を提供できる。また、均熱部材は、その上
面に凹凸を有しており、このことによりウェハ裏面と揮
発性元素の蒸気との接触面を増加させ揮発性元素のぬけ
防止効果を高めている。
Since the temperature of the soaking member is higher than that of the single crystal substrate, sufficient volatile element vapor can be provided. Further, the heat equalizing member has irregularities on its upper surface, thereby increasing the contact surface between the back surface of the wafer and the vapor of the volatile element, thereby enhancing the effect of preventing the volatile element from escaping.

これらを考え合わせると環状部材は断熱性に富み、ウェ
ハあるいは加熱部材との界面において適度な気密性を実
現できる材質によっ°C造られるのが望ましい。
Taking these into consideration, it is desirable that the annular member be made of a material that is highly heat insulating and capable of achieving appropriate airtightness at the interface with the wafer or heating member.

上記構造を有するウェハホルダーは、加熱部材をマニピ
ュレータに固定し、真空鐘内でウェハ表面を所定の方向
、即ち、下、真横あるいは斜め下に向けて保持され、成
膜時に内面回転を加えられる。ネジ止め等により、加熱
部材をマニピユレータに確実に固定すれば、均熱部材、
ウェハ等が成膜中に脱離したり、ずれたりすることはな
い。
The wafer holder having the above structure has a heating member fixed to a manipulator, is held in a vacuum chamber with the wafer surface facing in a predetermined direction, that is, downward, right sideways, or diagonally downward, and is subjected to internal rotation during film formation. If the heating member is securely fixed to the manipulator with screws, etc., the heating member,
Wafers and the like do not come off or shift during film formation.

実施例 本発明によるウェハホルダーを、実施例により更に具体
的に説明する。しかしながら本発明の範囲は、本実施例
により何隻制限されない。
EXAMPLES The wafer holder according to the present invention will be explained in more detail by way of examples. However, the scope of the present invention is not limited to this example.

実施例1 本発明の第一の実施例を添付の第1図を参照しつつ説明
する。図示の如く、本実施例のウェハホルダーは、モリ
ブデン製の加熱部材1上にIn接着層3によりGa八へ
製均熱部材5をろう付けし、更にGa八へIjJ均熱部
材5上のGaAsウェハ7を環状部材9によって押圧支
持する構造となっている。
Example 1 A first example of the present invention will be described with reference to the attached FIG. 1. As shown in the figure, the wafer holder of this embodiment has a heating member 1 made of molybdenum and an In adhesive layer 3 which is used to braze a Ga 8 heat equalizing member 5, and a Ga 8 heat equalizing member 5 on an IjJ heat equalizing member 5 being brazed onto the molybdenum heating member 1. The structure is such that the wafer 7 is pressed and supported by the annular member 9.

均熱部材5の上部表面には、凹凸が設けられており、更
に1nの接着層3により加熱1部材lに密着してろう付
されているため、上部のウェハ7はその輻射熱および伝
導熱により均一に加熱できる。
The upper surface of the heat equalizing member 5 is provided with unevenness, and is further brazed to the heating member 1 by a 1N adhesive layer 3, so that the upper wafer 7 is heated by its radiant heat and conductive heat. Can be heated evenly.

また、加熱部材1、ウェハ7および環状部材9により構
成される閉空間には、均熱部材5より揮発した八Sの蒸
気が存在し、ウェハ7からの八Sぬけを防止している。
Further, in the closed space constituted by the heating member 1, the wafer 7, and the annular member 9, the vapor of 8S volatilized from the heat equalizing member 5 exists, and the 8S vapor is prevented from slipping out from the wafer 7.

また、環状部材9は外周部の雄ねじと、加熱部材1の環
状凸部の内周部の雌ねじとによって基板7を押圧支持す
るようになっており、基板7を破損させずにかつ確実に
保持することができる。
Further, the annular member 9 presses and supports the substrate 7 by a male thread on the outer periphery and a female thread on the inner periphery of the annular convex portion of the heating member 1, so that the substrate 7 is held securely without being damaged. can do.

環状部材9は、外周部に雄ねじを在しており、加熱部材
lの周縁部で上方に突出する環状凸部の内周部の餅ねじ
に螺入され、その支持用突出部により、ウェハ5を保持
固定する。
The annular member 9 has a male thread on its outer periphery, and is screwed into a mochi screw on the inner periphery of an annular convex portion that protrudes upward at the periphery of the heating member l, and the supporting protrusion allows the wafer 5 to be Hold and fix.

実施例2 実施例2は、加熱部材Iの上部表面円周部にて上方に突
出する環状凸部の外周部に雄ねじを有し、環状部材9の
内周部に雌ねじを有するほかは、実施例1と同様の構造
である。
Example 2 Example 2 has a male thread on the outer periphery of the annular convex portion projecting upward on the circumference of the upper surface of the heating member I, and a female thread on the inner periphery of the annular member 9. The structure is similar to Example 1.

均熱板5は、Inの接着層3により加熱1rls材lに
ろう付され、更にその上に配置されたウェハ7は、加熱
g1り材1を環状部材9に螺入することにより保持固定
される。
The soaking plate 5 is brazed to the heating material 1 by an adhesive layer 3 of In, and the wafer 7 placed thereon is held and fixed by screwing the heating material 1 into the annular member 9. Ru.

実施例3 実施例3は、加熱部材1がディスク状であり、位置ぎめ
用の中央凹部を有するほかは、実施例2と同様の構造で
ある。
Example 3 Example 3 has the same structure as Example 2, except that the heating member 1 is disc-shaped and has a central recess for positioning.

均熱板5はInの接着層3により加熱部材1の中央凹部
上にろう付され、更にその上に配置されたウェハは、加
熱部材1を環状部材9に螺入することにより保持固定さ
れる。
The soaking plate 5 is brazed onto the central recess of the heating member 1 by an In adhesive layer 3, and the wafer placed thereon is held and fixed by screwing the heating member 1 into the annular member 9. .

実施例2、実施例3のいずれにおいても、実施例1と同
様の効果が期待できる。
In both Example 2 and Example 3, the same effects as in Example 1 can be expected.

発明の効果 かくして本発明によればウェハを確実に保持・固定でき
、かつそのInによる汚染を防止し得るウェハホルダー
を提供しtIF、る。
Effects of the Invention Thus, the present invention provides a wafer holder that can reliably hold and fix a wafer and prevent it from being contaminated by In.

即ち、基板は直接溶融]nとは接触しないので、基板表
面の10汚染が皆無となる。また、基板の着脱の際にも
、高度の熟練を必要とせずに確実&;行うことができ、
かつ基板破損等を減少させる事ができる。
That is, since the substrate does not come into direct contact with the melted material, there is no contamination on the surface of the substrate. In addition, when attaching and detaching the board, it can be done reliably and without the need for a high level of skill.
Moreover, damage to the board can be reduced.

また、例えばGaAs基板の裏側を閉空間とし、更にそ
の空間内にGaAs製の均熱部材などを挿入する事によ
り、基板からの^Sぬけを防止することができる。
Also, for example, by making the back side of the GaAs substrate a closed space and further inserting a heat equalizing member made of GaAs into the space, it is possible to prevent ^S from coming off the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

添付第1図、第2図及び第3図は本発明の実施例を示す
断面図であり、 添付第4図は分子線エピタキシー法を説明するための模
式図である。 (主な参照番号) 1・・加熱部材、    3・・in接着層、5・・G
aAs製均熱部材、 7・・GaAs基板、9・・環状
部材、    11・・真空鐘、13・・基板、   
  15.17・・るつぼ、特許出願人 住友電気工業
株式会社 代 理 人 弁理士 新居 正彦 第1図 1・・・・加熱部材     3・・・・嫂1眉5・・
・・均熱部材       7・・・・ウェハ9・・・
・環4太部末才 11・・・・真空鐘 13・・・・基板 、15・・・・るっは゛ 17・・・・るっぽ゛ 19・・・・排気管
The attached FIGS. 1, 2, and 3 are cross-sectional views showing examples of the present invention, and the attached FIG. 4 is a schematic diagram for explaining the molecular beam epitaxy method. (Main reference numbers) 1...Heating member, 3...In adhesive layer, 5...G
aAs heat equalizing member, 7...GaAs substrate, 9...annular member, 11...vacuum bell, 13...substrate,
15.17... Crucible, patent applicant Sumitomo Electric Industries Co., Ltd. Agent Masahiko Arai Figure 1 1... Heating member 3... Sister-in-law 1 eyebrow 5...
... Soaking member 7 ... Wafer 9 ...
・Ring 4 Taibe Sue 11...Vacuum bell 13...Platform board, 15...Ruppo 17...Ruppo 19...Exhaust pipe

Claims (16)

【特許請求の範囲】[Claims] (1)分子線エピタキシー法に用いられるウェハホルダ
ーであって、加熱部材と、その上部表面に接着層を介し
て固定され、ウェハと接する均熱部材と、一方の端部に
該ウェハ支持用突出部を有し、上記加熱部材と共に該ウ
ェハを支持・固定する環状部材とで構成される上記ウェ
ハホルダー。
(1) A wafer holder used in molecular beam epitaxy, which includes a heating member, a heating member fixed to its upper surface via an adhesive layer and in contact with the wafer, and a protrusion at one end for supporting the wafer. The wafer holder includes a ring-shaped member that supports and fixes the wafer together with the heating member.
(2)上記接着層が、インジウムであることを特徴とす
る特許請求の範囲第4項に記載のウェハホルダー。
(2) The wafer holder according to claim 4, wherein the adhesive layer is made of indium.
(3)上記加熱部材が上部周縁部に上記ウェハの径より
大きな内径の環状凸部を有することを特徴とする特許請
求の範囲第1項または第2項に記載のウェハホルダー。
(3) The wafer holder according to claim 1 or 2, wherein the heating member has an annular convex portion having an inner diameter larger than the diameter of the wafer at the upper peripheral portion.
(4)上記加熱部材の環状凸部が内周壁に雌ねじを、上
記環状部材が外周壁に雄ねじをそれぞれ有しており、該
環状凸部に該環状部材を螺入し、上記支持用突出部によ
り上記ウェハを押圧支持することを特徴とする特許請求
の範囲第3項に記載のウェハホルダー。
(4) The annular protrusion of the heating member has a female thread on the inner circumferential wall, and the annular member has a male thread on the outer circumferential wall, and the annular member is screwed into the annular protrusion, and the supporting protrusion The wafer holder according to claim 3, wherein the wafer is supported by pressure.
(5)上記環状凸部が外周壁に雄ねじを、上記環状部材
が内周壁に雌ねじをそれぞれ有しており、該環状部材に
該環状凸部を螺入し、上記支持用突出部により上記ウェ
ハを押圧支持することを特徴とする特許請求の範囲第3
項に記載のウェハホルダー。
(5) The annular protrusion has a male thread on its outer circumferential wall, and the annular member has a female thread on its inner circumferential wall, and the annular protrusion is screwed into the annular member, and the supporting protrusion allows the wafer to be Claim 3, characterized in that the
Wafer holder described in section.
(6)上記環状部材が、上記加熱部材の環状凸部の外径
よりわずかに大きな内径の大径部分を有しており、該大
径部分に該環状部を嵌合した状態でこれら両者をその軸
方向に沿ってねじ止めし、上記支持用突出部により上記
ウェハを押圧支持することを特徴とする特許請求の範囲
第3項に記載のウエハホルダー。
(6) The annular member has a large-diameter portion with an inner diameter slightly larger than the outer diameter of the annular convex portion of the heating member, and when the annular portion is fitted into the large-diameter portion, both of them are connected. The wafer holder according to claim 3, wherein the wafer holder is screwed along the axial direction and the wafer is supported by the supporting protrusion.
(7)上記環状部材が、上記加熱部材の環状凸部の内径
よりわずかに小さな外径の小径部分を有しており、該小
径部分を該環状部に嵌合した状態でこれら両者をその軸
方向に沿ってねじ止めし、上記支持用突出部により上記
ウェハを押圧支持することを特徴とする特許請求の範囲
第3項に記載のウェハホルダー。
(7) The annular member has a small diameter portion having an outer diameter slightly smaller than the inner diameter of the annular convex portion of the heating member, and when the small diameter portion is fitted into the annular portion, both of them are connected to the axis thereof. 4. The wafer holder according to claim 3, wherein the wafer holder is screwed along the direction and the wafer is supported by the supporting protrusion.
(8)上記加熱部材がディスク状であることを特徴とす
る特許請求の範囲第1項または第2項に記載のウェハホ
ルダー。
(8) The wafer holder according to claim 1 or 2, wherein the heating member is disc-shaped.
(9)上記加熱部材が外周部に雄ねじを、上記環状部材
が内周壁に雌ねじをそれぞれ有しており、該加熱部材を
該環状部材に螺入し、上記支持用突出部により上記ウェ
ハを押圧支持することを特徴とする特許請求の範囲第8
項に記載のウェハホルダー。
(9) The heating member has a male thread on its outer circumferential portion, and the annular member has a female thread on its inner circumferential wall, and the heating member is screwed into the annular member, and the supporting protrusion presses the wafer. Claim 8 characterized in that it supports
Wafer holder described in section.
(10)上記環状部材が上記加熱部材の径よりもわずか
に大きな内径の大径部分を有しており、該加熱部材を該
大径部分に嵌合した状態でこれら両者をその軸方向に沿
ってねじ止めし、上記支持用突出部により上記ウェハを
押圧支持することを特徴とする特許請求の範囲第8項に
記載のウェハホルダー。
(10) The annular member has a large-diameter portion with an inner diameter slightly larger than the diameter of the heating member, and when the heating member is fitted into the large-diameter portion, both of them are connected along the axial direction. 9. The wafer holder according to claim 8, wherein the wafer is fixed with a screw, and the wafer is supported by the supporting protrusion.
(11)上記ウェハ支持用突出部が、上記環状部材の1
端に設けられた、上記ウェハの径よりもわずかに小さな
内径の環状張出部であることを特徴とする特許請求の範
囲第1項ないし第10項のいずれか1項に記載のウェハ
ホルダー。
(11) The wafer supporting protrusion is located at one of the annular members.
The wafer holder according to any one of claims 1 to 10, characterized in that the wafer holder is an annular projecting portion provided at an end and having an inner diameter slightly smaller than the diameter of the wafer.
(12)上記加熱部材が、中央に上記均熱部材の径より
もわずかに大きな径を有する中央凹部を有することを特
徴とする特許請求の範囲第1項ないし第11項のいずれ
か1項に記載のウェハホルダー。
(12) According to any one of claims 1 to 11, wherein the heating member has a central recess in the center having a diameter slightly larger than the diameter of the heat equalizing member. Wafer holder as described.
(13)上記均熱部材が、ウェハと接する上部平面に凹
凸を有することを特徴とする特許請求の範囲第1項ない
し第12項のいずれか1項に記載のウェハホルダー。
(13) The wafer holder according to any one of claims 1 to 12, wherein the heat equalizing member has irregularities on its upper plane in contact with the wafer.
(14)上記ウェハがIII−V族またはII−VI族化合物
であり、上記均熱部材が対応するV族またはVI族元素を
含むことを特徴とする特許請求の範囲第13項に記載の
ウェハホルダー。
(14) The wafer according to claim 13, wherein the wafer is a III-V group or II-VI group compound, and the heating member contains a corresponding group V or VI element. holder.
(15)上記均熱部材がV族またはVI族元素を含む多孔
質材料であることを特徴とする特許請求の範囲第14項
に記載のウェハホルダー。
(15) The wafer holder according to claim 14, wherein the heat equalizing member is a porous material containing a group V or group VI element.
(16)上記均熱部材が、V族元素、VI族元素、III−
V族化合物およびII−VI族化合物からなる群から選択す
る一種によりコーティングされたものであることを特徴
とする特許請求の範囲第14項に記載のウェハホルダー
(16) The above-mentioned heat equalizing member is a group V element, a group VI element, a III-
15. The wafer holder according to claim 14, wherein the wafer holder is coated with one selected from the group consisting of Group V compounds and Group II-VI compounds.
JP8087786A 1986-04-08 1986-04-08 Wafer holder Pending JPS62241894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8087786A JPS62241894A (en) 1986-04-08 1986-04-08 Wafer holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8087786A JPS62241894A (en) 1986-04-08 1986-04-08 Wafer holder

Publications (1)

Publication Number Publication Date
JPS62241894A true JPS62241894A (en) 1987-10-22

Family

ID=13730575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8087786A Pending JPS62241894A (en) 1986-04-08 1986-04-08 Wafer holder

Country Status (1)

Country Link
JP (1) JPS62241894A (en)

Similar Documents

Publication Publication Date Title
US4599069A (en) Substrate holder for molecular beam epitaxy apparatus
US6001183A (en) Wafer carriers for epitaxial growth processes
JP5004864B2 (en) Apparatus and method for growing an epitaxial layer on a wafer by chemical vapor deposition
JP3092801B2 (en) Thin film growth equipment
JPH088198A (en) Susceptor for vapor growth apparatus
JP3911518B2 (en) Susceptor for vapor phase growth apparatus and vapor phase growth method
JP2003318116A (en) Susceptor and semiconductor wafer manufacturing method
US7381276B2 (en) Susceptor pocket with beveled projection sidewall
JPS62241894A (en) Wafer holder
JP3170248B2 (en) Semiconductor substrate holding device
JPS6242416A (en) Susceptor for heating semiconductor substrate
JP3298001B2 (en) Epitaxial growth furnace
JPH09110584A (en) Growing of single crystal
US20240249969A1 (en) Wafer carrier
JPS61101488A (en) Molecular beam crystal growth apparatus
JP3693470B2 (en) Manufacturing method and manufacturing apparatus for silicon wafer with protective film
US20210202294A1 (en) Susceptor
JPH06132221A (en) Substrate holder for molecular beam crystal growth
JPH02186623A (en) Susceptor
JP3230162B2 (en) Vapor phase growth equipment
JPH03271193A (en) Substrate holder
JPH0365590A (en) Molecular beam epitaxy apparatus
JPH02248388A (en) Molecular beam crystal growing device
JPS63282190A (en) Molecular beam crystal growth device
JPH04338193A (en) Growing device for crystal by molecular beam