JPS62241551A - Selective separating agent for carbon dioxide - Google Patents

Selective separating agent for carbon dioxide

Info

Publication number
JPS62241551A
JPS62241551A JP61050570A JP5057086A JPS62241551A JP S62241551 A JPS62241551 A JP S62241551A JP 61050570 A JP61050570 A JP 61050570A JP 5057086 A JP5057086 A JP 5057086A JP S62241551 A JPS62241551 A JP S62241551A
Authority
JP
Japan
Prior art keywords
carbon dioxide
complex
copper
group
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61050570A
Other languages
Japanese (ja)
Other versions
JPH0516302B2 (en
Inventor
Kazuo Tawara
俵 一生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Toyo Ink SC Holdings Co Ltd
Original Assignee
Research Development Corp of Japan
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Toyo Ink Mfg Co Ltd filed Critical Research Development Corp of Japan
Priority to JP61050570A priority Critical patent/JPS62241551A/en
Publication of JPS62241551A publication Critical patent/JPS62241551A/en
Publication of JPH0516302B2 publication Critical patent/JPH0516302B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

PURPOSE:To perform a reversible reaction with carbon dioxide in a dry state by preparing a selective separating agent for carbon dioxide wherein a copper (II) salt complex shown in the specified general formula is made to a high molecular constitutional unit. CONSTITUTION:A low molecular ligand soln. is mixed with a copper (II) salt soln. in 1 to 1 (molar ratio) and a high molecular ligand soln. is dropt. Then a potassium hydroxide soln. is added in two times mol for copper (II) and thereby a copper (II) complex shown in a general formula is obtained (at least one of R1, R2 and R3 shows hydroxyalkyl group and the other shows hydrogen atom and hydrocarbon group and R4, R5 and R6 show alkylene group and R7 shows a high molecular structural unit and also R1 and R6 may form a heterocyclic ring contg. nitrogen atom). This copper (II) complex is used as a selective separating agent for carbon dioxide.

Description

【発明の詳細な説明】 産1L辷曵オ目した野一 本発明は二酸化炭素選択分離剤に関するものである。[Detailed description of the invention] Noichi who caught 1L in production The present invention relates to a carbon dioxide selective separation agent.

従来の技術及び発111が解決しようとする問題点従来
より二酸化炭素の分離回収法としては、化学的吸収法、
物理的吸着法及び膜分離法がある。
Conventional techniques and problems that 111 attempts to solve Conventional carbon dioxide separation and recovery methods include chemical absorption methods,
There are physical adsorption methods and membrane separation methods.

化学的吸収法で工業的に使用される二酸化炭素の吸収剤
としては、エタノールアミン類の水溶液やアルカリ金属
炭酸塩水溶液を利用するものがある。これらは、いずれ
も低温において二酸化炭素を吸収し、加熱してやること
によって二酸化炭素を放出させ、もとの吸収剤を回収す
る方式を採用している〔カーク・オスマー、化学技術百
科事典。
Carbon dioxide absorbents used industrially in chemical absorption methods include those that utilize aqueous solutions of ethanolamines and aqueous solutions of alkali metal carbonates. All of these absorb carbon dioxide at low temperatures, release the carbon dioxide by heating, and recover the original absorbent [Kirk Othmer, Encyclopedia of Chemical Technology].

第3版、ワイリー・インターサイエンス(KIRK−O
TIIMER,Encycopedia of Che
mical Technology。
3rd edition, Wiley Interscience (KIRK-O
TIIMER, Encyclopedia of Che
mical Technology.

3rdEd、、υ1ley−Intersciance
) 197g、pp732−735)。
3rdEd,,υ1ley-Interscance
) 197g, pp732-735).

この方法では吸収剤を加熱再生する場合や、部分的な蒸
留でアミンを回収する場合において、加熱・冷却に多大
のエネルギーを要する。
This method requires a large amount of energy for heating and cooling when regenerating the absorbent by heating or recovering the amine by partial distillation.

物理的吸着法ではゼオライトを吸着剤とし、二酸化炭素
を高圧でゼオライトに吸着させ、低圧で脱着するPSA
法があり、この方法により、二酸化炭素の回収が行なわ
れている。このPSA法は、比較的高圧の二酸化炭素に
有効に働くが、低濃度の二酸化炭素に対しては、吸着最
が極端に低下し、処理するガス中に二酸化炭素が高濃度
で残留することになる。
In the physical adsorption method, zeolite is used as an adsorbent, and carbon dioxide is adsorbed onto the zeolite at high pressure, and then desorbed at low pressure (PSA).
There is a method by which carbon dioxide is recovered. This PSA method works effectively for relatively high-pressure carbon dioxide, but for low-concentration carbon dioxide, the adsorption capacity is extremely low, resulting in a high concentration of carbon dioxide remaining in the gas being processed. Become.

また、膜分離法としては、米国モンサント社のポリスル
ホン中空糸を用いたプリズムセパレーター(商標)によ
る二酸化炭素の低級炭化水素からの分離〔ケミカルエン
ジニアリング・プログレス。
In addition, as a membrane separation method, carbon dioxide is separated from lower hydrocarbons using a prism separator (trademark) using polysulfone hollow fibers manufactured by Monsanto Corporation in the United States [Chemical Engineering Progress].

10月号−、p27 (1982)、CEP、Oct。October issue-, p27 (1982), CEP, Oct.

p27 (1982))や米国セパレックス社の非対称
セルロースアセテ−1〜膜を用いた二酸化炭素の分離〔
ハイドロカーボン・プロセシング、9月号、(Hydr
ocarbon  Processing、5ept、
)、p249 (1982))がある。これらの膜は、
こうした高分子素材が本来有している二酸化炭素に対す
る高い膜透過性に着目し、薄1模化することにより透過
速度の向上を計り、実用に供している。これらの膜のメ
タンガスに対する二酸化炭素の分離係数は数十のオーダ
ーであり、セパレックスメンブレンシステム(セパレッ
クス社の商標)の場合25とされている。
p27 (1982)) and separation of carbon dioxide using asymmetric cellulose acetate-1~ membranes manufactured by Separex Corporation in the United States [
Hydrocarbon Processing, September issue, (Hydr
ocarbon Processing, 5ept,
), p249 (1982)). These membranes are
Focusing on the high membrane permeability to carbon dioxide that these polymeric materials inherently possess, we attempted to improve the permeation rate by making them thinner and put them into practical use. The separation coefficient of carbon dioxide with respect to methane gas of these membranes is on the order of several tens, and is 25 in the case of the Separex membrane system (trademark of Separex Corporation).

元来一般的に高分子材料は二酸化炭素の透過係数が他の
気体に比べて高く、こうした素材をそのまま利用しても
実用的な膜が得られるため、ことさらに二酸化炭素の分
離に関して選択性の高い素材の開発はあまり行われてこ
なかった。
Polymer materials generally have a higher permeability coefficient for carbon dioxide than other gases, and practical membranes can be obtained even if these materials are used as they are. There has been little development of high-quality materials.

こうした中で、二酸化炭素が水の存在下で重炭酸イオン
や炭酸イオンと平衡関係を成すことを利用した炭酸ガス
分離方法が検討されてきた。
Under these circumstances, carbon dioxide separation methods have been studied that utilize the fact that carbon dioxide forms an equilibrium relationship with bicarbonate ions and carbonate ions in the presence of water.

例えば、重炭酸セシウム水溶液を多孔質セルロースアセ
テート膜に含浸させた膜(液膜)を利用した。二酸化炭
素の酸素からの分離の研究がある〔分離科学の最近の進
歩、第1巻(Ward 、 RecentDevelo
pment in 5eparation 5cien
ce、vol、I) p 157 (1972))。こ
こでは、二酸化炭素の透過係数75 X 10−’am
’(STP)・cm/cm2・5ee2・cml(g(
25℃)を得ており、酸素に対する透過係数比は150
0であった。さらにヒ酸ナトリウムの添加により二酸化
炭素の透過係数214X10−’am3(STP) ・
cm/am机5ec2+cmHg、酸素に対する透過係
数比が4,100に達した。
For example, a membrane (liquid membrane) in which a porous cellulose acetate membrane was impregnated with an aqueous cesium bicarbonate solution was used. There are studies on the separation of carbon dioxide from oxygen [Recent Advances in Separation Science, Volume 1 (Ward, RecentDevelopo).
pment in 5eparation 5cien
ce, vol, I) p 157 (1972)). Here, the permeability coefficient of carbon dioxide is 75 x 10-'am
'(STP)・cm/cm2・5ee2・cml(g(
25℃), and the permeability coefficient ratio for oxygen is 150.
It was 0. Furthermore, by adding sodium arsenate, the permeability coefficient of carbon dioxide is 214X10-'am3 (STP).
cm/am machine 5ec2+cmHg, the permeability coefficient ratio for oxygen reached 4,100.

また1分子量約300のポリエチレングリコールに無機
塩類を溶解し、二酸化炭素の透過を酸素及び窒素に対し
調べた研究がある〔川上ら、日本化学会誌、No、6.
p847 (1983))。
There is also a study in which inorganic salts were dissolved in polyethylene glycol with a molecular weight of about 300, and the permeation of carbon dioxide against oxygen and nitrogen was investigated [Kawakami et al., Journal of the Chemical Society of Japan, No. 6.
p847 (1983)).

ここでは、二酸化炭素の透過係数が無機塩添加前後で、
51 X 10−”0m3(STP) ・cm/am”
 ・5ec2・cmHgから310 X 10−”0m
3(STP) ・cm/cm2・sec” ・cmHg
に向上し、かつ窒素に対する透過係数比がおよそ19か
6110にまで向上したことが報告されている。またポ
リテトラフルオロエチレンにスルホン化ポリスチレンを
グラフトした強陽イオン交換樹脂にエチレンジアミン水
溶液を含浸した膜(110μm)で、窒素に対する二酸
化炭素の透過係数比約600を得ている〔原料学会誌(
Le BlancJr、、William  J、Wa
rd  et  al、Journal  of  M
embrana 5cience)、第6巻、339 
(1980)]。
Here, the permeability coefficient of carbon dioxide before and after addition of inorganic salt is
51 X 10-"0m3(STP) ・cm/am"
・5ec2・cmHg to 310 x 10-”0m
3 (STP) ・cm/cm2・sec" ・cmHg
It has been reported that the permeability coefficient ratio to nitrogen has improved to about 19 or 6110. In addition, a membrane (110 μm) made of a strong cation exchange resin made of polytetrafluoroethylene grafted with sulfonated polystyrene and impregnated with an aqueous ethylenediamine solution has a permeability coefficient ratio of approximately 600 for carbon dioxide to nitrogen [Journal of the Japan Society of Materials Science (Journal of Materials Science, Japan]
Le Blanc Jr., William J., Wa.
rd et al, Journal of M
embrana 5science), Volume 6, 339
(1980)].

先の重炭酸セシウム水溶液やイオン交換膜の場合、水の
存在下ではじめて作用するために、水で飽和した二酸化
炭素を供給気体として使用しており、乾燥状態では働き
得ない。
In the case of the aforementioned cesium bicarbonate aqueous solution and ion exchange membrane, carbon dioxide saturated with water is used as the supply gas because they only work in the presence of water, and cannot work in a dry state.

また多孔質膜に液体を含浸した液膜系では、分離素材の
保持ということに問題があり、高圧力で使用した場合に
は液体が流出し分離能を失なうということもある。
In addition, liquid membrane systems in which a porous membrane is impregnated with liquid have a problem in retaining the separation material, and when used at high pressure, the liquid may flow out and the separation ability may be lost.

一方、銅(II)−アルカノールアミン錯体では、ビス
(2−アミノエタノラド)銅(II)やビス(2−ピリ
ジル−メタノラド)銅(II)が、エタノール溶液中で
二酸化炭素と可逆的に反応することが知られている[I
Iarukichi Hashimoto at al
、東北大学技報(Technology Raport
s、 Tohoku Univ+) 48. No、1
゜1  (1983))、 Lかし、これらの錯体はキ
レートε1↑体を形成する窒素原子と水酸基以外にはf
i′Mtの水酸基を有しない錯体であり、エタノールや
ジメチルホルムアミド等の極性溶媒中で、はじめて二酸
化炭素との可逆的反応を行なうが、以下に示すように、
非極性溶媒であるクロロホルムやオルソジクロロベンゼ
ン中では安定ではなく、溶解性も限られ、可逆性も示さ
ない。ましてや、乾燥状態で二酸化炭素と可逆的反応を
行なわせることはできないものであった。
On the other hand, in the copper(II)-alkanolamine complex, bis(2-aminoethanolado)copper(II) and bis(2-pyridyl-methanolado)copper(II) react reversibly with carbon dioxide in an ethanol solution. It is known that [I
Iarukichi Hashimoto at al.
, Tohoku University Technology Report
s, Tohoku Univ+) 48. No.1
゜1 (1983)), but these complexes contain f in addition to the nitrogen atom and hydroxyl group that form the chelate ε1↑
It is a complex that does not have a hydroxyl group of i'Mt, and it only undergoes a reversible reaction with carbon dioxide in a polar solvent such as ethanol or dimethylformamide, but as shown below,
It is not stable in the nonpolar solvents chloroform and orthodichlorobenzene, has limited solubility, and is not reversible. Furthermore, it has not been possible to carry out a reversible reaction with carbon dioxide in a dry state.

問題点を解決するための手段 本発明者は、乾燥状態で二酸化炭素と可逆的に反応を行
なわせることのできる高分子錯体の創製を目的として研
究を重ねた結果、銅(II)−アルカノールアミン錯体
を側鎖に有する新規な高分子錯体が上記目的を達し得る
ことを見出し、本発明に到達したものである。
Means for Solving the Problems As a result of repeated research aimed at creating a polymer complex capable of reversibly reacting with carbon dioxide in a dry state, the present inventor discovered that copper(II)-alkanolamine The present invention was achieved by discovering that a novel polymer complex having a complex in its side chain can achieve the above object.

すなわち本発明は一般式(I) −(RJ− 為   K3 (式中、R1,R2及びR1の少なくとも一つはヒドロ
キシアルキル基を示し、その他は水素原子、炭化水素残
基を示し、R4,R5及びRGはアルキレン基を示し、
R7は高分子構造単位を示す。またR1.R,は窒素原
子を含む複素環を形成することが出来、その場合におい
てはR4は複素環に結合したアルキレン基を示し、R1
,R4およびRGは窒素原子と共にシップ塩基を形成す
ることもある。〕 で表わされる銅(II)錯体を含有する二酸化炭素選択
分離剤に関する。
That is, the present invention relates to the general formula (I) -(RJ- K3 (wherein, at least one of R1, R2 and R1 represents a hydroxyalkyl group, the others represent a hydrogen atom or a hydrocarbon residue, and R4, R5 and RG represents an alkylene group,
R7 represents a polymer structural unit. Also R1. R, can form a heterocycle containing a nitrogen atom, in which case R4 represents an alkylene group bonded to the heterocycle, and R1
, R4 and RG may form a ship base together with the nitrogen atom. ] It is related with the carbon dioxide selective separation agent containing the copper (II) complex represented by these.

本発明の高分子錯体において、R工からR3のヒドロキ
シアルキル基は−(CH,)n −OH(IIは2〜6
のいずれかの整数)によって表わされ、該ヒドロキシア
ルキル基としては、2−ヒドロキシエチル基、2−ヒド
ロキシプロピル基、3−ヒドロキシプロピル基、4−ヒ
ドロキシブチル基、5−ヒドロキシペンチル基、6−ヒ
ドロキシヘキシル基等であり、 2−(2−ヒドロキシ
エトキシ)エチル基もこの範騎に入れることが出来る。
In the polymer complex of the present invention, the hydroxyalkyl group from R to R3 is -(CH,)n-OH (II is 2 to 6
), and the hydroxyalkyl group includes 2-hydroxyethyl group, 2-hydroxypropyl group, 3-hydroxypropyl group, 4-hydroxybutyl group, 5-hydroxypentyl group, 6-hydroxypropyl group, Hydroxyhexyl group, etc., and 2-(2-hydroxyethoxy)ethyl group can also be included in this category.

その他の炭化水素残基としては、アルキル基、アリール
基等であり、該アルキル基としては、炭素数1〜3の、
例えばメチル基、エチル基、プロピル基等が、該アリー
ル基としては、ベンジル基、4−ビニルベンジル基、フ
ェニル基、2−ヒドロキシ−3−(4−ビニルフェノキ
シ)プロピル基等が具体例として挙げられる。
Other hydrocarbon residues include alkyl groups, aryl groups, etc., and the alkyl groups include those having 1 to 3 carbon atoms,
Examples of the aryl group include a methyl group, an ethyl group, a propyl group, and examples of the aryl group include a benzyl group, a 4-vinylbenzyl group, a phenyl group, and a 2-hydroxy-3-(4-vinylphenoxy)propyl group. It will be done.

R4及びR6のアルキレン基は炭素数2〜3の、例えば
エチレン基、1.2−プロピレン基等であり、RGは−
(CR2)m −(mは1〜6のいずれかの整数)で表
わされ、例えばメチレン、エチレン、トリメチレン、ヘ
キサメチレン等である。またR5はポリオキシエチレン
の場合もある。
The alkylene groups of R4 and R6 have 2 to 3 carbon atoms, such as ethylene group, 1,2-propylene group, etc., and RG is -
(CR2) is represented by m - (m is an integer of 1 to 6), and is, for example, methylene, ethylene, trimethylene, hexamethylene, etc. Further, R5 may be polyoxyethylene.

また式中のR7(高分子構造単位)としては。In addition, R7 (polymer structural unit) in the formula is:

膜またはフィルム形成可能な高分子を形成するものであ
ればいずれのものでも構わない。例えば−+(CR2)
P CHO辷、((CR2)P q HO3−。
Any material may be used as long as it forms a membrane or film-formable polymer. For example -+(CR2)
P CHO, ((CR2)P q HO3-.

R R (式中、p、rは1以上の整数、Rは自換基を表わす)
等であり、下記に示される構造単位がある。
R R (where p and r are integers of 1 or more, R represents a self-substituent group)
etc., and there are structural units shown below.

−4CH,CHO+、    −+C:H2CH)。-4CH, CHO+, -+C:H2CH).

また上記構造単位に、下記に例示される構造単位が共重
合の形で含有されているものも挙げることが出来るが、
特にこれらに限定されるものではない。また分離材に下
記に例示される構造単位より成るポリマーを混合物とし
て含有してもかまわない。これらの構造単位を共重合す
ることにより比較的大きな低分子配位子を使用した場合
に側鎖の錯体形成が容易になるとともに、側鎖の錯体が
膜中で動きやすくなる。また、これらの構造単位の重合
体が混合物の形で利用される場合においても、側鎖の錯
体が動きやすくなる様に重合度と構造が選ばれる。
In addition, the above-mentioned structural units may contain structural units exemplified below in the form of copolymerization,
It is not particularly limited to these. Further, the separation material may contain a mixture of polymers composed of structural units exemplified below. Copolymerization of these structural units facilitates the formation of a side chain complex when a relatively large low molecular weight ligand is used, and also facilitates the movement of the side chain complex in the membrane. Furthermore, even when polymers of these structural units are used in the form of a mixture, the degree of polymerization and structure are selected so that the side chain complexes can move easily.

(IIは0から6までの整数でR はこれら高分子構造単位の重合度は10以上10゜Oo
O以下である。
(II is an integer from 0 to 6, and R is the degree of polymerization of these polymer structural units, which is 10 or more and 10°Oo
It is below O.

このように本発明の分離剤はR2,R3およびR9より
なるヒドロキシアルキル基を有する低分子配位子と、R
□1R41RG及びR7よりなる高分子配位子とにより
形成される。
As described above, the separating agent of the present invention has a low molecular weight ligand having a hydroxyalkyl group consisting of R2, R3 and R9, and R
□1R41RG and a polymeric ligand consisting of R7.

低分子配位子としては、ジェタノールアミン、トリエタ
ノールアミン、3−((2−ヒドロキシエチル)アミノ
コ−1−プロパツール、3.3’−((2−ヒドロキシ
エチル)イミノ〕ビスー1−プロパツール、4−[(2
−ヒドロキシエチル)アミノコ−1−ブタノール、 4
.4’−[(2−ヒドロキシエチル)イミノ〕ビスー1
−ブタノール、5−((2−ヒドロキシエチル)アミノ
コ−1−ペンタノール、5.5’−((2−ヒドロキシ
エチル)イミノ〕ビスー1−ペンタノール、6−((2
−ヒドロキシエチル)アミノ〕−[−ヘキサノール、 
6.s′−〔(2−ヒドロキシエチル)イミノ〕ビスー
1−ヘキサノール、2−([2−(2−ヒドロキシエト
キシ)エチル〕アミノ〕−エタノール、2.2’−((
2−(2−ヒドロキシエトキシ)エチル〕アミノ〕−ビ
スーエタノール、2−〔ビス〔2−(2−ヒドロキシエ
トキシ)エチル〕アミノ〕エタノール、2.2’−((
6−ヒトロキシヘキサンー1−イル)イミノツービス−
エタノール、2.2’−((5−ヒドロキシペンタン−
1−イル)イミノツービス−エタノール、2,2′−〔
(4−ヒドロキシブタン−1−イル)イミノツービス−
エタノール、2.2’−〔(3−ヒドロキシプロパン−
1−イル)イミノツービス−エタノール等を挙げる事が
でき、又4−((2−ヒドロキシエチル)メチルアミノ
コ−1−ブタノール、5−((2−ヒトロキシエチル)
メチルアミノコ−1−ペンタノール、6−((2−ヒド
ロキシエチル)メチルアミノコ−1−ヘキサノール及び
、これら配位子のメチル基を短鎖アルキルであるエチル
基、n−プロピル基に置換した配位子も挙げることがで
きる。
Examples of low molecular weight ligands include jetanolamine, triethanolamine, 3-((2-hydroxyethyl)aminoco-1-propanol, 3.3'-((2-hydroxyethyl)imino)bis-1-propanol). Tools, 4-[(2
-hydroxyethyl)aminoco-1-butanol, 4
.. 4'-[(2-hydroxyethyl)imino]bis-1
-butanol, 5-((2-hydroxyethyl)aminoco-1-pentanol, 5.5'-((2-hydroxyethyl)imino)bis-1-pentanol, 6-((2
-hydroxyethyl)amino]-[-hexanol,
6. s'-[(2-hydroxyethyl)imino]bis-1-hexanol, 2-([2-(2-hydroxyethoxy)ethyl]amino]-ethanol, 2.2'-((
2-(2-hydroxyethoxy)ethyl]amino]-bis-ethanol, 2-[bis[2-(2-hydroxyethoxy)ethyl]amino]ethanol, 2.2'-((
6-Hydroxyhexane-1-yl)iminotubis-
Ethanol, 2.2'-((5-hydroxypentane-
1-yl) iminotubis-ethanol, 2,2'-[
(4-hydroxybutan-1-yl)iminotubis-
Ethanol, 2.2'-[(3-hydroxypropane-
1-yl)iminotubis-ethanol, 4-((2-hydroxyethyl)methylaminoco-1-butanol, 5-((2-hydroxyethyl)
Methylaminoco-1-pentanol, 6-((2-hydroxyethyl)methylaminoco-1-hexanol, and ligands in which the methyl group of these ligands is replaced with a short-chain alkyl ethyl group or n-propyl group) can be mentioned.

また、2.2’−(メチルイミノ)ビス−エタノール、
3−((2−ヒドロキシエチル)メチルアミノコ−1−
プロパツールを挙げることができる。
Also, 2,2'-(methylimino)bis-ethanol,
3-((2-hydroxyethyl)methylaminoco-1-
One example is the property tool.

また式中のR,、R4,R,及びR7よりなる高分子配
位子としては、2.2’−(メチルイミノ)ビス−エタ
ノール、3−((2−ヒドロキシエチル)メチルアミノ
コ−1−プロパツールのメチル基を、前記に例示した高
分子構造単位の側鎖に置換した形のものや、N −メチ
ルエタノールアミン、N−エチルエタノールアミンおよ
びN −n−プロピルエタノールアミン等の比較的短か
いアルキル基を一つ持ったエタノールアミン誘導体の窒
素上の水素原子を、同じく前記の高分子構造単位の側鎖
に置換した形のものも挙げることができる。
In addition, as the polymeric ligand consisting of R,, R4, R, and R7 in the formula, 2,2'-(methylimino)bis-ethanol, 3-((2-hydroxyethyl)methylaminoco-1-propatol) methyl groups substituted with the side chains of the polymer structural units listed above, and relatively short alkyl groups such as N-methylethanolamine, N-ethylethanolamine, and N-n-propylethanolamine. Also included are ethanolamine derivatives having one group in which the hydrogen atom on the nitrogen is substituted with the side chain of the above-mentioned polymer structural unit.

R1,RGが窒素原子を含む複素環を形成する場合にお
いて、R4は複素環に結合したアルキレン基を示す場合
、R工l RGよりなる窒素原子を含む複素環としては
、ピリジン、イミダゾール等であり、R4はメチレン基
であり、高分子構造単位の側鎖に2−ヒドロキシメチル
ピリジル基、2−ヒドロキシメチルイミダゾリル基等、
芳香族複素環を有し、窒素に対し2位にアルコール性水
酸基を有する配位子が挙げられる。
When R1 and RG form a heterocycle containing a nitrogen atom, and R4 represents an alkylene group bonded to the heterocycle, examples of the heterocycle containing a nitrogen atom consisting of RG include pyridine, imidazole, etc. , R4 is a methylene group, and the side chain of the polymer structural unit has a 2-hydroxymethylpyridyl group, a 2-hydroxymethylimidazolyl group, etc.
Examples include a ligand having an aromatic heterocycle and having an alcoholic hydroxyl group at the 2-position relative to nitrogen.

またR1.R4およびR1+が窒素原子と共に形成する
シッフ塩基とは次式に示すものであり、N    ドロ
キシアルキル基を示し、R4R4は炭素数2〜3のエチ
レン基、 HO1,2−プロピレン基を示す。) アルキル基としては、メチル基、エチル基等であり、ヒ
ドロキシアルキル基としては2−ヒドロキシエチル基、
3−ヒドロキシプロピル基等が挙げられる。
Also R1. The Schiff base formed by R4 and R1+ together with the nitrogen atom is represented by the following formula, and represents an N droxyalkyl group, and R4R4 represents an ethylene group having 2 to 3 carbon atoms or a HO1,2-propylene group. ) Examples of alkyl groups include methyl group and ethyl group, and examples of hydroxyalkyl groups include 2-hydroxyethyl group,
Examples include 3-hydroxypropyl group.

これを有する配位子としては、例えば次式のもの等が挙
げられる。
Examples of the ligand having this include those of the following formula.

本発明の高分子鋼(u ) 錯体は例えば次のようなも
のである。
Examples of the polymer steel (u) complex of the present invention are as follows.

FiOCH,CH; ”C)ll叫ユOH本発明の高分
子鋼(II)錯体は、次のような方法によって製造する
ことが出来る。
FiOCH,CH; ``C)ll shout OH'' The polymer steel (II) complex of the present invention can be produced by the following method.

低分子配位子溶液を、@(II)塩溶液と1対1(モル
比)で混合し、ここに高分子配位子(銅(II)ニ対し
側鎖(7)HO−C−C−Nが等モル)の溶液を滴下す
る。次に水酸化カリウムまたは水酸化ナトリウムの溶液
を銅(■)に対し2倍モル加えて合成する。なお、水酸
化カリウムの半量は高分子配位子を加える前に加えても
よい、また、高分子配位子を過塩素酸塩や塩酸塩の形に
して加えてもよく、この際には水酸化カリウムや水酸化
ナトリウムの溶液は銅(II)に対し3倍モル加える。
The low-molecular ligand solution is mixed with @(II) salt solution in a 1:1 (molar ratio), and the polymer ligand (copper (II) versus side chain (7) HO-C-C -Equimolar of N) is added dropwise. Next, a solution of potassium hydroxide or sodium hydroxide is added twice in mole to copper (■) to synthesize. Note that half of the potassium hydroxide may be added before adding the polymeric ligand, or the polymeric ligand may be added in the form of perchlorate or hydrochloride; in this case, A solution of potassium hydroxide or sodium hydroxide is added 3 times the mole of copper (II).

なお、この場合、水酸化カリウムや水酸化ナトリウムの
3分の1の景は、高分子配位子を加える前に加えてもよ
い。
In this case, one-third of potassium hydroxide or sodium hydroxide may be added before adding the polymeric ligand.

これら錯体の合成の際に使用する銅(TI)塩としては
過塩素酸鋼(II)・6水和物、塩化第二銅無水物等が
好適に用いられる。
As the copper (TI) salt used in the synthesis of these complexes, steel (II) perchlorate hexahydrate, cupric chloride anhydride, etc. are preferably used.

また合成の際の溶媒については、配位子及び目的の工1
1体に従って、メタノール、エタノール、n−プロパノ
ール等のアルコール類やエタノールとヘキサンとの混合
溶媒なども用いられる。
In addition, regarding the solvent during synthesis, the ligand and the target
Alcohols such as methanol, ethanol, n-propanol, and a mixed solvent of ethanol and hexane are also used depending on the solvent.

本発明の高分子銅(■)錯体は次のような方法によって
製膜される。
The polymeric copper (■) complex of the present invention is formed into a film by the following method.

1、高分子非多孔質フィルム上での膜形成ここで、高分
子非多孔質フィルムはポリテトラフルオロエチレンポリ
オレフィン、例えばポリスチレン、ポリプロピレン、ポ
リエチレン、エチレン−プロピレン共重合体、ポリブタ
ジェン、ポリ(メタ)アクリル酸エステル、例えばポリ
エチルメタクリレート、エチルメタクリレート−2−エ
チルへキシルメタクリレート共重合体、ポリウレタン、
ポリカーボネート、ポリサルホン、ポリエーテルサルホ
ン、セルロースエステル、ポリエステル、ポリアミドの
フィルムであり、高分子鋼(II)錯体と反応しないも
のが良い。
1. Membrane formation on a polymer non-porous film Here, the polymer non-porous film is a polytetrafluoroethylene polyolefin, such as polystyrene, polypropylene, polyethylene, ethylene-propylene copolymer, polybutadiene, poly(meth)acrylic. Acid esters such as polyethyl methacrylate, ethyl methacrylate-2-ethylhexyl methacrylate copolymer, polyurethane,
It is a film of polycarbonate, polysulfone, polyethersulfone, cellulose ester, polyester, or polyamide, and preferably one that does not react with the polymer steel (II) complex.

これらのフィルムに、メタノール、エタノール、n−プ
ロパツール等のアルコール類、クロロホルム、ジクロロ
メタン等の塩素化炭化水素を錯体の溶解性とフィルムに
応じ単独でまたは混合して用い、高分子鋼([1)錯体
溶液とし、展開し乾燥する。
Alcohols such as methanol, ethanol, and n-propanol, and chlorinated hydrocarbons such as chloroform and dichloromethane are used alone or in combination depending on the solubility of the complex and the film, and polymer steel ([1 ) Make a complex solution, develop and dry.

ポリオレフィンやポリテトラフルオロエチレンのフィル
ムに高分子銅(II)錯体エタノール溶液を展開する場
合には、フィルム表面にプラズマ処理、コロナ放電処理
等を施し、錯体溶液に対するぬれ性を改善して使用する
When a polymeric copper (II) complex ethanol solution is applied to a polyolefin or polytetrafluoroethylene film, the surface of the film is subjected to plasma treatment, corona discharge treatment, etc. to improve wettability to the complex solution before use.

2、高分子鋼(II)Iff体のフィルムの形成上記の
溶液を水銀上に展開し乾燥するか、ポリオレフィンフィ
ルムやテトラフルオロエチレンフィルム(未処理)に錯
体の濃厚な溶液を展開した後、乾燥窒素気流下に置き溶
媒を急激に蒸発させ乾燥する。乾燥後、水銀上及びポリ
オレフィンフィルムやテトラフルオロエチレンフィルム
から剥離しフィルムとする。
2. Formation of a film of polymeric steel (II) Iff The above solution is spread on mercury and dried, or a concentrated solution of the complex is spread on a polyolefin film or tetrafluoroethylene film (untreated) and then dried. Place under a nitrogen stream to rapidly evaporate the solvent and dry. After drying, it is peeled off from the mercury and the polyolefin film or tetrafluoroethylene film to form a film.

3、高分子微多孔質フィルム上での膜形成(含浸及び部
分的な含浸膜を含む) ここで高分子微多孔質フィルムとは1に示したフィルム
素材よりなるフィルムである。この高分子微多孔質フィ
ルムを1で示した溶液に浸漬後。
3. Film formation on a microporous polymer film (including impregnated and partially impregnated films) The microporous polymer film here is a film made of the film material shown in 1. After immersing this microporous polymer film in the solution shown in 1.

フィルムを引き上げ乾燥窒素気流下で乾燥する。The film is pulled up and dried under a stream of dry nitrogen.

また高分子微孔質フィルムをポリテトラフルオロエチレ
ン板の上に置き、その上に錯体溶液を展開し乾燥後、該
板上より剥離し用いる。ポリオレフィン、例えばポリプ
ロピレンやポリエチレン、またテトラフルオロエチレン
の微多孔質膜を用いる場合においては、1に示したと同
様にプラズマ処理等を行いぬれ性を改善する必要がある
Further, a microporous polymeric film is placed on a polytetrafluoroethylene plate, a complex solution is spread thereon, and after drying, it is peeled off from the plate and used. When using a microporous membrane of polyolefin, such as polypropylene, polyethylene, or tetrafluoroethylene, it is necessary to perform plasma treatment or the like as shown in 1 to improve wettability.

務旦 本発明の二酸化炭素分離剤は、その銅(II)錯体部分
が銅(TI)に対し、高分子配位子及び低分子配位子が
混合して四配位のキレート錯体を形成するとともに、さ
らにヒドロキシアルキル基末端の水酸基が軸位にある程
度配位するものと推定され、それにより錯体はフィルム
状態においても安定に存在し、かつ二酸化炭素と可逆的
に反応するものと考えられる。
In the carbon dioxide separation agent of the present invention, the copper (II) complex portion of the copper (II) complex forms a four-coordinate chelate complex by mixing a high molecular weight ligand and a low molecular weight ligand with respect to copper (TI). In addition, it is presumed that the hydroxyl group at the end of the hydroxyalkyl group is coordinated to some extent in the axial position, and as a result, the complex exists stably even in a film state and is thought to react reversibly with carbon dioxide.

ヌ」1例− 以下に本発明の実施例を挙げるが、本発明がこれらのも
のに限定されるものでないことは言うまでもない。
EXAMPLE 1 Examples of the present invention are listed below, but it goes without saying that the present invention is not limited to these.

、1 子 ケ の八J1 エチレンオキシド□−エビクロロヒドリン交互共重合体
(G、P、Cにより測定したスチレン換算分子量約17
5,000.”C−NMRにより1対1の共重合体であ
ることを確認)13.7gを窒素導入管、撹拌機及びコ
ンデンサーを備えた300mQ四つロフラスコに入れ、
150mQのジメチルアセトアミドを加え、60℃、約
4時間で溶解した。次にN−メチルエタノールアミン3
7゜5g(ポリマー中の塩素原子に対し5倍モル)を加
え、100℃に昇温し、12時間反応させた。
, 1.8 J1 Ethylene oxide □-shrimp chlorohydrin alternating copolymer (styrene equivalent molecular weight measured by G, P, C, approximately 17
5,000. 13.7g (confirmed to be a 1:1 copolymer by C-NMR) was placed in a 300mQ four-loop flask equipped with a nitrogen inlet tube, a stirrer, and a condenser.
150 mQ of dimethylacetamide was added and dissolved at 60°C for about 4 hours. Next, N-methylethanolamine 3
7.5 g (5 times the mole relative to the chlorine atoms in the polymer) was added, the temperature was raised to 100°C, and the reaction was carried out for 12 hours.

反応混合物を冷却後、多量のジイソプロピルエーテルに
滴下し、ポリマーを析出させた。デカンテーションでエ
ーテル層を除き、ポリマーは再度メタノールに溶解した
。ここに多量のジイソプロピルエーテルを徐々に加え再
沈後、ポリマーをエタノール溶液とした。30℃にセッ
トしたエバポレーターでエタノールを留去後、さらに減
圧乾燥した。得られたポリマーは16.58gであった
After cooling the reaction mixture, it was added dropwise to a large amount of diisopropyl ether to precipitate a polymer. The ether layer was removed by decantation, and the polymer was dissolved again in methanol. A large amount of diisopropyl ether was gradually added thereto, and after reprecipitation, the polymer was made into an ethanol solution. After ethanol was distilled off using an evaporator set at 30°C, the mixture was further dried under reduced pressure. The amount of polymer obtained was 16.58 g.

99.5%エタノールを加え10.0重量%エタノール
溶液とした。
99.5% ethanol was added to make a 10.0% by weight ethanol solution.

この溶液を用いてフェノールフタレインを指示薬として
0.INアルコール性水酸化カリウムにより滴定すると
ともに、溶液の一定量を水溶液としてpHメーターを用
い、0.IN塩酸により滴定を行った。1モルのアミン
残基当りの大量は216.4であった。
Using this solution, phenolphthalein was used as an indicator and 0. While titrating with IN alcoholic potassium hydroxide, a certain amount of the solution was made into an aqueous solution using a pH meter, and the pH was adjusted to 0. Titration was performed with IN hydrochloric acid. The mass per mole of amine residue was 216.4.

また水酸化ナトリウムで中和したポリマーの重クロロホ
ルム溶液の1H−NMRによるとδ値で。
Also, according to 1H-NMR of a deuterated chloroform solution of the polymer neutralized with sodium hydroxide, the δ value was determined.

2.32ppmにメチル基プロトン、2.54Ppmに
窒素に直接結合しているメチレンのプロトン、2.75
ppmにクロロメチル基のメチレンプロトン、3.6p
pm付近に主鎖のプロトンとヒドロキシエチル基の酸素
に直接結合しているメチレンのプロトンがそれぞれ観測
された。
Methyl group proton at 2.32 ppm, methylene proton directly bonded to nitrogen at 2.54 Ppm, 2.75
Methylene proton of chloromethyl group in ppm, 3.6p
A main chain proton and a methylene proton directly bonded to the oxygen of the hydroxyethyl group were observed near pm.

これらの結果から、エーテルで精製した高分子配位子(
高分子配位子1とする)は次のように示される。
From these results, the polymeric ligand purified with ether (
Polymer ligand 1) is shown as follows.

ポリエピクロロヒドリンポリマー(スチレン換算分子量
約180,000)18.5gを戻光ヱ蔦H久ゴ」グイ
1戊」工で示したと同様にジメチルアセ1−アミド20
0mflに溶解し、N−メチルエタノールアミン45.
1gを加え80℃で25時間反応反応後、100℃でさ
らに9時間反応させた。反応混合物100m12を50
0 m Qのジエチルエーテルで2回精製し、減圧乾燥
した。これに99゜5%エタノールを加え10.0重量
%エタノール溶液とした。測定の結果アミン1モル当り
の大量は168.6であった。
18.5 g of polyepichlorohydrin polymer (styrene equivalent molecular weight approximately 180,000) was mixed with dimethylacetic acid 1-amide 20 in the same manner as shown in the process
Dissolve in 0 mfl, N-methylethanolamine 45.
After adding 1 g of the mixture and reacting at 80°C for 25 hours, the reaction was further continued at 100°C for 9 hours. 50 ml of reaction mixture
It was purified twice with 0 m Q diethyl ether and dried under reduced pressure. 99.5% ethanol was added to this to make a 10.0% by weight ethanol solution. As a result of the measurement, the amount per mole of amine was 168.6.

また水酸化ナトリウムで中和したポリマーの重クロロホ
ルム溶液の13C−NMRによるとδ値で、43.42
ppmにメチル基の炭素、58.80ppmに窒素原子
に結合したメチレンの炭素、59.91ppmにヒドロ
キシエチル基の酸素原子に結合したメチレンの炭素、7
0.69ppmには主鎖の炭素のシグナルが観測された
。クロロメチル基の炭素のシグナル(45,41ppm
)はflHI9されなかったが、IRスペクトルでは7
40Qm−”にC−CQ伸縮振動に基づく吸収がわずか
ながら見られた。
Furthermore, according to 13C-NMR of a deuterated chloroform solution of the polymer neutralized with sodium hydroxide, the δ value was 43.42.
ppm is the carbon of the methyl group, 58.80 ppm is the carbon of methylene bonded to the nitrogen atom, 59.91 ppm is the carbon of methylene bonded to the oxygen atom of the hydroxyethyl group, 7
A main chain carbon signal was observed at 0.69 ppm. Carbon signal of chloromethyl group (45,41ppm
) was not flHI9, but in the IR spectrum it was 7
A slight absorption based on C-CQ stretching vibration was observed at 40Qm-''.

これらの結果から、エーテル精製した高分子配位子(高
分子配位子2とする)は下記のように示される。
From these results, the ether-purified polymeric ligand (referred to as polymeric ligand 2) is shown as follows.

(高分子配位子2) 実施例1 前記高分子配位子の合成1で得られた高分子配位子1、
トリエタノールアミン、過塩素酸銀(II)・6水和物
、塩酸及び水酸化カリウムを用いて高分子錯体を合成し
た。配合量を処方1に示す。
(Polymer ligand 2) Example 1 Polymer ligand 1 obtained in the synthesis 1 of the polymer ligand,
A polymer complex was synthesized using triethanolamine, silver (II) perchlorate hexahydrate, hydrochloric acid, and potassium hydroxide. The blending amount is shown in Formulation 1.

処方 1 溶液番号   化合物名      モル数 重f(g
)  エタノール(g)a    トリエタノールアミ
ン  0.81  1.49    20b   過塩
素酸銀(II)・6水和物  /J   3.705 
  30C水酸化カリウム(85%)     II 
  O,66020d    Lowt%高分子配位子
1エタノール溶液         ”   21.6
4    22e   塩酸(35,2%)     
  0.00835 0.1366   22f   
水酸化カリウム0.02 1.32    40溶液す
は、300mAナスフラスコに磁気撹拌子を入れ窒素下
で撹拌溶解し、調製した。この溶液は若干白濁した淡青
色を呈した。撹拌しながら、溶液aを徐々に滴下した。
Prescription 1 Solution number Compound name Number of moles Weight f(g
) Ethanol (g) a Triethanolamine 0.81 1.49 20b Silver (II) perchlorate hexahydrate /J 3.705
30C potassium hydroxide (85%) II
O, 66020d Lowt% polymeric ligand 1 ethanol solution ” 21.6
4 22e Hydrochloric acid (35.2%)
0.00835 0.1366 22f
Potassium hydroxide 0.02 1.32 40 solution was prepared by placing a magnetic stirrer in a 300 mA eggplant flask and stirring and dissolving under nitrogen. This solution had a slightly cloudy pale blue color. Solution a was gradually added dropwise while stirring.

滴下終了時、コバルトブルーの比較的透明な溶液となっ
た。次にCを加えた。薄い緑青色を呈した。次にeをd
に加え高分子配位子1をアンモニウム塩形とする。この
高分子配位子1塩酸塩溶液を徐々に加えた。加えるに従
って黄緑色の沈殿が生じた。次にfを加えた。
At the end of the dropwise addition, a relatively clear cobalt blue solution was obtained. Next, C was added. It had a pale green-blue color. then e to d
In addition, the polymeric ligand 1 is in the form of an ammonium salt. This polymeric ligand monohydrochloride solution was gradually added. As the mixture was added, a yellow-green precipitate formed. Next, I added f.

加えるに従い、くすんだ黄緑色を呈し、最後にはコバル
トブルーの溶液になった。ここで白い細かな沈殿が生成
した。沈殿をろ過後、エバポレーターで溶液を濃縮し、
冷蔵庫(5℃)に保存し、塩の析出を行った。上ずみ液
を減圧乾燥後、EDTAによりキレート滴定を行った。
As the solution was added, it took on a dull yellow-green color and finally became a cobalt blue solution. A fine white precipitate was formed here. After filtering the precipitate, concentrate the solution using an evaporator.
It was stored in a refrigerator (5°C) and salt was precipitated. After drying the supernatant liquid under reduced pressure, chelate titration was performed with EDTA.

銅含有量は13゜1重量%(計算値13.6本社%)で
あった。
The copper content was 13.1% by weight (calculated value 13.6%).

得られた高分子銅(■)錯体は次のとおりのものである
The obtained polymeric copper (■) complex is as follows.

この錯体のエタノール溶液の二酸化炭素吹き込みによる
可視吸収スペクトル変化と、二酸化炭素吸収量を第1表
に示す。また錯体の少量を石英板に塗布し、窒素下で乾
燥し、さらに減圧乾燥し、二酸化炭素雰囲気中での可視
吸収スペクトルの変化を測定した。1時間二酸化炭素雰
囲気下に置いたが、可視部においてはスペクトル変化が
ほとんど見られなかった。
Table 1 shows changes in the visible absorption spectrum of the ethanol solution of this complex due to carbon dioxide injection and the amount of carbon dioxide absorbed. In addition, a small amount of the complex was applied to a quartz plate, dried under nitrogen, and further dried under reduced pressure, and changes in the visible absorption spectrum in a carbon dioxide atmosphere were measured. Although it was left in a carbon dioxide atmosphere for 1 hour, almost no spectral change was observed in the visible region.

しかし350nm付近で吸光度の増大が見られた。この
石英板を分光光度計の41す定電にそのままにして、窒
素を毎分10omQの流量で3時間流したが、スペクト
ル変化はほとんどに目+IJされなかった。スペクトル
側室結果を第2表に示す。
However, an increase in absorbance was observed near 350 nm. This quartz plate was left at a constant current of 41 in the spectrophotometer, and nitrogen was flowed through it at a flow rate of 10 omQ per minute for 3 hours, but almost no spectral change was observed. The spectral concubine results are shown in Table 2.

孔径0.1μmのポリテトラフルオロエチレン多孔質膜
の微細な孔径を有する側を0.4mmHgの空気中でプ
ラズマ処理し、ここに錯体の20重量%エタノール溶液
をキャストした。フィルムは乾燥窒素下に数日放置し、
乾燥した。光学顕微鏡による断面のa察から錯体は多孔
質膜の表面から約15μmまで含浸された状態であるこ
とが分った。
The side having fine pores of a polytetrafluoroethylene porous membrane with a pore size of 0.1 μm was plasma treated in air at 0.4 mmHg, and a 20% by weight ethanol solution of the complex was cast thereon. The film was left under dry nitrogen for several days,
Dry. Observation of the cross section using an optical microscope revealed that the complex was impregnated to a depth of approximately 15 μm from the surface of the porous membrane.

これをこの錯体膜の膜厚とした。This was taken as the film thickness of this complex film.

このフィルムの二酸化炭素と窒素に対する透過係数を二
酸化炭素と窒素の混合気体(COz / Nz=1.0
3)を用い、低真空法でa+11定した。結果を第3表
に示す。ガス透過実験終了後、数日装置上に放置したフ
ィルムを取り出した所、緑色を呈していた。これを窒素
雰囲気に放置するとおよそ3日で元の青色にもどったこ
とから、二酸化炭素と可逆的に反応しているものと考え
られた。
The permeability coefficient of this film for carbon dioxide and nitrogen is calculated as a mixed gas of carbon dioxide and nitrogen (COz / Nz = 1.0
3), a+11 was determined by the low vacuum method. The results are shown in Table 3. After the gas permeation experiment was completed, the film, which had been left on the device for several days, was taken out and had a green color. When this was left in a nitrogen atmosphere, it returned to its original blue color in about 3 days, suggesting that it was reacting reversibly with carbon dioxide.

実施例2 エタノールアミン183.0g(3モル)、4−クロロ
−1−ブタノール108.6g (1モル)及びエタノ
ール300ccを水酸化ナトリウムの存在下75℃で5
時間反応させ、中和後蒸留により4−((2−ヒドロキ
シエチル)アミノゴー1−ブタノールを得た( 0 、
1 m m Hg −144℃)、留出物は61.45
g、精製収率61.2%であった。
Example 2 183.0 g (3 mol) of ethanolamine, 108.6 g (1 mol) of 4-chloro-1-butanol and 300 cc of ethanol were mixed at 75° C. in the presence of sodium hydroxide for 50 minutes.
4-((2-hydroxyethyl)aminogo-1-butanol was obtained by distillation after neutralization (0,
1 mm Hg -144°C), the distillate was 61.45
g, the purification yield was 61.2%.

次に4−((2−ヒドロキシエチル)アミノゴー1−ブ
タノール59.85g (0,45モル)をコンデンサ
ー、撹拌機、温度計、及び窒素導入管を備えた2 00
 m Q 4つロフラスコにとり85℃に加熱、4−ク
ロロ−1−ブタノール16.29g(0,15モル)を
30分で滴下した。滴下終了後さらに3時間85℃に保
ち、エタノール80cc、水酸化ナトリウム6.31g
を加えて中和冷却後ろ過を行なった。エタノール留去後
蒸留用フラスコにとり、オイルバスを190℃に設定し
て4−〔(2−ヒドロキシエチル)アミノゴー1−ブタ
ノールを留去した。残さをカラムクロマトグラフィーに
より分取し、4.4’ −((2−ヒドロキシエチル)
イミノ〕ビスー1−ブタノールを得た。
Next, 59.85 g (0.45 mol) of 4-((2-hydroxyethyl)aminogo-1-butanol) was added to a 200 ml tube equipped with a condenser, stirrer, thermometer, and nitrogen inlet tube.
The mixture was placed in four mQ flasks and heated to 85°C, and 16.29 g (0.15 mol) of 4-chloro-1-butanol was added dropwise over 30 minutes. After the dropwise addition was completed, the temperature was kept at 85°C for another 3 hours, and 80 cc of ethanol and 6.31 g of sodium hydroxide were added.
was added, neutralized and cooled, and then filtered. After distilling off the ethanol, the mixture was placed in a distillation flask, and the oil bath was set at 190°C to distill off 4-[(2-hydroxyethyl)aminogo-1-butanol. The residue was separated by column chromatography and 4.4'-((2-hydroxyethyl)
Imino]bis-1-butanol was obtained.

この4.4’ −((2−ヒドロキシエチル)イミノ〕
ビスー1−ブタノール、高分子配位子1(前記高分子配
位子の合成で得られたもの)、過塩素酸銅(II)・6
水和物、塩酸及び水酸化カリウムを用い、実施例1と同
様に錯体を得た。溶液の色は紫色であった。銅含有量は
EDTAによるキレート滴定で12.2重量%(計算値
12.8重量%)であった。得られた高分子銅(II)
錯体は次のとおりのものである。
This 4.4'-((2-hydroxyethyl)imino)
Bis-1-butanol, polymeric ligand 1 (obtained from the synthesis of the polymeric ligand described above), copper(II) perchlorate 6
A complex was obtained in the same manner as in Example 1 using a hydrate, hydrochloric acid and potassium hydroxide. The color of the solution was purple. The copper content was 12.2% by weight (calculated value: 12.8% by weight) by chelate titration with EDTA. Obtained polymeric copper(II)
The complexes are as follows.

この錯体の可視吸収スペクトル測定結果及び二酸化炭素
吸収量測定結果を第1表に示す。石英板に塗布したフィ
ルムの可視吸収スペクトル変化測定結果を第2表に示す
Table 1 shows the visible absorption spectrum measurement results and carbon dioxide absorption measurement results of this complex. Table 2 shows the results of measuring changes in the visible absorption spectrum of the film applied to a quartz plate.

石英板上のフィルムは二酸化炭素雰囲気に1時間置く間
に大きなスペクトル変化を示し、その後に3時間窒素雰
囲気下に置くことにより、スペクトルの形が元にもどる
傾向が明確に見られ可逆性を示した(第1図、第2図参
照)。
The film on the quartz plate showed a large spectral change while placed in a carbon dioxide atmosphere for 1 hour, and then by placing it in a nitrogen atmosphere for 3 hours, there was a clear tendency for the spectral shape to return to its original shape, indicating reversibility. (See Figures 1 and 2).

また実施例1と同様にポリテトラフルオロエチレン多孔
質膜にキャストした膜のガス透過率を測定した。膜厚は
5μmであった。また平均分子量300のポリエチレン
グリコール3o重量%を混合した錯体を同様に成膜し、
ガス透過率を測定した。膜厚は55μmであった。
Further, in the same manner as in Example 1, the gas permeability of the membrane cast as a polytetrafluoroethylene porous membrane was measured. The film thickness was 5 μm. In addition, a complex containing 30% by weight of polyethylene glycol having an average molecular weight of 300 was similarly formed into a film,
Gas permeability was measured. The film thickness was 55 μm.

フィルムはどちらも実施例1の場合と異なり、多孔質膜
の上に乗っていた。
Unlike in Example 1, both films rested on porous membranes.

ガス透過測定結果を第3表に示す。The gas permeation measurement results are shown in Table 3.

実施例3 トリエタノールアミン、高分子配位子2(前記高分子配
位子の合成2で得られたもの)、過塩素酸鋼(II)・
6水和物及び水酸化カリウムを処方2に示す配合量を用
いて実施例1と同様の操作を行ない、高分子錯体を合成
した。G−4のグラスフィルターで析出した塩をろ過し
た。塩の乾燥重量は3.Log (計算値3.15g)
で回収率は99%であった・ 紡2 溶液番号   化合物名      モル数 重量(g
)  エタノール(g)a    トリエタノールアミ
ン  0.01  1.49    10b   過塩
素酸鋼(II)・6水和物   TI   3.705
    16C水酸化カリウム(85%)     t
r   O,66015d    ICNα高分子配位
子2エタノールをン■堅IE            
#16.86     17e   水酸化カリウム(
85%)        0.964   23このこ
とからほぼ定量的に高分子錯体が得られていると考えら
れた。濃縮した錯体溶液をテフロン板上にキャストし、
窒素雰囲気中で放置すると錯体が結晶化した。実施例1
の錯体では結晶化が見られなかった。
Example 3 Triethanolamine, polymeric ligand 2 (obtained in the synthesis of polymeric ligand 2), perchloric acid steel (II).
A polymer complex was synthesized by carrying out the same operation as in Example 1 using hexahydrate and potassium hydroxide in the amounts shown in Formulation 2. The precipitated salt was filtered using a G-4 glass filter. The dry weight of salt is 3. Log (calculated value 3.15g)
The recovery rate was 99%.・Spinning 2 Solution number Compound name Number of moles Weight (g
) Ethanol (g) a Triethanolamine 0.01 1.49 10b Perchlorate steel (II) hexahydrate TI 3.705
16C potassium hydroxide (85%) t
r O, 66015d ICNα polymeric ligand 2 ethanol n ■ hard IE
#16.86 17e Potassium hydroxide (
85%) 0.964 23 From this, it was considered that the polymer complex was obtained almost quantitatively. Cast the concentrated complex solution on a Teflon plate,
The complex crystallized when left in a nitrogen atmosphere. Example 1
No crystallization was observed in the complex.

またこの錯体を減圧乾燥し、重クロロホルム溶液の1H
−NMRスペクトルを測定した。比較のためトリエタノ
ールアミンとポリマーの測定値を示すと、トリエタノー
ルアミンのδ値によるケミカルシフトは窒素原子に結合
しているメチレンプロトンが2.60ppmにトリプレ
ットとして見られ、酸素原子に結合しているメチレンプ
ロトンは3.61ppmにトリプレットとして見られる
Further, this complex was dried under reduced pressure, and a 1H solution of deuterated chloroform was added.
-NMR spectra were measured. For comparison, the measured values of triethanolamine and polymer are shown. The chemical shift due to the δ value of triethanolamine shows that the methylene proton bonded to the nitrogen atom is seen as a triplet at 2.60 ppm, and the methylene proton bonded to the oxygen atom is seen as a triplet. The methylene proton present is seen as a triplet at 3.61 ppm.

そして水酸基のプロトンは5.10ppmに観測される
。また高分子配位子に関しては、メチル基プロトンは2
・32ppm(高分子配位子1の値、以下同様)、窒素
に結合しているメチレンプロトンは2.54ppmに見
られる。
The proton of the hydroxyl group is observed at 5.10 ppm. Regarding polymeric ligands, the methyl group proton is 2
- 32 ppm (value of polymeric ligand 1, same applies below), methylene proton bonded to nitrogen is found at 2.54 ppm.

これに対しこの高分子鋼(II)#体の重クロロホルム
溶液の1H−NMRシグナルは1.28ppmにメチル
基のプロトンによると考えられるシグナル、2.05〜
3.15ppmにフリーのヒドロキシアルキル基(いく
ぶん、錯体中心の銅([[)に配位する傾向があると見
られ、2.05〜2゜soppmにかけての一群の分裂
ピークと2.80〜3.15ppmにかけての一群の分
裂ピークに分れる)中の窒素原子に結合しているメチレ
ンプロトンのシグナル、3.40〜約4.5ppmにか
けてフリーのヒドロキシアルキル基の水酸基に結合して
いるメチレンプロトンのシグナルが観測され、メチル基
プロトンのプロトン数を3として3.40〜約4.5p
pmにかけてのプロトン数を計算すると7.5個となり
、2.05〜3゜15ppmのプロトン数については5
.6個となった。この他におよそ一3ppmと−10,
5ppmにかけて4個分のプロトンが観測され、−3p
pmに3個、−10,5ppmに1個の割合になってい
た。銅(I[)を含め環を形成する部分の配位子のプロ
トンについては、低磁場側に大きくシフトしており、測
定筒1ffl(−13ppmから+12、ppm)では
観測されないと考えられる。これらのことから得られた
高分子鋼(II)錯体は次のとおりのものである。
On the other hand, the 1H-NMR signal of a heavy chloroform solution of this polymer steel (II) # is a signal at 1.28 ppm that is thought to be due to the proton of the methyl group, and a signal at 2.05 ~
At 3.15 ppm, a free hydroxyalkyl group appears to have a tendency to coordinate to copper ([[) at the center of the complex, and a group of splitting peaks at 2.05-2° soppm and a group of split peaks at 2.80-3 The signal of the methylene proton bonded to the nitrogen atom in A signal was observed, and the number of protons in the methyl group was 3.40 to about 4.5p.
Calculating the number of protons over pm is 7.5, and the number of protons between 2.05 and 3°15 ppm is 5.
.. There were 6 pieces. In addition to this, approximately 13 ppm and -10,
4 protons were observed at 5ppm, -3p
The ratio was 3 pieces per pm and 1 piece per -10.5 ppm. The protons of the ligands in the ring-forming part, including copper (I[), are largely shifted toward the lower magnetic field side and are not observed in the measurement tube 1 ffl (-13 ppm to +12 ppm). The polymer steel (II) complexes obtained from these are as follows.

この錯体に平均分子量300のポリエチレングリコール
を30重量%加え、ポリテトラフルオロエチレン多孔質
膜にキャストし、ガス透過率を測定した。錯体は多孔質
膜全体に含浸されており、膜厚は60μmであった。
30% by weight of polyethylene glycol having an average molecular weight of 300 was added to this complex, which was cast onto a polytetrafluoroethylene porous membrane, and the gas permeability was measured. The entire porous membrane was impregnated with the complex, and the membrane thickness was 60 μm.

結果を第3表に示す。The results are shown in Table 3.

可視吸収スペクトルの1g定 実施例1及び2の錯体を銅(II)に関しておよそ5 
X 10−3M/ flになるように窒素雰囲気下、9
9.5%エタノールに25ccメスフラスコ中で溶解し
、可視吸収スペクトルを11石英セルを用いて測定した
(このスペクトルの最大吸収波長をλmaxとする)。
The visible absorption spectra of the complexes of Examples 1 and 2 are approximately 5
Under a nitrogen atmosphere so that the amount of
It was dissolved in 9.5% ethanol in a 25 cc volumetric flask, and its visible absorption spectrum was measured using an 11 quartz cell (the maximum absorption wavelength of this spectrum is defined as λmax).

測定後、溶液をメスフラスコにもどし、注射針を通して
、二酸化炭素を毎分100ccの流量で1分間吹きこみ
、再度可視スペクトルを測定した(このスペクトルの最
大吸収波長をλ+eax CO2とする)。この間のス
ペクトルを比較し、可視部での吸光度差を求め、最大値
を示す波長を決定した。
After the measurement, the solution was returned to the volumetric flask, and carbon dioxide was blown into it through the syringe needle at a flow rate of 100 cc per minute for 1 minute, and the visible spectrum was measured again (the maximum absorption wavelength of this spectrum is defined as λ+eax CO2). The spectra between them were compared, the absorbance difference in the visible region was determined, and the wavelength showing the maximum value was determined.

このうち二酸化炭素との反応により現われた吸収帯のピ
ークをλbとした。
Among these, the peak of the absorption band that appeared due to the reaction with carbon dioxide was designated as λb.

再度メスフラスコに溶液を移し、窒素を6分間、毎分1
00ccで吹きこみ、スペクトル変化を調べた。窒素吹
きこみで現われるピークをλaとした。これら一連の測
定で等吸収点(1とする)が見られた。
Transfer the solution to the volumetric flask again and turn on nitrogen at 1 minute per minute for 6 minutes.
00cc was injected and the spectrum change was examined. The peak that appears when nitrogen is injected is designated as λa. An isosbestic point (referred to as 1) was observed in these series of measurements.

窒素吹きこみにより、λbでの吸光度がどの程度減少す
るかにより、スペクトルの回復率(Rとする)を求め反
応の可逆性の目安とした。
The spectral recovery rate (referred to as R) was determined based on how much the absorbance at λb decreased due to nitrogen injection, and was used as a measure of the reversibility of the reaction.

二酸化炭素吸収量の測 実施例1及び2の錯体を99.5%エタノールに約2 
X 10−”M/ Qになるように、窒素雰囲気中で溶
解する。この溶液5.0ccを容量19゜8cc (磁
気撹拌子を含む)のゴム栓付き容器(窒素置換した水銀
シールがつながっており、常に内圧を大気圧と同一に保
つ様になっている)に入れる。
Measurement of carbon dioxide absorption amount The complexes of Examples 1 and 2 were added to 99.5% ethanol for about 2 hours.
Dissolve 5.0 cc of this solution in a nitrogen atmosphere so that the concentration is 10-" (The internal pressure is always kept the same as atmospheric pressure).

次に二酸化炭素10.0ccをガスタイトシリンジ(デ
ッドボリューム0.12cc)で加え、10分後及び2
0分後の溶液上の気体組成をガスクロマトグラフィーで
定量し、溶液の二酸化炭素吸収量を求める。エタノール
の二酸化炭素吸収量を測定し、錯体自体の二酸化炭素吸
収量を求めた。
Next, 10.0 cc of carbon dioxide was added using a gastight syringe (dead volume 0.12 cc), and after 10 minutes and 2
The gas composition on the solution after 0 minutes is determined by gas chromatography to determine the amount of carbon dioxide absorbed by the solution. The amount of carbon dioxide absorbed by ethanol was measured to determine the amount of carbon dioxide absorbed by the complex itself.

エタノールの二酸化炭素吸収量は、理論値とよく一致し
た。二酸化炭素吸収実験後、溶液にさらに。
The amount of carbon dioxide absorbed by ethanol was in good agreement with the theoretical value. After the carbon dioxide absorption experiment, further into the solution.

二酸化炭素を1分間吹きこみ可視吸収スペクトルを測定
する。λbにおける吸光度を求め、次式により、スペク
トルの変化率を求めた。
Blow in carbon dioxide for 1 minute and measure the visible absorption spectrum. The absorbance at λb was determined, and the rate of change in the spectrum was determined using the following equation.

ここでAλbは二酸化炭素吸収実験後の溶液のλbでの
吸光度、Aλb 1nitialは二酸化炭素を吸収し
ていない溶液のλbでの吸光度、A、tbco□は実験
後さらに1分間二酸化炭素を吹きこんだ溶液のλbでの
吸光度を示す。S、C,R,はスペクトル変化率である
Here, Aλb is the absorbance at λb of the solution after the carbon dioxide absorption experiment, Aλb 1nitial is the absorbance at λb of the solution that has not absorbed carbon dioxide, and A, tbco□ is the absorbance at λb of the solution after the carbon dioxide absorption experiment. The absorbance of the solution at λb is shown. S, C, R, are spectral change rates.

また、この二酸化炭素吹きこみ後に、窒素を6分間吹き
こんだ時のλbでのスペクトルの回復率を次式により求
めた。
Further, the recovery rate of the spectrum at λb when nitrogen was blown for 6 minutes after this carbon dioxide injection was determined by the following equation.

R= 100−S、C,R。R = 100-S, C, R.

ここで、Rはスペクトル回復率を示す。Here, R indicates the spectral recovery rate.

本発明の高分子鋼(II)錯体は二酸化炭素を吸収し、
二酸化炭素とエタノール溶液中で可逆的に反応する(第
1表参照)とともに、実施例1で示した目視による可逆
的な色変化及び第2表実施例2で見られるように乾燥状
フィルムでも二酸化炭素と可逆的に反応するものである
The polymer steel (II) complex of the present invention absorbs carbon dioxide,
It reacts reversibly with carbon dioxide in an ethanol solution (see Table 1), and also reacts with carbon dioxide in a dry film as shown in the visual reversible color change shown in Example 1 and in Example 2 of Table 2. It reacts reversibly with carbon.

本発明の高分子鋼(II)錯体は平均分子量300のポ
リエチレングリコール(窒素に対する二酸化炭素の透過
係数比が19)を加え、さらに軟化させることにより、
二酸化炭素の分離性能(P・α”′C,P・α50°C
を目安とする)が著しく向上したことがわかる(第3表
参照)。
The polymer steel (II) complex of the present invention is further softened by adding polyethylene glycol having an average molecular weight of 300 (permeability coefficient ratio of carbon dioxide to nitrogen is 19).
Carbon dioxide separation performance (P・α”′C, P・α50°C
(see Table 3).

見匪夏隻果 本発明の高分子鋼(II)錯体は従来公知の銅(If)
−アルカノールアミン錯体では二酸化炭素との反応を可
逆的に行なうことができなかった無溶媒下においても二
酸化炭素との反応を可逆的に行なうことを可能にするも
のである。
The polymer steel (II) complex of the present invention is a conventionally known copper (If) complex.
-Alkanolamine complexes allow reactions with carbon dioxide to be carried out reversibly even in the absence of solvents, where reactions with carbon dioxide cannot be carried out reversibly.

本発明の高分子鋼(II)錯体を二酸化炭素選択分離膜
として使用することができ、その場合、軟化剤を添加す
ることにより、さらに分離性能を向上させることができ
るものである。
The polymer steel (II) complex of the present invention can be used as a carbon dioxide selective separation membrane, and in that case, the separation performance can be further improved by adding a softener.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例2で得られた高分子鋼(II)錯体の二
酸化炭素下に1時間放置した時の可視吸収スペクトルの
変化を示す図であり、第2図は該高分子鋼(II)錯体
を二酸化炭素下に1時間放置した後、さらに窒素化に3
時間放置した時の可視吸収スペクトルの変化を示す図で
ある。
FIG. 1 is a diagram showing changes in the visible absorption spectrum of the polymer steel (II) complex obtained in Example 2 when it was left under carbon dioxide for 1 hour, and FIG. ) The complex was left under carbon dioxide for 1 hour and then further nitrogenated for 3 hours.
FIG. 3 is a diagram showing changes in visible absorption spectrum when left for a period of time.

Claims (1)

【特許請求の範囲】[Claims] (1)高分子構成単位として、一般式( I )で示され
る銅(II)錯体を含有する二酸化炭素選択分離剤。 ▲数式、化学式、表等があります▼( I ) (式中、R_1、R_2及びR_3の少なくとも一つは
ヒドロキシアルキル基を示し、 その他は水素原子、炭化水素残基を示し、 R_4、R_5及びR_6はアルキレン基を示し、 R_7は高分子構造単位を示す。また R_1、R_6は窒素原子を含む複素環を形成すること
も出来、その場合においてはR_4は複素環に結合した
アルキレン基を示し、 R_1、R_4およびR_6は窒素原子と共にシッフ塩
基を形成することもある。〕
(1) A carbon dioxide selective separation agent containing a copper (II) complex represented by the general formula (I) as a polymer constituent unit. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (I) (In the formula, at least one of R_1, R_2 and R_3 represents a hydroxyalkyl group, the others represent a hydrogen atom or a hydrocarbon residue, R_4, R_5 and R_6 represents an alkylene group, R_7 represents a polymer structural unit. R_1 and R_6 can also form a heterocycle containing a nitrogen atom, in which case R_4 represents an alkylene group bonded to the heterocycle, and R_1 , R_4 and R_6 may form a Schiff base together with the nitrogen atom.]
JP61050570A 1986-03-10 1986-03-10 Selective separating agent for carbon dioxide Granted JPS62241551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61050570A JPS62241551A (en) 1986-03-10 1986-03-10 Selective separating agent for carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61050570A JPS62241551A (en) 1986-03-10 1986-03-10 Selective separating agent for carbon dioxide

Publications (2)

Publication Number Publication Date
JPS62241551A true JPS62241551A (en) 1987-10-22
JPH0516302B2 JPH0516302B2 (en) 1993-03-04

Family

ID=12862659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61050570A Granted JPS62241551A (en) 1986-03-10 1986-03-10 Selective separating agent for carbon dioxide

Country Status (1)

Country Link
JP (1) JPS62241551A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147424A (en) * 1990-06-30 1992-09-15 Union Carbide Industrial Gases Technology Corporation Oxygen-permeable polymeric membranes
US5411580A (en) * 1991-07-31 1995-05-02 Praxair Technology, Inc. Oxygen-separating porous membranes
US5611843A (en) * 1995-07-07 1997-03-18 Exxon Research And Engineering Company Membranes comprising salts of aminoacids in hydrophilic polymers
GB2308369A (en) * 1995-12-20 1997-06-25 Marconi Gec Ltd Imprinted materials; separation/sensing of small molecules

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760897A (en) * 1980-09-30 1982-04-13 Shin Kobe Electric Machinery Method of producing multilayer printed circuit board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760897A (en) * 1980-09-30 1982-04-13 Shin Kobe Electric Machinery Method of producing multilayer printed circuit board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147424A (en) * 1990-06-30 1992-09-15 Union Carbide Industrial Gases Technology Corporation Oxygen-permeable polymeric membranes
US5411580A (en) * 1991-07-31 1995-05-02 Praxair Technology, Inc. Oxygen-separating porous membranes
US5611843A (en) * 1995-07-07 1997-03-18 Exxon Research And Engineering Company Membranes comprising salts of aminoacids in hydrophilic polymers
GB2308369A (en) * 1995-12-20 1997-06-25 Marconi Gec Ltd Imprinted materials; separation/sensing of small molecules
GB2308369B (en) * 1995-12-20 2000-05-17 Marconi Gec Ltd Imprinted materials

Also Published As

Publication number Publication date
JPH0516302B2 (en) 1993-03-04

Similar Documents

Publication Publication Date Title
US9700849B2 (en) Gas separation membrane, gas separation module, gas separation apparatus, and gas separation method
US9446348B2 (en) Imidazolium-based room-temperature ionic liquids, polymers, monomers and membranes incorporating same
EP2801401B1 (en) Outstandingly contamination resistant reverse osmosis membrane and production method therefor
US10040035B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
CN105683222A (en) Membrane separation of olefin and paraffin mixtures
CN103261279A (en) Quaternised polybenzimidazole
EP1648954A2 (en) Microporous polymer material
KR101546244B1 (en) Water treatment membrane having a high chlorine resistance and a high permeability and method of manufacturing the same
US9238202B2 (en) Gas separation membranes from chemically and UV treated polymers of intrinsic microporosity
WO2016136294A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and method for producing gas separation asymmetric membrane
US8748556B2 (en) Self-supporting dynamic polymer membrane, and uses
US4710204A (en) Polyphosphazene gas separation membranes
US10046284B2 (en) Compatibilized immiscible polymer blends and molecular sieve membranes thereof
WO2016136395A1 (en) Gas separation asymmetric membrane, gas separation module, gas separation device, and gas separation method
JPS62241551A (en) Selective separating agent for carbon dioxide
US20180361327A1 (en) Gas separation membrane, gas separation module, gas separator, gas separation method, composition for forming gas separation layer, method of producing gas separation membrane, polyimide compound, and diamine monomer
US4985053A (en) Gas separation membrane
US20180339274A1 (en) Gas separation membrane, gas separation module, gas separator, gas separation method, and polyimide compound
WO2017002407A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
KR20130137850A (en) Separation membrane, and water treatment device using said separation membrane
FR2561538A1 (en) MEMBRANE FOR THE SELECTIVE SEPARATION OF GAS
JPS62240691A (en) Copper(ii)-alkanolamine complex
WO2017175598A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2021014821A1 (en) M-phenylenediamine compound, polymer and method for producing same, gas separation membrane using this polymer, gas separation module and gas separation apparatus
US20120024786A1 (en) Self-supporting dynamic polymeric membrane, method for preparing same, and uses thereof