JPS6224143Y2 - - Google Patents

Info

Publication number
JPS6224143Y2
JPS6224143Y2 JP11279383U JP11279383U JPS6224143Y2 JP S6224143 Y2 JPS6224143 Y2 JP S6224143Y2 JP 11279383 U JP11279383 U JP 11279383U JP 11279383 U JP11279383 U JP 11279383U JP S6224143 Y2 JPS6224143 Y2 JP S6224143Y2
Authority
JP
Japan
Prior art keywords
valve
flow path
pressure
valve body
cylindrical support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11279383U
Other languages
Japanese (ja)
Other versions
JPS6021074U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11279383U priority Critical patent/JPS6021074U/en
Publication of JPS6021074U publication Critical patent/JPS6021074U/en
Application granted granted Critical
Publication of JPS6224143Y2 publication Critical patent/JPS6224143Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は改良された逃し弁に関する。[Detailed explanation of the idea] [Industrial application field] The present invention relates to an improved relief valve.

〔従来の技術〕[Conventional technology]

従来の逃し弁においては、第1図に例示するよ
うに弁箱1が筒状支持部2を備えており、この筒
状支持部2の一端部に設けられた弁座3には弁孔
4が開設されている。筒状支持部2に形成された
弁室5は、弁孔4を介して主流路6と連通される
とともに、筒状支持部2の周壁に開設されたほぼ
長方形状の窓7を介してバイパス流路8と連通さ
れている。筒状支持部2の他端部には支持部材9
が摺動自在に嵌挿されており、弁箱1には支持部
材9と同心の案内部材10が設けられている。弁
棒11は、一端が支持部材9に連結されるととも
に他端は案内部材10に摺動自在に嵌挿されてい
る。弁棒11の中間部には、弁座3と対向して弁
棒5内に遊挿された弁体12が支持されている。
弁棒11は支持部材9を介してダイアフラム13
に連結されるとともに圧縮コイルばね14により
閉方向に弾圧されている。
In a conventional relief valve, as illustrated in FIG. has been established. The valve chamber 5 formed in the cylindrical support part 2 is communicated with the main flow passage 6 through the valve hole 4, and is bypassed through a substantially rectangular window 7 formed in the peripheral wall of the cylindrical support part 2. It communicates with the flow path 8. A support member 9 is provided at the other end of the cylindrical support portion 2.
is slidably inserted therein, and the valve body 1 is provided with a guide member 10 concentric with the support member 9. The valve stem 11 has one end connected to the support member 9, and the other end slidably fitted into the guide member 10. A valve body 12 is supported at an intermediate portion of the valve stem 11, facing the valve seat 3 and loosely inserted into the valve stem 5.
The valve stem 11 is connected to the diaphragm 13 via the support member 9.
and is elastically pressed in the closing direction by a compression coil spring 14.

そして、主流路6に流動される流体の圧力が制
御流路16を通じて制御圧力室15に導かれる
と、その圧力に応じて弁体12の軸方向位置が制
御され、これにより弁孔4の開度が変化し、主流
路6から弁口4、弁室5および窓7を経てバイパ
ス流路8に流動される流体の逃し量が変化し、よ
つて主流路6における流体圧力がほぼ一定に保持
されるというものである。
When the pressure of the fluid flowing into the main flow path 6 is guided to the control pressure chamber 15 through the control flow path 16, the axial position of the valve body 12 is controlled according to the pressure, thereby opening the valve hole 4. As the temperature changes, the amount of fluid released from the main flow path 6 through the valve port 4, the valve chamber 5, and the window 7 to the bypass flow path 8 changes, and the fluid pressure in the main flow path 6 is thus maintained almost constant. It is said that it will be done.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、上記従来例においては、流量Q
−圧力H特性が第4図において破線Aで示すよう
な特性をもつうず巻ポンプと併用した場合、総合
特性は同図において一点鎖線Bで示すようにな
り、流量Qが増大するにつれて圧力Hが低下する
ため良好な定圧特性が得られない。また、流量変
化に対する圧力変化の割合が比較的小さいポンプ
と併用した場合にはQ−H特性がむしろ悪化する
ようなこともある。
However, in the above conventional example, the flow rate Q
- When used in conjunction with a centrifugal pump whose pressure H characteristics are as shown by the broken line A in Figure 4, the overall characteristics will be as shown by the dashed line B in the figure, and as the flow rate Q increases, the pressure H will increase. Because of this, good constant pressure characteristics cannot be obtained. Furthermore, when used in conjunction with a pump in which the ratio of pressure change to flow rate change is relatively small, the Q-H characteristic may actually deteriorate.

その理由について詳述すると、第1図において
動作時のある時期における圧力のバランスを考
え、弁体12を閉鎖する方向の力Faは Fa=f1+P0S1+P2(S2−S3) 但しf1:ダイアフラム13を押す圧縮コイルば
ね14の力 P0S1:大気圧P0が受圧面積S1のダイアフラム1
3を押す力 P2(S2−S3):二次圧力P2が有効受圧面積(S2
−S3)の弁体12を押す力,S2……弁体断面積、
S3……弁棒断面積 次に弁体12を開放する方向の力Fbは Fb=P1(S1−S4)+P1S2 =P1(S1+P2−S4) 但し、P1(S1−S4):制御圧力室15で一次圧
力P1が有効受圧面積(S1−S4)のダイアフラム1
3を押す力 P1S2:一次圧力P1が弁体12を押す力 ある時期でFa=Fbの場合から弁体12が開
(閉)方向に移動し、なおかつ一次圧力P1を保持
したと仮定すると Fa′=f1′+P0S1+P2′(S2−S3) P2′≒P2であるので =f1′+P0S1+P2(S2−S3) =Fa−(f1′−f1)=Fa 一次圧力P1は保持されたの仮定よりFb′=Fb
又、力のバランス関係よりFa′=Fb′でありFa′=
Fb=Faとなり仮定に矛盾を生ずる。
To explain the reason in detail, considering the pressure balance at a certain time during operation in FIG . ) However, f 1 : Force of compression coil spring 14 pushing diaphragm 13 P 0 S 1 : Atmospheric pressure P 0 is diaphragm 1 with pressure receiving area S 1
Force pushing 3 P 2 (S 2 - S 3 ): Secondary pressure P 2 is the effective pressure receiving area (S 2
−S 3 ) force pushing the valve body 12, S 2 ... cross-sectional area of the valve body,
S 3 ... Valve stem cross-sectional area Next, the force Fb in the direction of opening the valve body 12 is Fb = P 1 (S 1 - S 4 ) + P 1 S 2 = P 1 (S 1 + P 2 - S 4 ) However, P 1 (S 1 - S 4 ): Primary pressure P 1 in the control pressure chamber 15 is the diaphragm 1 with an effective pressure receiving area (S 1 - S 4 )
P 1 S 2 : Force of primary pressure P 1 pushing valve body 12 At a certain time, valve body 12 moved in the opening (closing) direction from the case of Fa=Fb, and the primary pressure P 1 was maintained. Assuming that, Fa′=f 1 ′+P 0 S 1 +P 2 ′(S 2 −S 3 ) P 2 ′≒P 2 , so =f 1 ′+P 0 S 1 +P 2 (S 2 −S 3 )= Fa−(f 1 ′−f 1 )=Fa From the assumption that the primary pressure P 1 is maintained, Fb′=Fb
Also, from the force balance relationship, Fa′=Fb′ and Fa′=
Fb=Fa, which causes a contradiction in the assumption.

つまり圧縮コイルばね14の変位に基づく力
(f1′−f)の分を補償するだけ一次圧力が変化し
バランスを保つ訳であり、論理的にも流量(Q)
の変化に伴なう圧力(H)変化は避けられないも
のであつた。
In other words, the primary pressure changes to compensate for the force (f 1 '-f) based on the displacement of the compression coil spring 14 to maintain balance, and logically the flow rate (Q)
A change in pressure (H) accompanying a change in is unavoidable.

したがつて、従来は定圧特性を得るためという
よりは、設定圧力以上になつたときに作動して過
剰圧力になるのを防止するためのものであると考
えられていた。
Therefore, in the past, it was thought that the purpose of this function was to prevent excessive pressure from being activated when the pressure exceeded a set level, rather than to obtain constant pressure characteristics.

本考案は上記事情のものとなされたもので、そ
の目的とするところは、流量の変動に拘らず圧力
をほぼ一定に保つことのできる逃し弁を提供する
ことにある。
The present invention has been developed in view of the above circumstances, and its purpose is to provide a relief valve that can maintain a substantially constant pressure regardless of fluctuations in flow rate.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、弁体をその外周部が弁室の内周壁と
摺接するように形成するとともに、弁室とバイパ
ス流路とを連通する窓は周方向の幅を弁孔側端部
に近い部分ほど狭くなるように形成したことを特
徴とするものである。
In the present invention, the outer peripheral part of the valve body is formed so as to be in sliding contact with the inner peripheral wall of the valve chamber, and the window that communicates the valve chamber and the bypass flow path has a circumferential width in the part near the end on the valve hole side. It is characterized by being formed so that it becomes narrower as the width increases.

〔作用〕[Effect]

従来の場合、弁体と弁座との間で形成される開
口部で逃し流量を調節しており、このものはたと
えば弁体の変位が2倍(1/2倍)であれば、開口
部の面積変化も2倍(1/2倍)となり、その結果
第4図のBで示す特性となる。
In the conventional case, the relief flow rate is adjusted by the opening formed between the valve body and the valve seat.For example, if the displacement of the valve body is doubled (1/2 times), the opening is The change in area of is also doubled (1/2 times), resulting in the characteristic shown by B in FIG.

これに対し本考案の構成によると、筒状支持部
に形成した窓の開口面積は弁体の変位に対してそ
の面積変化を適宜設定可能となり、たとえば開口
部形状を三角形にすれば、弁体の変位が2倍(1/
2倍)であれば開口部の面積変化は4倍(1/4倍)
となり、したがつて逃し流量を従来に比較し多く
(少なく)することができる。
On the other hand, according to the structure of the present invention, the opening area of the window formed in the cylindrical support part can be set to change in area as appropriate with respect to the displacement of the valve body. For example, if the opening shape is made triangular, The displacement is doubled (1/
2 times), the area change of the opening is 4 times (1/4 times)
Therefore, the relief flow rate can be increased (decreased) compared to the conventional method.

上記従来例と比較すれば流量の増大(減少)に
伴つて圧力が減少(増大)する割合が小さく、よ
り優れた定圧特性を得ることができる。
Compared to the conventional example described above, the rate at which the pressure decreases (increases) as the flow rate increases (decrease) is small, and better constant pressure characteristics can be obtained.

〔実施例〕〔Example〕

以下、本考案を図示の一実施例について説明す
る。第2図および第3図において、弁箱20は筒
状支持部21を備えている。この筒状支持部21
の一端部に設けられた弁座22には弁孔23が開
設されている。筒状支持部21に形成された弁室
24は、弁孔23を介して主流路25と連通され
るとともに、筒状支持部2の周壁に開設された窓
26を介してバイパス流路27と連通されてい
る。筒状支持部21の他端部には支持部材28が
摺動自在に嵌装されている。弁棒29は一端が支
持部材28に連結されており、他端には弁座22
と対向して弁室24に内挿された弁体30が支持
されている。弁棒29は支持部材28を介してダ
イアフラム31に連結されるとともに圧縮コイル
ばね32により閉方向に弾圧されている。弁箱2
0には、ダイアフラム31に関し圧縮コイルばね
32と反対側に位置して制御圧力室33が設けら
れている。以上の一般的構成は従来例におけると
同様であつてよい。
Hereinafter, the present invention will be described with reference to an illustrated embodiment. In FIGS. 2 and 3, the valve body 20 includes a cylindrical support portion 21. As shown in FIGS. This cylindrical support part 21
A valve hole 23 is formed in a valve seat 22 provided at one end of the valve seat 22 . The valve chamber 24 formed in the cylindrical support part 21 is communicated with the main flow path 25 through the valve hole 23 and communicated with the bypass flow path 27 through the window 26 formed in the peripheral wall of the cylindrical support part 2 . It is communicated. A support member 28 is slidably fitted to the other end of the cylindrical support portion 21 . The valve stem 29 has one end connected to the support member 28 and the other end connected to the valve seat 22.
A valve body 30 inserted into the valve chamber 24 is supported opposite to the valve body 30 . The valve stem 29 is connected to the diaphragm 31 via the support member 28 and is biased in the closing direction by a compression coil spring 32. Bento box 2
0 is provided with a control pressure chamber 33 located on the opposite side of the compression coil spring 32 with respect to the diaphragm 31. The above general configuration may be the same as in the conventional example.

上記弁体30は、外周部が筒状支持部2の周壁
34と摺動自在に内接するように形成されてい
る。また、上記窓26は弁座22に近い部分ほど
周方向の幅Wが小さくなるように形成されている
(第3図参照)。この幅Wの軸方向における変化率
は、ダイアフラム31および圧縮コイルばね32
等の特性に応じ適宜に設定される。
The valve body 30 is formed such that its outer peripheral portion is slidably inscribed in the peripheral wall 34 of the cylindrical support portion 2 . Further, the window 26 is formed such that the width W in the circumferential direction becomes smaller as the portion closer to the valve seat 22 approaches (see FIG. 3). The rate of change of this width W in the axial direction is determined by the diaphragm 31 and the compression coil spring 32.
It is set as appropriate depending on the characteristics of etc.

上述のように構成された逃し弁においては、主
流路25に流動される流体の圧力が制御流路35
を介して制御圧力室33に導かれると、この圧力
によりダイアフラム31を介して弁棒29に与え
られる付勢力と、主流路25側から弁体30を押
す力と、圧縮コイルばね32の復元力とが平衡す
る位置に弁体30が移動される。これにより弁室
24は弁孔23を介して主流路25と連通される
とともに、窓26を介してバイパス流路27と連
通され、主流路25を流動する流体の一部がバイ
パス流路27に逃されるので、主流路25におけ
る流体の圧力が制御される。
In the relief valve configured as described above, the pressure of the fluid flowing into the main flow path 25 is controlled by the control flow path 35.
When the pressure is guided to the control pressure chamber 33 through the diaphragm 31, this pressure exerts an urging force on the valve stem 29, a force pushing the valve body 30 from the main channel 25 side, and a restoring force of the compression coil spring 32. The valve body 30 is moved to a position where these are in equilibrium. As a result, the valve chamber 24 is communicated with the main flow path 25 through the valve hole 23 and with the bypass flow path 27 through the window 26, so that a part of the fluid flowing through the main flow path 25 is communicated with the bypass flow path 27. As a result, the pressure of the fluid in the main flow path 25 is controlled.

上記構成によれば、弁体30の外周部を弁室2
4の内周面に内接させるとともに、窓26を弁座
22に近い部分ほど周方向に幅Wが狭くなるよう
に形成し、弁体30とで形成される開口部により
逃し流量を調節可能としたので、弁体30の変位
に対する窓26の開口面積の変化割合が従来品よ
り大きくなる。したがつて、主流路25における
流量が増大(減少)して圧力が減少(増大)し始
めたとき、上記従来例に比較して逃し流量が少な
く(多く)圧力降下(上昇)が少なくなるから、
第4図において実線Cで示すように圧力をほぼ一
定に保持することができる。
According to the above configuration, the outer peripheral portion of the valve body 30 is connected to the valve chamber 2.
4, and the window 26 is formed so that the width W becomes narrower in the circumferential direction closer to the valve seat 22, and the relief flow rate can be adjusted by the opening formed with the valve body 30. Therefore, the rate of change in the opening area of the window 26 with respect to the displacement of the valve body 30 is greater than that of the conventional product. Therefore, when the flow rate in the main channel 25 increases (decreases) and the pressure begins to decrease (increase), the relief flow rate is smaller (more) than in the conventional example, and the pressure drop (rise) is reduced. ,
As shown by solid line C in FIG. 4, the pressure can be maintained substantially constant.

また、弁体30が筒状支持部21の周壁34と
摺接するようにしたので弁体30と筒状支持部2
1の周壁34の間隙を流体が流れることがなく逃
し流量を窓26の開口面積で制御できるばかりで
なく、上記従来例におけるように主流路6を横切
つて弁棒11を延長したり、弁箱1に案内部材1
0を設けたりする必要がないから、構造がより簡
単で製作が容易になるとともに、主流路における
流体の流動抵抗が減少するなどの効果もある。
In addition, since the valve body 30 is in sliding contact with the peripheral wall 34 of the cylindrical support part 21, the valve body 30 and the cylindrical support part 2
Not only is it possible to control the flow rate by controlling the opening area of the window 26 without allowing the fluid to flow through the gap between the peripheral walls 34 of 1, but it is also possible to extend the valve stem 11 across the main flow path 6 as in the conventional example, Guide member 1 in box 1
Since there is no need to provide a zero, the structure is simpler and easier to manufacture, and there are also effects such as a reduction in fluid flow resistance in the main channel.

なお、本考案は上記実施例のみに限定されるも
のではなく、その要旨とするところの範囲内で
種々の変更ないし応用が可能である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and various modifications and applications can be made within the scope of the gist thereof.

〔考案の効果〕[Effect of idea]

以上説明したように本考案によれば、流量の変
動に拘らず圧力をほぼ一定に保つことができ、定
圧特性が向上する。
As explained above, according to the present invention, the pressure can be kept substantially constant regardless of fluctuations in the flow rate, and the constant pressure characteristics are improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来例を示す断面図、第2図は本考
案の一実施例を示す断面図、第3図は同例の要部
を示す側面図、第4図は流量−圧力特性を比較し
て示す線図である。 20……弁箱、22……弁座、23……弁孔、
24……弁室、25……主流路、26……窓、2
7……バイパス流路、30……弁体、31……ダ
イアフラム、32……圧縮コイルばね、33……
制御圧力室、34……周壁。
Fig. 1 is a sectional view showing a conventional example, Fig. 2 is a sectional view showing an embodiment of the present invention, Fig. 3 is a side view showing the main parts of the same example, and Fig. 4 shows flow rate-pressure characteristics. It is a line diagram shown for comparison. 20... Valve box, 22... Valve seat, 23... Valve hole,
24...Valve chamber, 25...Main flow path, 26...Window, 2
7... Bypass flow path, 30... Valve body, 31... Diaphragm, 32... Compression coil spring, 33...
Control pressure chamber, 34...peripheral wall.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 弁箱内に設けられた筒状支持部の端部に開設さ
れた弁孔を介して主流路に連通されるとともに上
記筒状支持部の周壁に開設された窓を介してバイ
パス流路に連通される弁室と、この弁室に内挿さ
れて上記弁孔を開閉する弁体とを有し、上記主流
路の圧力に応じて上記弁体を作動させて弁孔を開
閉制御することにより上記主流路から上記弁室を
介してバイパス流路への逃し流量を調整する逃し
弁において、上記弁体の外周を上記筒状支持部の
内周面に摺動自在に嵌挿し、かつ上記窓の周方向
開口幅を上記弁孔側に近い端部ほど狭く形成し、
上記弁体の軸方向移動量により上記窓の開口量を
制御することを特徴とする逃し弁。
It communicates with the main flow path through a valve hole opened at the end of the cylindrical support provided in the valve box, and also communicates with the bypass flow path through a window opened in the peripheral wall of the cylindrical support. and a valve body that is inserted into the valve chamber to open and close the valve hole, and the valve body is actuated according to the pressure in the main flow path to control the opening and closing of the valve hole. In the relief valve that adjusts the relief flow rate from the main flow path to the bypass flow path via the valve chamber, the outer periphery of the valve body is slidably inserted into the inner peripheral surface of the cylindrical support part, and the The opening width in the circumferential direction is narrower at the end closer to the valve hole side,
A relief valve characterized in that the amount of opening of the window is controlled by the amount of axial movement of the valve body.
JP11279383U 1983-07-20 1983-07-20 relief valve Granted JPS6021074U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11279383U JPS6021074U (en) 1983-07-20 1983-07-20 relief valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11279383U JPS6021074U (en) 1983-07-20 1983-07-20 relief valve

Publications (2)

Publication Number Publication Date
JPS6021074U JPS6021074U (en) 1985-02-13
JPS6224143Y2 true JPS6224143Y2 (en) 1987-06-19

Family

ID=30261348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11279383U Granted JPS6021074U (en) 1983-07-20 1983-07-20 relief valve

Country Status (1)

Country Link
JP (1) JPS6021074U (en)

Also Published As

Publication number Publication date
JPS6021074U (en) 1985-02-13

Similar Documents

Publication Publication Date Title
US5944257A (en) Bulb-operated modulating gas valve with minimum bypass
JP2836163B2 (en) Flow control valve
JPS6224143Y2 (en)
JPS593770B2 (en) genatsuben
US5181534A (en) Flow control valve
JPH05231553A (en) Flow control device
JP3869673B2 (en) Liquid control valve
JPH0155355B2 (en)
JP3844836B2 (en) Constant flow valve with water temperature compensation function
JP3032943B2 (en) Constant flow valve
JP2001317642A (en) One-way control valve
JPS6224147Y2 (en)
JP3281416B2 (en) Pressure regulator
JPH0962365A (en) Pressure compensating flow regurating valve having check valve
JPS62233578A (en) Piezoelectric element type valve
JP2529177B2 (en) Gas pressure regulator
JPH04134971U (en) governor
US4296771A (en) Quiet impulse steam trap
JP2874303B2 (en) Variable displacement hydraulic device
JP3337503B2 (en) Pressure regulator valve
JPS60652Y2 (en) Pressure regulator for self-powered pressure reducing valve
JPS62127581A (en) Hydraulic control device
JPS59220456A (en) Flow volume control device for motor steering device
EP0624745A1 (en) Relief valve
JPS5999081A (en) Constant horsepower control device for variable pump