JPS62241387A - Semiconductor light frequency filter - Google Patents

Semiconductor light frequency filter

Info

Publication number
JPS62241387A
JPS62241387A JP8389186A JP8389186A JPS62241387A JP S62241387 A JPS62241387 A JP S62241387A JP 8389186 A JP8389186 A JP 8389186A JP 8389186 A JP8389186 A JP 8389186A JP S62241387 A JPS62241387 A JP S62241387A
Authority
JP
Japan
Prior art keywords
wavelength
amplifier
amplifiers
semiconductor
frequency filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8389186A
Other languages
Japanese (ja)
Inventor
Hitoshi Kawaguchi
仁司 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8389186A priority Critical patent/JPS62241387A/en
Publication of JPS62241387A publication Critical patent/JPS62241387A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate wavelength-multiplexed optical signal at every one wavelength by current control from the outside by selecting only an optical signal having a wavelength coinciding with the amplification wavelength of an amplifier A in beams projected to a semiconductor laser amplifier (group) by semiconductor laser amplifiers. CONSTITUTION:At least two distributed feedback type semiconductor amplifier groups having diffraction gratings having different Bragg frequency and optically connected in series are provided. g=alphao is selected to an amplifier 21, g=0.9gth to an amplifier 22 and g=alphao to amplifiers 23-25. Consequently, only lambda2 is amplified, and outputted. When wavelength intervals are selected in 10Angstrom , the semiconductor laser amplifiers have a gain wavelength of approximately 200Angstrom , and waves can be branched to approximately twenty waves. When incident bears are divided previously, beams can be branched according to wavelengths to each waveguide by the selective amplification of wavelengths, and have an amplification factor of approximately one hundred times, thus sufficiently supplementing optical loss by division of approximately twenty division.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は波長多重化された信号を波長ごとに分離するた
め、狭帯域でしかも増幅利彎をもつことを特徴とする半
導体光周波数フィルタに関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a semiconductor optical frequency filter characterized by having a narrow band and amplification efficiency for separating wavelength-multiplexed signals into wavelengths. It is something.

(従来技術及び発明が解決しようとする問題点)従来、
波長多重化された光信号を分離するための狭帯域フィル
タとしては、第7図に示すように回折格子の分散を利用
したものが用いられていた。
(Prior art and problems to be solved by the invention) Conventionally,
As a narrowband filter for separating wavelength-multiplexed optical signals, a filter that utilizes the dispersion of a diffraction grating, as shown in FIG. 7, has been used.

図において、1は入力用光ファイバ、2はレンズ、3は
ガラスブロック、4は回折格子、5はレンズ、6は出力
用尤ファイバを示す。しかし、この構造では小型化が困
難なこと、挿入損失が大きいこと、′tL長選択が外部
から制御困難なこと等の欠点があった。
In the figure, 1 is an input optical fiber, 2 is a lens, 3 is a glass block, 4 is a diffraction grating, 5 is a lens, and 6 is an output fiber. However, this structure has drawbacks such as difficulty in miniaturization, large insertion loss, and difficulty in externally controlling the selection of 'tL length.

(問題点を解決するための子役) 本発明は、これらの欠点を解決した注入Ti流により外
部から′11長選択が可能な周波数フィルタを提供する
ことを目的とする。
(Children to Solve Problems) It is an object of the present invention to provide a frequency filter that solves these drawbacks and allows '11 length selection from the outside using an injected Ti flow.

上記の目的を1!成するため、本発明はブラック周波数
の異なる回折格子を有し、かつ光学的に直列に接続され
た少なくとも2個の分布帰還型半導体レーザ増幅器群を
備え、そのうち1つの増幅器(増幅器A)はレーザ発振
のしきい値よりわずか下にバイアスされ、他の増幅器は
、半導体の基礎吸収を打ち消して調失が零となるように
バイアスされ、m記の半導体レーザ増幅器群に入射され
た光の中から、増幅器Aの増幅波長に一致した波長の光
信号のみを選択することを特徴とする′!4導体導体波
周波数フィルタ明の要旨とするものである。
The above purpose is 1! In order to achieve this, the present invention includes at least two distributed feedback semiconductor laser amplifier groups having diffraction gratings with different black frequencies and optically connected in series, one of which (amplifier A) is a laser amplifier. Biased just below the threshold for oscillation, the other amplifiers are biased to cancel out the fundamental absorption of the semiconductor and have zero out of phase, and the m semiconductor laser amplifiers are biased to , is characterized in that it selects only the optical signal whose wavelength matches the amplification wavelength of amplifier A'! This is a summary of the four-conductor conductor wave frequency filter.

本発明の原理を第16図に示す。10は回折格子を含む
、半導体レーザ増幅器を示す。11.12は無反射コー
ティング、13は回折格子を示す。Pinは光入力、P
O旧は出力を示す。しかしてそのブラック波長はλ1で
ある。例えば、半導体レーザ増幅器が1′4波長シフト
を含む回折格子をもち、両端面の反射が零の場合を考え
る。
The principle of the present invention is shown in FIG. 10 indicates a semiconductor laser amplifier including a diffraction grating. 11 and 12 are anti-reflection coatings, and 13 is a diffraction grating. Pin is optical input, P
Oold indicates output. Therefore, its black wavelength is λ1. For example, consider a case where a semiconductor laser amplifier has a diffraction grating including a 1'4 wavelength shift and the reflection at both end faces is zero.

第1図に示す構成において、半導体の光吸収を打ち消す
ように電流を流した場合(0=αn)、と半導体レーザ
の発振しきい値の0.9倍の電流を流した場合(g =
0,9g th)の光入出力特性の計n情果を第2図に
示す。この計算にはストライファーらによって求められ
た結合波理論(W、5treifer at。
In the configuration shown in Figure 1, when a current is passed to cancel the optical absorption of the semiconductor (0 = αn), and when a current that is 0.9 times the oscillation threshold of the semiconductor laser is passed (g =
FIG. 2 shows the total optical input/output characteristics of the 0.9 g th). This calculation uses the coupled wave theory (W, 5 treifer at.

at、1[FE J、 Quantu+n Elect
ron、 vol、QE−11,154頁(1975)
lを用いた。この計nにおいて用いられるレーザ増幅器
はInP、/InGaAsP、、’lnPダブルへテロ
構造のものであり、波長1.3μmと仮定して計算を行
った。この計算結果からq−α0ではブラック波長λ1
 および、それよりストップバンド幅の1!′2離れた
波長λ2の両者に対し、損失O1一方。
at, 1[FE J, Quantu+n Elect
Ron, vol, QE-11, page 154 (1975)
l was used. The laser amplifier used in this total n has an InP, /InGaAsP, 'lnP double hetero structure, and calculations were performed assuming that the wavelength was 1.3 μm. From this calculation result, at q-α0, the black wavelength λ1
And 1 of the stop band width! For both wavelengths λ2, which are separated by '2, there is a loss O1.

0才0.9gthではブラックItL長λ1に対し約1
00(8の増幅率が得られる。従って、第3図に示すよ
うに例えばブラック波長がλ1.λ2の2の増幅器14
.15を直列に接続し、そこにλ1.λ2の2の波長の
光を入射したときの、出力光は第1表のようになる。
At 0 years old and 0.9 gth, approximately 1 for black ItL length λ1
00 (8) can be obtained. Therefore, as shown in FIG.
.. 15 are connected in series, and λ1. Table 1 shows the output light when light of wavelength 2 of λ2 is input.

第1表 このように注入Ti流を変化するのみで、約100倍の
St’Nをもも、数λ〜十数スで隣り合う波長選択が可
能である。また、注入Ti流のスイッチングによりn5
19度の8速スイツチングが可能である。
Table 1 By simply changing the flow of Ti implanted in this way, it is possible to select wavelengths that are adjacent to each other in a range of several λ to more than 10-odd wavelengths and have approximately 100 times as much St'N. In addition, by switching the injected Ti flow, n5
19-degree 8-speed switching is possible.

次に本発明の実施例を添附図面について説明する。Next, embodiments of the present invention will be described with reference to the accompanying drawings.

なお実施例は一つの例示であって、本発明の精神を逸脱
しない範囲で種々の変更あるいは改良を行いうることは
言うまでもない。
Note that the embodiments are merely illustrative, and it goes without saying that various changes and improvements can be made without departing from the spirit of the present invention.

以上述べた原理を用い、第4図に示すように多波長のフ
ィルタリングが可能である。図において21〜25は夫
々ブラック)成長λ1〜λ2を有する半導体レーザ増幅
器を示す。しかして増幅器21に対してはQ−α0#増
幅器22に対してはg=0,9gtb。
Using the principle described above, multi-wavelength filtering is possible as shown in FIG. In the figure, numerals 21 to 25 indicate semiconductor laser amplifiers having growth λ1 to λ2, respectively. Thus, for amplifier 21, Q-α0# for amplifier 22, g=0,9gtb.

増幅fi23,24.25に対してはQ−α0に選定す
る。
For amplification fi23 and fi24.25, Q-α0 is selected.

これによりλ2のみが選択的に増幅されて出力される。As a result, only λ2 is selectively amplified and output.

しかして例えば波長間隔を10人に選べば、半導体レー
ザ増幅器は利得波長幅約200^であり、20波程度の
分波ができる。
For example, if the wavelength interval is selected to be 10, the semiconductor laser amplifier has a gain wavelength width of about 200^, and can separate about 20 waves.

第5図に示ように、あらかじめ入射光を分割しておけば
、波長の選択増幅により各SX路に波長に従って分岐で
きる。約100fF5の増幅率をもつので、20分分割
度の分割による光損失を充分に補うことができる。
As shown in FIG. 5, if the incident light is divided in advance, it can be branched into each SX path according to the wavelength by selective amplification of the wavelength. Since it has an amplification factor of about 100 fF5, it can sufficiently compensate for the optical loss caused by division at the 20-minute division rate.

なお、レーザ光分波器には第6図の(イ)図に示すよう
にY形分岐と(ロ)図に示すように3dB方向方向性器
とがあり、(イ)図のものがよく用いられる。なお、4
分岐の場合は、(ハ)図のように分けることが用いられ
ている。
The laser beam splitter has a Y-shaped branch as shown in Figure 6 (A) and a 3 dB direction splitter as shown in Figure 6 (B), and the one in Figure 6 is often used. It will be done. In addition, 4
In the case of branching, division as shown in (c) is used.

次に、第8図に示す分布帰還形レーザLjその発振波長
が制御電流1cにより変化することがすでに知られてい
る。(昭和60年度 電子通信学会半導体・材料部門 
全国大会講演論文集1−140 )このM4造の素子を
、励起ffi流をレーザ発振しきい値以下に設定すれば
、光増幅器として動作する。
Next, it is already known that the oscillation wavelength of the distributed feedback laser Lj shown in FIG. 8 changes depending on the control current 1c. (Semiconductor and Materials Division, Institute of Electronics and Communication Engineers, 1985)
National Conference Lecture Collection 1-140) This M4 element operates as an optical amplifier if the excitation ffi current is set below the laser oscillation threshold.

このときの光出力の波長依存性を第9図に示す。FIG. 9 shows the wavelength dependence of the optical output at this time.

Q=0.9Qthとしたときの光増幅を伴なった透過特
性の半lia幅は約0.6スであり、その中心周波数(
ブラック周′tLm)は制御電流1cを変化することに
より約1^/mAシフトする。従って、前述と同様の手
法により、光入力Pinの中に含まれているλ1.λ2
.λ3.・・・の中から中心周波数に一致する波長のみ
を選択増幅できる(第10図)とともに、1cを変化す
ることにより、λ7.λ2.λ、・・・の中から任意に
選択できることになる。
When Q=0.9Qth, the half lia width of the transmission characteristic accompanied by optical amplification is about 0.6s, and its center frequency (
The black frequency 'tLm) is shifted by about 1^/mA by changing the control current 1c. Therefore, by using the same method as described above, λ1. λ2
.. λ3. ... can selectively amplify only the wavelength that matches the center frequency (Fig. 10), and by changing 1c, λ7. λ2. It is possible to arbitrarily select from among λ, . . . .

また、第11図に示すように、あらかじめ入rJ1光を
分割しておけば波長の選択増幅により各導波路に′!1
艮に従って分岐できることは前述と全く同様である。
Furthermore, as shown in FIG. 11, if the incoming rJ1 light is split in advance, wavelength selective amplification can be applied to each waveguide. 1
It is exactly the same as above that it can be branched according to the branch.

(発明の効果) 以上説明したように本発明によればブラック周波数の異
なる回折格子を有し、かつ光学的に直ダjに接続された
少なくとも2個の分布帰還型半導体レーザ1セ幅器群を
備え、そのうち1つの増幅器(!台幅器A)はレーザ発
振のしきい値よりわずか下にバイアスされ、他の増幅器
は、半導体の基礎吸収を打も消して損失が零となるよう
にバイアスされた構成か、ブラング周波数がtIIJI
II 電流により変1ヒする半導体レーザ増幅器により
、前記の半導体レーザ増幅器(群)に入射された光の中
から、増幅器Aの増幅波長に一致した波長の光信号のみ
を選択することによって、波長多重された光信号が外部
から電流制御で1波長ずつ分離でさ、しかも光増幅特性
をもつため、波長多重光伝送用の分波器つ光交換用の基
本素子として利用しつる効果を   1有する。
(Effects of the Invention) As explained above, according to the present invention, at least two distributed feedback semiconductor lasers having diffraction gratings with different black frequencies and optically connected directly One of the amplifiers (!amplifier A) is biased slightly below the lasing threshold, and the other amplifier is biased to cancel the fundamental absorption of the semiconductor and reduce the loss to zero. configuration, or the Blang frequency is tIIJI.
II. Wavelength multiplexing is achieved by selecting only an optical signal with a wavelength that matches the amplification wavelength of amplifier A from among the light incident on the semiconductor laser amplifier (group) using a semiconductor laser amplifier that changes depending on the current. The resulting optical signal is separated one wavelength at a time by external current control, and because it has optical amplification characteristics, it has the advantage of being useful as a basic element for optical switching and demultiplexing for wavelength multiplexed optical transmission.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は回折格子を含むレーザ増幅器の概念図、第2図
は増幅器の透過特性、第3図は光周波数フィルタの原理
図、第4図は光周波数フィルタの一実施例、第5図は光
周波数フィルタの他の実施例、第6図は分岐例、第7図
は従来のフィルタ、第8図は回折格子を含むレーザ増幅
器の他の概念図、第9図は増幅器の透過特性、第10図
は光周波数フィルタの原理図、第11図は光周波数フィ
ルタの一実施例を示す。 1・・・・入力用光ファイバ、2・・・・レンズ、3・
・・・ガラスブロック、4・・・・回折格子、5・・・
・レンズ、6・・・・出力用光ファイバ、 10−・−
レーザ増幅器、11.12・・・・無反射コーティング
、13・・・・回折格子、21−−−−1nGaAsP
活性層、22 ・−・p−1nP分111!、23 ”
 ” p−rnaaAsp光導波閾、24−・・−n−
1nP、25−−−−p−1nP、26・・・・波長制
御用電極、27・・・・光増幅器励起用電極、28・・
・・電極 をエフ711  る 第1図 第2図 第3図 第4図 第5図 入1 λ2 人、 入4 人5 第10図
Figure 1 is a conceptual diagram of a laser amplifier including a diffraction grating, Figure 2 is the transmission characteristics of the amplifier, Figure 3 is a principle diagram of an optical frequency filter, Figure 4 is an example of an optical frequency filter, and Figure 5 is Other embodiments of the optical frequency filter, FIG. 6 shows a branching example, FIG. 7 shows a conventional filter, FIG. 8 shows another conceptual diagram of a laser amplifier including a diffraction grating, FIG. 9 shows the transmission characteristics of the amplifier, and FIG. FIG. 10 shows the principle of an optical frequency filter, and FIG. 11 shows an embodiment of the optical frequency filter. 1... Input optical fiber, 2... Lens, 3...
...Glass block, 4...Diffraction grating, 5...
・Lens, 6...Output optical fiber, 10--
Laser amplifier, 11.12... Anti-reflection coating, 13... Diffraction grating, 21---1nGaAsP
Active layer, 22...p-1nP min 111! , 23”
” p-rnaaAsp optical waveguide threshold, 24-...-n-
1nP, 25---p-1nP, 26... wavelength control electrode, 27... optical amplifier excitation electrode, 28...
...Electrode 711 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 1 λ2 person, 4 person 5 Fig. 10

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも1つの分布帰還型半導体レーザ増幅器
に、多波長の入射光を入射せしめ、所定の増幅波長に一
致する波長の光信号のみを選択することを特徴とする半
導体光周波数フィルタ。
(1) A semiconductor optical frequency filter, characterized in that it allows incident light of multiple wavelengths to enter at least one distributed feedback semiconductor laser amplifier, and selects only optical signals with wavelengths that match a predetermined amplification wavelength.
(2)分布帰還型半導体レーザ増幅器が1層の場合には
、当該レーザ増幅器に供給する電流値を制御し、ブラッ
ク周波数を変化せしめて、上記増幅器に入射された多波
長の光の中から、増幅器の増幅波長に一致した波長の光
信号のみを選択することを特徴とする特許請求の範囲第
1項記載の半導体光周波数フィルタ。
(2) When the distributed feedback semiconductor laser amplifier has one layer, the current value supplied to the laser amplifier is controlled to change the black frequency, and from among the multi-wavelength light incident on the amplifier, 2. The semiconductor optical frequency filter according to claim 1, wherein only an optical signal having a wavelength matching the amplification wavelength of the amplifier is selected.
(3)分布帰還型半導体レーザ増幅器が複数個の場合に
は、それぞれのブラック周波数を異ならしめるように回
折格子を設定した少なくとも2個のレーザ増幅器を光学
的に直列に接続し、そのうち1つの増幅器(増幅器A)
はレーザ発振のしきい値よりわずか下にバイアスされ、
他の増幅器は、半導体の基礎吸収を打ち消して損失が零
となるようにバイアスされ、前記の半導体レーザ増幅器
群に入射された光の中から、増幅器Aの増幅波長に一致
した波長の光信号のみを選択することを特徴とする特許
請求の範囲第1項記載の半導体光周波数フィルタ。
(3) When there are multiple distributed feedback semiconductor laser amplifiers, at least two laser amplifiers with diffraction gratings set so as to make each black frequency different are optically connected in series, and one of the laser amplifiers is connected in series. (Amplifier A)
is biased slightly below the lasing threshold,
The other amplifiers are biased so that the basic absorption of the semiconductor is canceled and the loss becomes zero, and from among the light incident on the semiconductor laser amplifier group, only the optical signal with the wavelength matching the amplification wavelength of amplifier A is used. The semiconductor optical frequency filter according to claim 1, wherein the semiconductor optical frequency filter is selected from the following.
(4)各々の回折格子が1/4波長シフトを含み、かつ
、ストップバンド幅の1/2波長幅ずつ異なる増幅器を
順次直列に接続することを特徴とする特許請求の範囲第
3項記載の半導体光周波数フィルタ。
(4) Each diffraction grating includes a 1/4 wavelength shift, and amplifiers having different widths by 1/2 wavelength of the stop band width are sequentially connected in series. Semiconductor optical frequency filter.
JP8389186A 1986-04-11 1986-04-11 Semiconductor light frequency filter Pending JPS62241387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8389186A JPS62241387A (en) 1986-04-11 1986-04-11 Semiconductor light frequency filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8389186A JPS62241387A (en) 1986-04-11 1986-04-11 Semiconductor light frequency filter

Publications (1)

Publication Number Publication Date
JPS62241387A true JPS62241387A (en) 1987-10-22

Family

ID=13815264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8389186A Pending JPS62241387A (en) 1986-04-11 1986-04-11 Semiconductor light frequency filter

Country Status (1)

Country Link
JP (1) JPS62241387A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2635423A1 (en) * 1988-08-11 1990-02-16 France Etat METHOD AND DEVICE FOR OPTICAL FILTERING AND PHOTODETECTION OF INTENSITY MODULATED OPTICAL SIGNALS
US5088097A (en) * 1990-04-04 1992-02-11 Canon Kabushiki Kaisha Semiconductor laser element capable of changing emission wavelength, and method of driving the same
FR2695212A1 (en) * 1992-08-26 1994-03-04 Ericsson Telefon Ab L M Optical filter device
US5440581A (en) * 1992-01-13 1995-08-08 Canon Kabushiki Kaisha Semiconductor optical filter and an optical communication system using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2635423A1 (en) * 1988-08-11 1990-02-16 France Etat METHOD AND DEVICE FOR OPTICAL FILTERING AND PHOTODETECTION OF INTENSITY MODULATED OPTICAL SIGNALS
US5088097A (en) * 1990-04-04 1992-02-11 Canon Kabushiki Kaisha Semiconductor laser element capable of changing emission wavelength, and method of driving the same
US5440581A (en) * 1992-01-13 1995-08-08 Canon Kabushiki Kaisha Semiconductor optical filter and an optical communication system using the same
FR2695212A1 (en) * 1992-08-26 1994-03-04 Ericsson Telefon Ab L M Optical filter device

Similar Documents

Publication Publication Date Title
US6069732A (en) Semiconductor interferometric optical wavelength conversion device
JP3490503B2 (en) Wavelength division multiplexing transmitter
KR100916311B1 (en) The wavelength tunable laser diode using double coupled ring resonator
US6160627A (en) Optical fiber Mach-Zehnder interferometer filter
PL180797B1 (en) Optical fibre based telecommunication system and method of transmitting signals so as to reduce optical noises associated with four-wave mixing as well as optical amplifier therefor
RU2172073C2 (en) Communication system with spectral multiplex and method of controlled division of output channels
US6678289B2 (en) Wavelength-tunable laser apparatus
JP5910186B2 (en) Wavelength multiplexing / demultiplexing element and optical apparatus using the same
JPS62128587A (en) Semiconductor laser
JP6128655B2 (en) Broadband tunable laser
EP1124296A2 (en) Multifrequency laser system
JPS62241387A (en) Semiconductor light frequency filter
JP3844409B2 (en) Multi-wavelength converter
JP2021068823A (en) Wavelength tunable light source, optical transmission apparatus using the same, and method of controlling wavelength tunable light source
US11733582B2 (en) Variable optical filter
JPH08334796A (en) Optical wavelength conversion integrating element
JPH01126621A (en) Variable wavelength filter
JPS6254251B2 (en)
JP3433044B2 (en) Frequency stabilized light source
US20030007213A1 (en) OTDM device
KR100315421B1 (en) Spacing variable two wavelength fiber optic filter and laser using the same
JP2702237B2 (en) Optical demultiplexing system
JPS622213A (en) Optical filter element
JPH04264532A (en) Optical amplifier
KR100579512B1 (en) The wavelength converter which generates the wavelength tunable laser optical source in itself