JPS6224081Y2 - - Google Patents

Info

Publication number
JPS6224081Y2
JPS6224081Y2 JP1986057203U JP5720386U JPS6224081Y2 JP S6224081 Y2 JPS6224081 Y2 JP S6224081Y2 JP 1986057203 U JP1986057203 U JP 1986057203U JP 5720386 U JP5720386 U JP 5720386U JP S6224081 Y2 JPS6224081 Y2 JP S6224081Y2
Authority
JP
Japan
Prior art keywords
tank
hydraulic
water
glycol
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986057203U
Other languages
Japanese (ja)
Other versions
JPS61184101U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986057203U priority Critical patent/JPS6224081Y2/ja
Publication of JPS61184101U publication Critical patent/JPS61184101U/ja
Application granted granted Critical
Publication of JPS6224081Y2 publication Critical patent/JPS6224081Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

[産業上の利用分野] 本考案は、高熱下で使用される油圧装置に供給
される水−グリコール系作動油の貯蔵タンクに関
するものであり、詳細には本来難燃性の高いもの
として建浴された上記作動油の劣化に伴う様々な
不都合の発生(例えば発火性の発現等)を予防す
ることのできる機構を備えた貯蔵タンクに関する
ものである。 [従来の技術] 油圧装置に用いる動力媒体液は、一般に石油系
作動油と合成作動油に大別されるが、通常は前者
が汎用されている。これらの作動油は、温度、圧
力、金属、夾雑物等の影響を受けながら油圧装置
内を流れるものであるから、酸化安定性、潤滑
性、粘度特性、低温流動性、防錆性、抗乳化性、
消泡性等が優れたものでなければならない。従つ
て作動油の特性を改善することが要望され、油本
体の改質や添加剤の配合等が工夫されているが、
なかでも製鉄・製鋼分野(圧延や連鋳を含む)、
大型射出成形分野、鍛造プレス分野等の高熱環境
下で使用される作動油については、設備を火災か
ら守ることの必要性から難燃性という新しい要求
特性が加えられる様になり、難燃性作動油という
新しいジヤンルが形成されつつある。この様な難
燃性作動油としては合成系或は水成系のものが多
岐に亘つて提供されているが、所謂引火点を有し
ないというところから、水−グリコール系作動油
が衆目を集めている。 水−グリコール系作動油は、各種の液状グリコ
ールに水を混合して成るものであるが、もつとも
一般的には、 エチレングリコール 35〜45% (又はプロピレングリコール) ポリグリコール(増粘剤として) 10〜20% 水 34〜40% 残部 (油性剤、液相防錆剤、気相防錆剤、摩耗防 止剤、消泡剤等) という組成のものが賞用されている。尚本明細書
に言う水−グリコール系作動油は、上記組成例に
よつて限定されないことは当然であり、公知(又
は市販)或は今後開発されるであろう全ての水−
グリコール系作動油を全て包含し、第3成分の配
合等の変更によつて排除されることはない。 [考案が解決しようとする問題点] ところでこの様な水−グリコール系作動油を構
成する各成分の沸点は、水(100℃)、エチレング
リコール(197℃)、プロピレングリコール(188
〜189℃)であり、水の沸点がもつとも低い。従
つて上記の様な高熱環境下で長時間使用している
と、やがては作動条件下の高温によつて水が蒸発
する。水分が蒸発するとエチレングリコールやプ
ロピレングリコール等の比率が相対的に上昇し、
本来難燃性であつたものが発火性を帯びる様にな
つてくる。しかるにもともと難燃性であるとの前
提の下で比較的ゆるやかな防火態勢をたてている
ので、作業者が知らないうちに発火性をもつ様に
なるというのは、結果的に認識不足の防火態勢で
あつたことを意味するので、危険度は極めて高
い。 その為適当時期を見計つて(一般の石油系作動
油を使う場合に比べてはるかに頻繁に)逸失水分
量を分析・監理し、必要あり次第蒸留水の補給を
行なわなくてはならず、これが外気混入を招いて
後述する発錆の原因ともなつている。又気相防錆
剤もやはり高温の影響を受け、開放大気中に一早
く放散されてしまうので、油タンク内の大気に触
れる部分に発錆を見ることがあり、タンクをステ
ンレス鋼等の高価な材料で形成する等の防錆策が
必要となつている。又液相防錆剤を用いてはいる
ものの、タンク内の暖かい空気が作動油中に混入
し、且つ激しい撹拌作用を受けるので、タンクだ
けでなく、ポンプ、アクチユエータ、各種制御弁
等を内部から酸化していくという問題もある。 本考案はこれらの事情に着目してなされたもの
であつて、水−グリコール系作動油を高熱環境下
で用いても装置の酸化が必要且つ十分な程度に抑
制され得る様な構成を採用した貯蔵タンクを提供
しようとするものである。 [問題点を解決する為の手段] 本考案に係る貯蔵タンクとは、密閉蓋によつて
気密性を発揮する構造としておき、該タンクの気
相側壁面には、タンク内圧力保持機能付きの排気
装置を取付けると共に、不活性ガス圧入装置を取
付け、他方該タンクの液相側壁面には前記作動油
の導出口及び導入口を設けてなる点に要旨を有す
るものである。 [作用] 本考案タンクにおいて採用した上記構成のうち
密閉蓋を設けた点及び不活性ガスを吹込み得る様
にした点については、次に述べる様に一見類似し
ているかの様な公知技術が存在する。即ち従来の
油圧装置において、粉塵発生量の多い施設内で使
用する場合、或はサーボ弁の様に極めて高い清浄
度特性が要求される機器類を用いる場合に、粉塵
等の異物混入を防止して該油圧装置におけるポン
プの吸込性能を維持する目的で油タンクに蓋を設
けたり、更にはタンク内への窒素ガス導入が行な
われたこともある。或はポンプのキヤビテーシヨ
ンを防ぐ目的で油面上に空気圧を加える技術も知
られている。但し後者の技術は空気を使用するも
のであり、不活性ガスを圧入しているものではな
い。あるいはまた、絶縁油を他の装置・機器部分
へ注入する為に加圧窒素ガスを使用するという技
術も知られている。しかし水含有作動油(上記水
−グリコール系の他、W/Oエマルジヨン系や
O/Wエマルジヨン系等)を用いる場合における
酸化反応の動態を上記の如く考察して不活性ガス
の導入を行なう様な保全手段については未だ実施
された例がなく、勿論その効果を定性的若しくは
定量的に認識した様な例も存在しない。本考案は
飽くまでも「高熱環境における火災防止→水−グ
リコール系作動油の採用→作動油の劣化やタンク
自体の発錆」という状況を考慮し、タンク内の空
気を可及的に放出し、作動油或はタンク内面に酸
化性ガスが接触するのを防止するものである。 [実施例] 第1図は本考案の代表的な実施例を示す説明図
であり、油タンク1は容器本体1aと蓋1bから
なり、容器本体1aの上周縁にはリング状のパツ
キング2が嵌合され、タンクをシールしている。
Aは作動油であり、Bは雰囲気を示す。タンク1
内の作動油Aは、油圧ポンプ3によつて導出口1
0から汲み出され、パイプ4a内を高圧油となつ
て供給され、図示しない油圧制御弁部を通つて油
圧アクチユエータ部に至り、他方低圧油は、パイ
プ4b内を矢印に沿つて通り、導入口11からタ
ンク1内に返却又は補給される。本考案に適用さ
れる不活性ガスの種類は特定されないが、例えば
窒素ガスボンベ5から供給される窒素ガスは、減
圧弁6を通つてタンク1の雰囲気B内に圧入され
る。尚7はパイロツト付きのリリーフ弁、8は圧
力ゲージを示す。窒素ガス圧入以前、即ち蓋1b
をしめた直後の雰囲気Bは空気で構成されるの
で、窒素ガス圧入の初期には空気を完全にパージ
する必要があり、窒素ガス置換が完了する迄若干
の時間がかかるが、いつたん窒素ガスによる置換
が行なわれると、以後は雰囲気Bをわずかに加
圧、例えばゲージ圧として0.2〜0.3Kgf/cm2程度
に加圧した状態で窒素を充満しておく必要があ
り、図の様な逆止弁9が取付けられる。尚逆止弁
9の代りに、リリーフ弁7を位置変更して取付け
る等の回路変更は自由に成し得る。この様な構成
であれば油洩れ等によつてタンク内の油面が下つ
たり、或は連続補給機構の併設によつてタンク内
の油面が上つても、雰囲気Bを一定の加圧下に継
続して保持することが可能であり、油圧装置を定
条件下で連続運転することができる。尚蓋1bを
外して作動油の補給や入れかえを行なうときは、
再び最初の状態に戻り、空気パージの段階から再
開すればよい。又本考案ではタンク1の液面を上
から覗き見ることができないので、タンク1に適
当な液面計を付設することも推奨される。こうし
て雰囲気B内に不活性ガスを圧入しておけば、作
動油中に溶存されていた空気は、雰囲気B中の不
活性ガスとの間に一定の平衡が成立する迄順次置
換されていく。従つて油圧装置系内の空気量は極
めてわずかになり、且つ雰囲気Bはほぼ完全な不
活性ガス雰囲気となるので、これらに接する装置
表面の酸化が抑制され装置の延命化が達成される
と共に、作動油自体の酸化劣化も防止される。 尚このほかに、水−グリコール系作動油は水分
を含むという理由によりポンプの吸込側でキヤビ
テーシヨンを発生し易いという特徴があつたが、
不活性ガスの封入圧力によつて吸込条件が緩和さ
れ、キヤビテーシヨンの発生を防止するという効
果も認められている。 本考案の構成は上記の通りであるが、水−グリ
コール系作動油を大気中に曝しておく場合と窒素
雰囲気で保護しておく場合の夫々について、作動
油としての物理的性状変化を測定したデータがあ
るので次に記載する。 <酸化安定性> ASTM D 2272に準じて酸化加速試験を行な
つた。水−グリコール系作動油として市販の作動
油を適宜選択し、封入気体圧力6.3気圧(25℃)、
銅コイル併用、気相250ml、150℃で6時間の試験
を行ない、第1表に示す結果を得た。 <防錆性> 450ml容量のガラス壜に試料液50mlと銅片を入
れ、40℃で2週間放置後の銅表面を観察し第2表
の結果を得た。
[Industrial Application Field] The present invention relates to a storage tank for water-glycol hydraulic oil that is supplied to hydraulic equipment used under high heat. The present invention relates to a storage tank equipped with a mechanism capable of preventing various inconveniences (for example, development of ignitability, etc.) due to deterioration of the hydraulic oil. [Prior Art] Power medium fluids used in hydraulic systems are generally classified into petroleum-based hydraulic fluids and synthetic hydraulic fluids, with the former being generally used. These hydraulic fluids flow in hydraulic equipment while being affected by temperature, pressure, metals, contaminants, etc., so they have high oxidation stability, lubricity, viscosity characteristics, low-temperature fluidity, rust prevention, and demulsification. sex,
It must have excellent defoaming properties, etc. Therefore, there is a need to improve the properties of hydraulic oil, and efforts have been made to improve the oil itself and add additives.
Among these, the iron and steel manufacturing fields (including rolling and continuous casting),
For hydraulic oils used in high-temperature environments such as large-scale injection molding and forging presses, a new characteristic of flame retardancy has been added due to the need to protect equipment from fire. A new genre called oil is being formed. Although a wide variety of synthetic and aqueous types of flame-retardant hydraulic fluids are available, water-glycol-based hydraulic fluids are attracting attention because they do not have a so-called flash point. ing. Water-glycol hydraulic fluid is made by mixing various liquid glycols with water, but generally contains 35% to 45% ethylene glycol (or propylene glycol), polyglycol (as a thickener) 10 The composition of ~20% water, balance 34~40% (oil-based agent, liquid phase rust preventive agent, vapor phase rust preventive agent, antiwear agent, antifoaming agent, etc.) is prized. It goes without saying that the water-glycol hydraulic fluid referred to in this specification is not limited to the above composition example, and may include all water-glycol hydraulic fluids that are known (or commercially available) or that will be developed in the future.
It includes all glycol-based hydraulic fluids and is not excluded by changing the composition of the third component. [Problems to be solved by the invention] By the way, the boiling points of each component constituting such a water-glycol hydraulic fluid are water (100℃), ethylene glycol (197℃), and propylene glycol (188℃).
~189℃), which is one of the lowest boiling points of water. Therefore, if the device is used for a long time in a high temperature environment as described above, the water will eventually evaporate due to the high temperature of the operating conditions. When water evaporates, the ratio of ethylene glycol, propylene glycol, etc. increases relatively,
Things that were originally flame retardant are now becoming flammable. However, because we have established a relatively lenient fire prevention system based on the assumption that it is inherently flame retardant, workers may become flammable without knowing it, resulting in a lack of awareness. This means that they were in a fire prevention mode, so the risk level is extremely high. Therefore, it is necessary to analyze and monitor the amount of water lost at the appropriate time (much more frequently than when using general petroleum-based hydraulic fluid), and replenish distilled water as necessary. This invites outside air to get mixed in and causes rust, which will be discussed later. Also, vapor-phase rust inhibitors are also affected by high temperatures and are quickly dissipated into the open atmosphere, so rust may develop in the parts of the oil tank that come into contact with the atmosphere. Anti-corrosion measures such as forming with suitable materials are becoming necessary. Furthermore, although a liquid-phase rust preventive agent is used, the warm air inside the tank mixes into the hydraulic oil and is subjected to a violent agitation action, so not only the tank but also the pump, actuator, various control valves, etc. are damaged from the inside. There is also the problem of oxidation. The present invention has been developed with attention to these circumstances, and has adopted a configuration that allows the oxidation of the equipment to be suppressed to a necessary and sufficient degree even when water-glycol hydraulic oil is used in a high-temperature environment. It is intended to provide a storage tank. [Means for solving the problem] The storage tank according to the present invention has a structure that exhibits airtightness with a closed lid, and the gas phase side wall of the tank is equipped with a pressure retaining function inside the tank. The gist is that an exhaust device is attached and an inert gas injection device is attached, and on the other hand, an outlet and an inlet for the hydraulic oil are provided on the liquid phase side wall surface of the tank. [Function] Of the above-mentioned configurations adopted in the tank of the present invention, the provision of an airtight lid and the provision of an inert gas injection mechanism are similar to known techniques that appear to be similar at first glance, as described below. exist. In other words, when using conventional hydraulic equipment in facilities that generate a large amount of dust, or when using equipment that requires extremely high cleanliness characteristics such as servo valves, it is necessary to prevent foreign substances such as dust from entering. In order to maintain the suction performance of the pump in the hydraulic system, a lid has been installed on the oil tank, and nitrogen gas has also been introduced into the tank. Alternatively, a technique is known in which air pressure is applied above the oil surface for the purpose of preventing cavitation of the pump. However, the latter technique uses air and does not involve pressurizing inert gas. Alternatively, it is also known to use pressurized nitrogen gas to inject insulating oil into other parts of equipment. However, when using water-containing hydraulic fluids (in addition to the above-mentioned water-glycol type, W/O emulsion type, O/W emulsion type, etc.), the dynamics of the oxidation reaction should be considered as described above before introducing an inert gas. There are no examples of such maintenance measures being implemented yet, and of course, there are no examples of qualitatively or quantitatively recognizing their effects. This invention takes into account the following situations: ``Fire prevention in a high-temperature environment → Adoption of water-glycol hydraulic fluid → Deterioration of the hydraulic fluid and rusting of the tank itself'', and releases as much air as possible from inside the tank to operate the tank. This prevents oxidizing gas from coming into contact with the oil or the inner surface of the tank. [Embodiment] Fig. 1 is an explanatory diagram showing a typical embodiment of the present invention, in which an oil tank 1 consists of a container body 1a and a lid 1b, and a ring-shaped packing 2 is provided on the upper periphery of the container body 1a. mated and sealing the tank.
A is hydraulic oil and B is the atmosphere. tank 1
The hydraulic oil A in the
0, is pumped out from the pipe 4a, is supplied as high pressure oil, passes through a hydraulic control valve section (not shown), and reaches the hydraulic actuator section.On the other hand, low pressure oil passes along the arrow inside the pipe 4b, and is supplied to the inlet port. It is returned or replenished into tank 1 from 11. Although the type of inert gas applied to the present invention is not specified, for example, nitrogen gas supplied from a nitrogen gas cylinder 5 is pressurized into the atmosphere B of the tank 1 through a pressure reducing valve 6. Note that 7 is a relief valve with a pilot, and 8 is a pressure gauge. Before nitrogen gas injection, that is, lid 1b
Atmosphere B immediately after the nitrogen gas is closed is composed of air, so it is necessary to completely purge the air at the beginning of nitrogen gas injection, and it takes some time to complete the nitrogen gas replacement, but once the nitrogen gas is After the replacement is performed, it is necessary to pressurize the atmosphere B slightly, for example to about 0.2 to 0.3 Kgf/cm 2 in gauge pressure, and fill it with nitrogen. A stop valve 9 is attached. Note that circuit changes such as changing the position and installing the relief valve 7 in place of the check valve 9 can be made freely. With this configuration, even if the oil level in the tank drops due to an oil leak, or if the oil level in the tank rises due to the installation of a continuous replenishment mechanism, atmosphere B can be kept under constant pressure. This allows the hydraulic system to be operated continuously under constant conditions. When removing the lid 1b to replenish or replace hydraulic oil,
All you have to do is return to the initial state and restart from the air purge stage. Furthermore, in the present invention, since it is not possible to peek at the liquid level of the tank 1 from above, it is also recommended that a suitable liquid level gauge be attached to the tank 1. By injecting the inert gas into the atmosphere B in this way, the air dissolved in the hydraulic oil is gradually replaced until a certain equilibrium is established with the inert gas in the atmosphere B. Therefore, the amount of air in the hydraulic equipment system becomes extremely small, and the atmosphere B becomes an almost completely inert gas atmosphere, so oxidation of the equipment surfaces in contact with these is suppressed and the life of the equipment is extended. Oxidative deterioration of the hydraulic oil itself is also prevented. In addition to this, water-glycol hydraulic fluids have the characteristic that cavitation tends to occur on the suction side of the pump due to the fact that they contain water.
It is also recognized that the pressure of the inert gas relaxes the suction conditions and prevents the occurrence of cavitation. The structure of the present invention is as described above, but changes in the physical properties of the water-glycol hydraulic oil were measured when it was exposed to the atmosphere and when it was protected in a nitrogen atmosphere. Since there is data, I will describe it next. <Oxidation Stability> An accelerated oxidation test was conducted according to ASTM D 2272. A commercially available hydraulic oil was appropriately selected as the water-glycol hydraulic oil, and the sealed gas pressure was 6.3 atm (25°C).
A test was conducted using a copper coil in a gas phase of 250 ml at 150° C. for 6 hours, and the results shown in Table 1 were obtained. <Rust prevention> 50 ml of the sample solution and a copper piece were placed in a 450 ml glass bottle, and the copper surface was observed after being left at 40°C for 2 weeks, and the results shown in Table 2 were obtained.

【表】【table】

【表】 第1,2表に見られる如く水−グリコール系作
動油を窒素雰囲気下に置いたときの酸化安定性や
防錆性は、大気中に置いたときのそれに比べて極
めて優秀であり、本考案の効果が明らかにされて
いる。 [考案の効果] 本考案の構成は上記の通りであるから、油圧装
置を高温条件下において長時間作動させても、水
−グリコール系作動油の劣化が防止され、その取
り換え頻度が激減すると共に、水の蒸発損失や防
錆剤の消耗防止も達成され、これらの補給頻度が
激減することになつた。又装置特にタンクの酸化
が防止され、装置の延命効果も発揮し、難燃性作
動油を極めて使用し易いものにすることができ
た。この他作動油自体の酸化劣化が防止され、且
つ作動ポンプの吸込側に見られたキヤビテーシヨ
ンも抑制されることとなつた。
[Table] As shown in Tables 1 and 2, the oxidation stability and rust prevention properties of water-glycol hydraulic fluids when placed in a nitrogen atmosphere are extremely superior to those when placed in the air. , the effects of the present invention have been clarified. [Effects of the invention] Since the structure of the invention is as described above, even if the hydraulic system is operated under high temperature conditions for a long time, deterioration of the water-glycol hydraulic fluid is prevented, and the frequency of its replacement is drastically reduced. The evaporation loss of water and the consumption of rust inhibitors have also been prevented, resulting in a drastic reduction in the frequency of replenishment of these agents. In addition, oxidation of the equipment, especially the tank, was prevented, the life of the equipment was extended, and the flame-retardant hydraulic oil was made extremely easy to use. In addition, oxidative deterioration of the hydraulic fluid itself was prevented, and cavitation that was observed on the suction side of the hydraulic pump was also suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す概略説明図で
ある。 1……タンク、5……窒素ボンベ。
FIG. 1 is a schematic explanatory diagram showing an embodiment of the present invention. 1...Tank, 5...Nitrogen cylinder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高熱下で使用される油圧装置に供給される水−
グリコール系作動油の貯蔵タンクであつて、該タ
ンクは密閉蓋によつて気密性を発揮する構造とし
ておき、該タンクの気相側壁面には、タンク内圧
力保持機能付きの排気装置を取付けると共に、不
活性ガス圧入装置を取付け、他方該タンクの液相
側壁面には前記作動油の導出口及び導入口を設け
てなることを特徴とする水−グリコール系作動油
の貯蔵タンク。
Water supplied to hydraulic equipment used under high heat
This is a storage tank for glycol-based hydraulic oil, and the tank has a structure that exhibits airtightness with a sealed lid, and an exhaust device with a pressure retention function in the tank is installed on the gas phase side wall of the tank. A storage tank for water-glycol hydraulic oil, characterized in that an inert gas injection device is attached thereto, and an outlet and an inlet for the hydraulic oil are provided on the liquid phase side wall surface of the tank.
JP1986057203U 1986-04-16 1986-04-16 Expired JPS6224081Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986057203U JPS6224081Y2 (en) 1986-04-16 1986-04-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986057203U JPS6224081Y2 (en) 1986-04-16 1986-04-16

Publications (2)

Publication Number Publication Date
JPS61184101U JPS61184101U (en) 1986-11-17
JPS6224081Y2 true JPS6224081Y2 (en) 1987-06-19

Family

ID=30581513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986057203U Expired JPS6224081Y2 (en) 1986-04-16 1986-04-16

Country Status (1)

Country Link
JP (1) JPS6224081Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138119A (en) * 1974-09-27 1976-03-30 Hitachi Construction Machinery OIRUTANKU

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885214U (en) * 1972-01-19 1973-10-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138119A (en) * 1974-09-27 1976-03-30 Hitachi Construction Machinery OIRUTANKU

Also Published As

Publication number Publication date
JPS61184101U (en) 1986-11-17

Similar Documents

Publication Publication Date Title
US20210246347A1 (en) Refrigerant additives and compositions
US4455248A (en) Antifreeze compositions
US2564423A (en) Corrosion preventive composition
EP0846749A1 (en) Refrigerator
JP3571344B2 (en) Non-aqueous heat transfer fluid
AU2019204001A1 (en) Extended operation engine coolant composition
US3809152A (en) Automotive cooling systems
WO2010055621A1 (en) Ebullient cooling apparatus
JPS6224081Y2 (en)
JP2012528250A (en) Thermal test solution including vapor phase prevention
US3580847A (en) Hydraulic fluid
CA1273191A (en) Oil-in-alcohol microemulsion containing oil-soluble corrosion inhibitor in antifreeze
JP4724565B2 (en) Hydraulic device
JP5425202B2 (en) Method for preventing hydraulic fluid and steam corrosion
EP1159372B1 (en) Monocarboxylic acid based antifreeze composition for diesel engines
KR101622322B1 (en) Volatile corrosion inhibitor composition
US4704220A (en) Oil-in-alcohol microemulsions in antifreeze
EP2778208B1 (en) Engine coolant additive
EP0190256B1 (en) Oil-in-alcohol microemulsions in antifreeze
JP2854308B2 (en) Corrosion- and corrosion-resistant base material for antifreeze liquid, rust- and corrosion-resistant synthetic lubricant and rust- and corrosion-resistant water-containing liquid
US9365761B2 (en) Glycol-free heat transfer fluid
JP2001158878A (en) Cooling liquid composition
KR102036518B1 (en) Heating Medium Composition for Solar Heat With Long Life
Ignatowicz Corrosion aspects in indirect systems with secondary refrigerants
JP2002030281A (en) Cooling liquid composition