JPS62240777A - Production of ethylene and hydrogen from gas containing methane - Google Patents

Production of ethylene and hydrogen from gas containing methane

Info

Publication number
JPS62240777A
JPS62240777A JP61082320A JP8232086A JPS62240777A JP S62240777 A JPS62240777 A JP S62240777A JP 61082320 A JP61082320 A JP 61082320A JP 8232086 A JP8232086 A JP 8232086A JP S62240777 A JPS62240777 A JP S62240777A
Authority
JP
Japan
Prior art keywords
hydrogen
methane
ethylene
gas
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61082320A
Other languages
Japanese (ja)
Inventor
Kazutaka Mori
一剛 森
Tetsuya Imai
哲也 今井
Kozo Iida
耕三 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61082320A priority Critical patent/JPS62240777A/en
Publication of JPS62240777A publication Critical patent/JPS62240777A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce ethylene from a gas contg. methane by applying voltage to both sides of a diaphragm of a solid electrolyte conducting hydrogen ions so as to transfer hydrogen in the molecule of the methane in the gas fed to the positive side into the diaphragm. CONSTITUTION:Electrodes 2 are fitted to both sides of a reaction tube 1 made of a diaphragm of a solid electrolyte conducting hydrogen ions. A gas contg. methane is fed from an introduction pipe 7 placed on the positive side of the electrodes 2. The reaction tube 1 is then heated to a prescribed temp. and voltage is applied from a power source 4 to produce ethylene on the positive electrode side and hydrogen on the negative electrode side.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新しいエチレンの製造方法に関し、更に詳しく
はメタン含有ガスよりエチレン及び水素を得る方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a new method for producing ethylene, and more particularly to a method for obtaining ethylene and hydrogen from methane-containing gas.

〔従来の技術〕[Conventional technology]

現在エチレンは天然ガス中のエタン、石油留分中のナフ
サ、灯軽油を原料とし800℃以上の高温下で熱分解さ
せて製造しているが、エチレン以外の副生成物が多く分
離精製工程が複雑であるという問題点がある。さらに石
油の枯渇が将来予想される中で埋蔵量の多いメタンを当
成分とする天然ガスを原料とするエチレン製造プロセス
の開発も急務となっている。
Currently, ethylene is produced from ethane in natural gas, naphtha in petroleum distillates, and kerosene by thermal decomposition at high temperatures of over 800°C, but there are many byproducts other than ethylene, and the separation and purification process is required. The problem is that it is complicated. Furthermore, as oil is expected to run out in the future, there is an urgent need to develop an ethylene production process that uses natural gas, which contains methane, which has large reserves, as a raw material.

〔発明が解決しようとする問題点3 以上の状況から、本発明は従来、例のない天然ガスなど
メタン含有ガスを原料として、副反応の少ないエチレン
を製造する方法を提供しようとするものである。
[Problem to be Solved by the Invention 3] In light of the above circumstances, the present invention seeks to provide a method for producing ethylene with few side reactions using a methane-containing gas such as natural gas as a raw material, which has never been done before. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は両面に電極を取付けた水素イオン導電性固体電
解質隔膜のプラス電極を取付けだ側よりメタン含有ガス
を供給し、プラス電極側にエチレン、マイナス電蓮側に
水素を生成させることを特徴とするメタン含有ガスより
エチレン及び水素の製造方法である。
The present invention is characterized in that a methane-containing gas is supplied from the side to which the positive electrode of a hydrogen ion conductive solid electrolyte membrane with electrodes attached on both sides is attached, and ethylene is generated on the positive electrode side and hydrogen is generated on the negative electrode side. This is a method for producing ethylene and hydrogen from methane-containing gas.

本発明でいうメタン含有ガスとは、メタンを90%以上
含有するガスで、メタン以外にエタン、プロパンなどの
炭化水素ガス、その他のガスを含有するものであって、
代表的には天然ガスである。
The methane-containing gas referred to in the present invention is a gas containing 90% or more of methane, and in addition to methane, it also contains hydrocarbon gases such as ethane and propane, and other gases,
A typical example is natural gas.

本発明における温度は一般的に600〜900℃が好ま
しい。
The temperature in the present invention is generally preferably 600 to 900°C.

〔作用〕[Effect]

メタン分子中の水素は水素イオンとして水素イオン導電
性固体電解質隔膜中を移動してマイナスの電極界面で水
素ガスとして生成し、他方、分子中の水素を水素イオン
として放出したメタンはエチレンとなる。
The hydrogen in the methane molecules moves as hydrogen ions through the hydrogen ion conductive solid electrolyte membrane and is generated as hydrogen gas at the negative electrode interface, while the methane that releases the hydrogen in the molecules as hydrogen ions becomes ethylene.

水素イオン導電性固体電解質隔膜内における水素イオン
の′酸導は同時に抵抗発熱作用があるので直皮は自動的
に保持され、加熱は最初に系全体を加熱するだけで十分
である。
Since the acid conduction of hydrogen ions within the hydrogen ion conductive solid electrolyte membrane also has a resistance heating effect, the direct skin is automatically maintained, and it is sufficient to heat the entire system initially.

本発明の試験装置の概要を第1図によって説明する。The outline of the test apparatus of the present invention will be explained with reference to FIG.

第1図において1は水素イオン導電性固体電Ivj質隔
膜よりなる反応管であり、反応管1の内側及び外側には
白金の多孔質′成極2が焼きつけられている。この電極
2の両極に電圧可変の直流電源4に接続のだめリード線
3を出している。
In FIG. 1, reference numeral 1 denotes a reaction tube made of a hydrogen ion conductive solid electrolyte diaphragm, and porous platinum polarization 2 is baked onto the inside and outside of the reaction tube 1. Lead wires 3 for connection to a variable voltage DC power source 4 are extended to both poles of the electrode 2.

5は反応器であり、水素イオン導電性固体電解質隔膜反
応器1の外側をとり囲む容器である。
5 is a reactor, which is a container surrounding the outside of the hydrogen ion conductive solid electrolyte membrane reactor 1.

6は前記反応管1を加熱するための電気炉である。7は
反応ガスとして使用するメタン含有ガス導入管、8は未
反応のメタンと反応により生シタガス(エチレン)の混
合物取出管、9はギヤリアガス(たとえば窒素)を導入
するキャリアガス導入管であり、10は反応後ガス(水
素)取出管である。11は測温用の熱電対である。
6 is an electric furnace for heating the reaction tube 1. 7 is a methane-containing gas introduction pipe used as a reaction gas, 8 is a pipe for taking out a mixture of raw gas (ethylene) by reaction with unreacted methane, 9 is a carrier gas introduction pipe for introducing gear gas (for example, nitrogen), and 10 is the post-reaction gas (hydrogen) extraction pipe. 11 is a thermocouple for temperature measurement.

それぞれの取出管8,9には流量計とガスクロが接続さ
れており、(図示省略)オンラインでガス流量及び組成
の分析が可能なようになっている。
A flow meter and a gas analyzer (not shown) are connected to each of the extraction pipes 8 and 9, making it possible to analyze the gas flow rate and composition online.

実施例 1゜ 水素イオン導電性固体電解質として三酸化セリウムスト
ロンチウム(SrCe03) f母体とした5rCe、
、、 Yb、、、、 O,a(a :酸素欠損量)を用
いた。
Example 1゜Cerium strontium trioxide (SrCe03) as a hydrogen ion conductive solid electrolyte, 5rCe as f matrix,
,, Yb,..., O,a (a: amount of oxygen vacancies) was used.

第1図に示した試験装置においてメタン含有ガス導入管
7のメタン流量を20rnlZ−、キャリアガス導入管
9の窒素流量を20−/―として流通させた。熱電対1
1で検出する水素イオン導電性固体電解質隔膜反応管1
の温度を800℃とし、直流電源4には1.Ovの直流
電圧を印加した。
In the test apparatus shown in FIG. 1, the methane flow rate through the methane-containing gas introduction pipe 7 was set to 20 rnlZ-, and the nitrogen flow rate through the carrier gas introduction pipe 9 was set to 20-/-. thermocouple 1
Hydrogen ion conductive solid electrolyte diaphragm reaction tube 1 for detection in 1
The temperature of the DC power supply 4 is 800°C, and the DC power supply 4 is set to 1. A DC voltage of Ov was applied.

このようにして反応後ガス取出管10に流出するガスの
流量及び組成を測定すると、流凝は21−/−であり、
5%の水素が含有されていた。また、一方の取出管8に
はエチレンが検出された。
When the flow rate and composition of the gas flowing out into the gas extraction pipe 10 after the reaction are measured in this way, the flow condensation is 21-/-,
It contained 5% hydrogen. Furthermore, ethylene was detected in one of the extraction pipes 8.

以上の反応は 2CH,−→Cz H4+ 2 H雪 と考えられ、メタンが電解されて水素を生成し、水素は
水素イオン導電性固体電解質隔膜内を水素イオンとして
移動し、他側へ水素ガスとして生成したものと考えられ
る。
The above reaction can be considered as 2CH,-→Cz H4+ 2H snow, where methane is electrolyzed to produce hydrogen, which moves as hydrogen ions within the hydrogen ion conductive solid electrolyte membrane and is transferred to the other side as hydrogen gas. It is thought that it was generated.

実施例 2 実施例1と同一の反応管を使用しメタン含有ガス導入管
7のメタン流量を20−/―とじて流通させた。熱電対
11で検出する水素イオン導電性固体電解質隔膜反応管
1の温度を700〜1000℃と変化させ、電圧を1.
Ovとし、取出管8に流出するエチレンの景を測定した
Example 2 The same reaction tube as in Example 1 was used, and the methane flow rate in the methane-containing gas introduction tube 7 was set at 20-/-. The temperature of the hydrogen ion conductive solid electrolyte diaphragm reaction tube 1 detected by the thermocouple 11 was varied from 700 to 1000°C, and the voltage was changed to 1.
Ov, and the appearance of ethylene flowing out into the take-out pipe 8 was measured.

その結果を第2図に示す。The results are shown in FIG.

第2図において横軸は温度、縦軸はエチレン生成量を示
す。温度が高くなるほどエチレンの生成量が多くなるこ
とが認められる。同時に電流値を見ると、高温はど電流
の値が大きく水素イオンが水素イオン導電性固体胤解質
隔膜内を移動しやすいことが判明した。
In FIG. 2, the horizontal axis shows temperature and the vertical axis shows the amount of ethylene produced. It is observed that the higher the temperature, the greater the amount of ethylene produced. At the same time, looking at the current value, it was found that the higher the temperature, the higher the current value, and the easier the hydrogen ions were to move within the hydrogen ion conductive solid solute diaphragm.

実施例 5 水素イオン導電性固体電解質として三酸化セリウムスト
ロンチウムを母体とした5rCe a?。
Example 5 5rCe a? using cerium strontium trioxide as a hydrogen ion conductive solid electrolyte. .

8C,、。0.−〇(α;酸素欠損量)を用いた。8C... 0. −〇(α; amount of oxygen vacancies) was used.

第1図に示した試験装置を用い、メタン含有ガス導入管
7のメタン流量を10d/+wキャリアガス導入管9の
窒素流量を21]d/mとして流通させた。焼電対11
で検出する反応管の温度を900℃とし、電圧を変化さ
せて、取出管8に流出するガスの着及び組成を調べた。
Using the test apparatus shown in FIG. 1, the methane flow rate through the methane-containing gas introduction tube 7 was set to 10 d/+w, and the nitrogen flow rate through the carrier gas introduction tube 9 was set to 21] d/m. Baked pair 11
The temperature of the reaction tube to be detected was set to 900° C., and the voltage was varied to examine the deposition and composition of the gas flowing out into the take-out tube 8.

その結果を第5図に示す。The results are shown in FIG.

第3図において、横軸は印加電圧(V)、縦軸はエチレ
ン生成量を示す。この結果から電圧の上昇に伴い、エチ
レン生成量も増加することが判明した。また、一方の取
出110には水素の流出が(箱誌された。
In FIG. 3, the horizontal axis shows the applied voltage (V), and the vertical axis shows the amount of ethylene produced. The results revealed that the amount of ethylene produced increased as the voltage increased. In addition, hydrogen was leaked from one outlet 110.

〔発明の効果〕〔Effect of the invention〕

本発明に従えば、メタンからエチレンの生成が容易とな
り、併せて水素を採取することができる。
According to the present invention, ethylene can be easily produced from methane, and hydrogen can also be extracted.

【図面の簡単な説明】[Brief explanation of drawings]

M1図は本発明の実施例に使用した試A倹装置の概略図
。第2図は温度とエチレン生成量の関係を示す図表、第
3図は印加電圧とエチレン生成lの関係を示す図表であ
る。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫 第1図 温度(0C)
Figure M1 is a schematic diagram of the trial A-sparing apparatus used in the examples of the present invention. FIG. 2 is a chart showing the relationship between temperature and ethylene production amount, and FIG. 3 is a chart showing the relationship between applied voltage and ethylene production l. Sub-agents 1) Meifuku agent Ryo Hagiwara - Sub-agent Atsuo Anzai Figure 1 Temperature (0C)

Claims (1)

【特許請求の範囲】[Claims] 両面に電極を取付けた水素イオン導電性固体電解質隔膜
のプラス電極を取付けた側よりメタン含有ガスを供給し
、プラス電極側にエチレン、マイナス電極側に水素を生
成させることを特徴とするメタン含有ガスよりエチレン
及び水素の製造方法。
A methane-containing gas characterized by supplying methane-containing gas from the positive electrode side of a hydrogen ion conductive solid electrolyte diaphragm with electrodes attached on both sides, producing ethylene on the positive electrode side and hydrogen on the negative electrode side. A method for producing ethylene and hydrogen.
JP61082320A 1986-04-11 1986-04-11 Production of ethylene and hydrogen from gas containing methane Pending JPS62240777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61082320A JPS62240777A (en) 1986-04-11 1986-04-11 Production of ethylene and hydrogen from gas containing methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61082320A JPS62240777A (en) 1986-04-11 1986-04-11 Production of ethylene and hydrogen from gas containing methane

Publications (1)

Publication Number Publication Date
JPS62240777A true JPS62240777A (en) 1987-10-21

Family

ID=13771272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61082320A Pending JPS62240777A (en) 1986-04-11 1986-04-11 Production of ethylene and hydrogen from gas containing methane

Country Status (1)

Country Link
JP (1) JPS62240777A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017471A (en) * 1998-06-30 2000-01-18 Permelec Electrode Ltd Hydrogen generator
US9932679B2 (en) 2013-10-31 2018-04-03 Exxonmobil Chemical Patents Inc. Electrochemical conversion of hydrocarbons

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017471A (en) * 1998-06-30 2000-01-18 Permelec Electrode Ltd Hydrogen generator
US9932679B2 (en) 2013-10-31 2018-04-03 Exxonmobil Chemical Patents Inc. Electrochemical conversion of hydrocarbons
US10865487B2 (en) 2013-10-31 2020-12-15 Exxonmobil Chemical Patents Inc. Electrochemical conversion of hydrocarbons

Similar Documents

Publication Publication Date Title
US3031518A (en) Fuel cells
US2999735A (en) Method and apparatus for producing hyper-pure semiconductor material, particularly silicon
Rinnemo et al. Catalytic ignition in the COO2 reaction on platinum: experiment and simulations
US3674666A (en) Enhancing reaction rates
ATE1628T1 (en) DEVICE FOR INCREASING THE DEGREE OF GRAPHITATION OF RUSSES AND THE USE OF SUCH RUSSES.
US2893850A (en) Apparatus for the production of elemental silicon
Campbell et al. Second harmonic generation studies of polycrystalline platinum electrodes in sulfuric and perchloric acid solutions
JPS62240777A (en) Production of ethylene and hydrogen from gas containing methane
Hong et al. Evaluation of the membrane properties with changing iodine molar ratio in HIx (HI–I2–H2O mixture) solution to concentrate HI by electro-electrodialysis
NO912877L (en) PROCEDURE FOR OPERATION OF A PRESSURE ELECTROLYSIS SYSTEM.
CN102826511B (en) Method and device for preparing active calcium hydride
Pease et al. Equilibrium in the reaction, NiO+ H2⇌ Ni+ H2O. The free energy of nickelous oxide
US3042493A (en) Process for re-using carrier body holders employed in the pyrolytic precipitation of silicon
Haber et al. A rapid instrumental method for the microdetermination of carbon and hydrogen in organic compounds
US3025224A (en) Process for isolating isotopes of alkali metals
JP2023518475A (en) Method and apparatus for converting hydrogen sulfide to hydrogen gas and sulfur
CN114249316B (en) Method and device for synthesizing metal doped fullerene material at high temperature in double temperature areas
JPS6125641B2 (en)
JPS62139889A (en) Method for decomposing methane
Pring et al. X.—The methane equilibrium
McKenna et al. Synthesis of hydrogen cyanide in a solid-electrolyte-cell reactor
US3615194A (en) Process for the preparation of an anhydride of trivalent phosphorus
Chernenko et al. Catalytic oxidation of acetone and ethanol on a platinum wire
JPS61170570A (en) Formation of conductive graphite film
JPH01128936A (en) Production of hydrocarbon having two carbon atoms