JPS62240558A - Liquid jet recording head - Google Patents

Liquid jet recording head

Info

Publication number
JPS62240558A
JPS62240558A JP8415986A JP8415986A JPS62240558A JP S62240558 A JPS62240558 A JP S62240558A JP 8415986 A JP8415986 A JP 8415986A JP 8415986 A JP8415986 A JP 8415986A JP S62240558 A JPS62240558 A JP S62240558A
Authority
JP
Japan
Prior art keywords
liquid
recording
heating means
nozzle
ejection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8415986A
Other languages
Japanese (ja)
Inventor
Shinichi Hirasawa
平澤 伸一
Hirokazu Komuro
博和 小室
Koichi Sato
孝一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8415986A priority Critical patent/JPS62240558A/en
Publication of JPS62240558A publication Critical patent/JPS62240558A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04533Control methods or devices therefor, e.g. driver circuits, control circuits controlling a head having several actuators per chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0458Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on heating elements forming bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04588Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14032Structure of the pressure chamber
    • B41J2/14056Plural heating elements per ink chamber

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)

Abstract

PURPOSE:To prevent the discharge failure of liquid drop after being-left for a long time and besides, to enable the high speed stable recording by high repetitive driving frequency, by a method wherein the first heating means is established to a nozzle in addition to a discharge energy generation means and the second heating means is provided for a liquid chamber. CONSTITUTION:A discharge energy generation means 2 and the first heating means 3 are successively arranged from an orifice 30 side in the nozzle 7 of a recording head and the second heating means 4 is established in the liquid chamber 8 at the back of the nozzle 7. When above-mentioned heating means 3 and a discharge energy generation means 2 are operated, vapour bubbles 9 and 10 are generated in the recording liquid of the parts respectively contacting thereto. Therefore, because vapour bubbles 9 are also generated and the discharge energy can be utilized to the high viscous recording liquid after standing for a long time, liquid drop 13 can be discharged. Further, when the vapour bubble 10 is contacted, the liquid drop 13 is formed and the recording liquid starts to be fed. At that time, when the second heating means 4 is made to be of an operation state, a vapour bubble 11 is formed in the recording liquid inside the liquid chamber 8 contacted with said means 4 and the recording liquid is forcedly pushed into the nozzle 30. By this operation, the recording by high repetitive driving frequency can be realized.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、液体吐出口から記録液を液滴として吐出、飛
翔させ、該液滴を紙などの記録媒体に着弾させて記録を
行なう液体噴射記録ヘッド、特に印字信号が加えられた
ときに吐出が行なわれるオンデマンド型の液体噴射記録
ヘッドに関し、中でも高速応答性と優れた吐出安定性を
有する液体噴射記録ヘッドに関する。 [従来の技術] 従来より、記録液を吐出、飛翔させて記録を行なう液体
噴射記録法(インクジェット記録法)が知られている。 該方法は、高速印字が可能であり、低騒音、且つ記録品
位が高く、しかもカラー画像記録が容易であり、また普
通紙等に記録できるといった優れた特長を有している。 このようなインクジェット記録方法に用いられるインク
ジェット記録装置は、一般に、記録液を飛翔液滴として
吐出噴射させるための液体吐出口(オリフィス)と、該
オリフィスに連通ずる液体流路(ノズル)および該ノズ
ルの一部に設けられ、該ノズル内の記録液に飛翔液滴を
形成するための吐出エネルギーを与える吐出エネルギー
発生手段と、該ノズルに記録液を供給するための液室を
有するインクジェット記録ヘッドを備えている。 記録は、吐出エネルギー発生手段を駆動してノズル内の
記録液に吐出エネルギーを供給し、オリフィスから記録
液を飛翔液滴として吐出させ、この液滴を記録媒体に着
弾させることによって行なうのである。 このようなインクジェット記録装置によって記録を行な
う際に使用される記録液は、一般に顔料や染料等の記録
剤部分と、これを溶解または分散するための主に水、ま
たは水と水溶性°有機溶剤あるいは非水系溶剤とからな
る溶媒成分とによって形成されている。インクジェット
記録装置においては、記録液が吐出されるノズル先端に
設けられたオリフィスは、装置の駆動の有無にかかわら
ず絶えず装置外部の外気に向けて開放されていることが
多い。そのために、記録が行なわれない状態が長時間に
わたる場合には、溶媒の一部がオリフィスから外気中へ
蒸発し、記録剤成分や揮発しにくい溶媒成分が記録液中
に残有することにより、この部分に滞留した記録液の組
成が変化して粘度が増大し、結果としてノズル部分の粘
性抵抗が増大する。そのため、印字体止後の記録再開時
直後においては、吐出用信号が印加されているにもかか
わらず、液滴が吐出されない液滴の吐出不良が起き易く
、記録画像の初期印字部等に欠陥を生じるという問題が
あった。 また、インクジェット記録装置によって液滴を縁り返し
吐出させるためには、吐出によフて失われた分の液体を
次の吐出までに補充しなければならない。そのための代
表的な方法は、液体の表面張力を利用し、毛細管現象に
よって液体をオリフィスに導くというものである。この
場合、液体をオリフィスに導くのに要する時間L2は、
t2 =d / u によって定まる。ただし、dは液滴切断後、ノズルに残
った液体かもとの位置から後退した距離であり、Uは毛
細管現象による液体の移動速度である。上記時間t2は
、液滴が形成されるのに要する時間t、に比べて通常道
かに大きく、 f = 1 / (L、 +L2) で定まる繰り返し駆動可能周波数fは、事実上
[Industrial Application Field] The present invention relates to a liquid jet recording head that performs recording by ejecting and flying a recording liquid as droplets from a liquid discharge port and making the droplets land on a recording medium such as paper, and particularly relates to a print signal. The present invention relates to an on-demand liquid jet recording head that performs ejection when a liquid is applied, and particularly relates to a liquid jet recording head that has high-speed response and excellent ejection stability. [Prior Art] A liquid jet recording method (inkjet recording method) in which recording is performed by ejecting and flying a recording liquid has been known. This method has excellent features such as high-speed printing, low noise, high recording quality, easy color image recording, and the ability to record on plain paper. An inkjet recording device used in such an inkjet recording method generally includes a liquid ejection opening (orifice) for ejecting the recording liquid as flying droplets, a liquid flow path (nozzle) communicating with the orifice, and the nozzle. An inkjet recording head having an ejection energy generation means provided in a part of the nozzle and providing ejection energy for forming flying droplets in the recording liquid in the nozzle, and a liquid chamber for supplying the recording liquid to the nozzle. We are prepared. Recording is performed by driving the ejection energy generating means to supply ejection energy to the recording liquid in the nozzle, ejecting the recording liquid as flying droplets from the orifice, and causing the droplets to land on the recording medium. The recording liquid used when recording with such an inkjet recording device generally consists of a recording agent such as a pigment or dye, and mainly water, or water and a water-soluble organic solvent for dissolving or dispersing it. Alternatively, it is formed from a solvent component consisting of a non-aqueous solvent. In an inkjet recording device, an orifice provided at the tip of a nozzle through which recording liquid is ejected is often constantly open to the outside air of the device, regardless of whether or not the device is being driven. Therefore, if no recording is performed for a long time, part of the solvent evaporates from the orifice into the outside air, and recording agent components and solvent components that are difficult to volatilize remain in the recording liquid. The composition of the recording liquid stagnant in the nozzle portion changes and the viscosity increases, resulting in an increase in the viscous resistance of the nozzle portion. Therefore, immediately after restarting recording after the printing material has stopped, droplet ejection failure is likely to occur, in which droplets are not ejected even though the ejection signal is applied, and defects may occur in the initial printed area of the recorded image. There was a problem in that it caused Furthermore, in order to eject liquid droplets in an edgewise manner using an inkjet recording apparatus, the amount of liquid lost due to ejection must be replenished before the next ejection. A typical method for this purpose is to use the surface tension of the liquid to guide the liquid to an orifice by capillary action. In this case, the time L2 required to introduce the liquid to the orifice is
It is determined by t2 = d/u. However, d is the distance that the liquid remaining in the nozzle retreated from its original position after the droplet was cut, and U is the moving speed of the liquid due to capillary action. The above time t2 is usually much longer than the time t required for a droplet to form, and the repeatable drive frequency f determined by f = 1/(L, +L2) is, in fact,

【電によ
って制限されてしまい、いかに遠く液滴を形成しても、
繰り返し駆動周波数を高くすることができないという問
題があった。 このような問題を解決する有効な方法の一つとしてノズ
ルの長さを短くすることがある。ノズルの長さを短くす
ることは、ノズル壁の流れに対する抵抗を小さくするこ
とに等しく、前記t2の短縮に結びつく。しかしながら
、ノズルを短くすることは飛翔液滴の速度低下、速度不
安定の増加の原因となり、安定な記録を行なえないとい
う問題をひきおこしていた。 [発明が解決しようとする問題点] 本発明は、上記従来例の問題点に鑑みてなされたもので
、長時間放置後にも液滴の吐出不良を生じず、また高い
繰返し駆動周波数による高速安定記録が可能な新規なイ
ンクジェット記録ヘッドを提供することを目的とする。 [問題点を解決するための手段] 本発明の上記目的は、以下の本発明によって達成される
。 記録液を吐出させるためのオリフィスを終端とするノズ
ルと、該ノズルに連通ずる液室と、前記ノズルに併設さ
れ、前記記録液に吐出エネルギーを供給する吐出エネル
ギー発生手段とを有するインクジェット記録ヘッドにお
いて、前記吐出エネルギー発生手段とは別に、前記ノズ
ルに第1の加熱手段を、また前記液室に第2の加熱手段
をそれぞれ有し、前記第1の゛加熱手段を前記吐出エネ
ルギー発生手段と前記第2の加熱手段との間に設けたこ
とを特徴とするインクジェット記録ヘッド。 すなわち本発明は、吐出エネルギー発生手段の他に、主
として吐出液滴の速度増加および安定化をはかる目的の
第1の加熱手段と、主として前記t2の短縮をはかる目
的の第2の加熱手段を設け、これら第1および第2の加
熱手段を利用することにより、記録時における液滴吐出
の高速応答性を可能にするとともに、長時間放置放置後
の記録再開時における記録液の吐出不良をも解消したも
のである。 [実施例] 以下、必要に応じて図面を参照しつつ、本発明の詳細な
説明する。 第1図は本発明の好適な一実施態様の概略的説明図であ
る。本例の記録ヘッドは、吐出エネルギー発生手段2、
第1の加熱手段3および第2の加熱手段4を設けた基板
1上に、更に隔壁5−1および外壁5−2を設け、これ
に天板5を重ねてノズル7および液室8を形成したもの
である。30はノズル7の終端に位置し、記録液を飛翔
液滴として吐出させるためのオリフィスであり、6は液
室8に記録ヘッド外部から記録液を供給するために必要
に応じて設けられる液供給口である。 本発明では、吐出エネルギー発生手段2および第1の加
熱手段3をノズル7内においてオリフィス30側から吐
出エネルギー発生手段2および第1の加熱手段3の順に
、また第2の加熱手段4をノズル7の後方の液室8内に
設置することが必要であるが、このような加熱手段を設
ける以外の記録ヘッドの部材構成や形成方法は特に限定
されるものではなく、従来のインクジェット記録ヘッド
におけると同様の所望のものとしてよい。もちろん、ノ
ズル数、オリフィス形状あるいは液室形状等は所望のも
のとしてよいことは言うまでもない。 本発明における吐出エネルギー発生手段2としては、従
来例のインクジェット記録ヘッドにおけると同様に液滴
の吐出を行ない得るものであれば如何なるものでもよく
、具体的には例えば各種の発熱抵抗体を利用した熱エネ
ルギー発生手段によるもの、あるいは各種の圧電体を利
用した圧力エネルギー発生手段によるものなどが代表的
なものとして挙げられる。尚、第1図には吐出エネルギ
ー発生手段2の例として発熱抵抗体が例示されている。 第1および第2の加熱手段は、このような吐出エネルギ
ー発生手段2とは別に設けられるが、その材質や形状等
、特に限定されるものではなく、上記吐出エネルギー発
生手段と同様の発熱抵抗体などが利用し得る代表的なも
のとして挙げられる。尚、本発明を有効なものとするた
めには、第1の加熱手段3を吐出エネルギー発生手段2
に近接させるのが良い。また、第2の加熱手段4に関し
ても、ノズル7直後の液室8内において、供給時に必要
な記録液を確保し得る範囲内でノズル7に近接させるの
が好ましいものである。 以下、吐出エネルギー発生手段2、第1の加熱手段3、
第2の加熱手段4のすべてを発熱抵抗体とした場合の記
録時における動作例を示し、本発明を更に説明する。 第2図(a)〜 (f)は、吐出エネルギー発生手段2
、第1の加熱手段3、第2の加熱手段4の動作を説明す
るために、時間を追って示した第1図のA−A断面の概
略部分図である。 第2図(a)は、吐出エネルギー発生手段2、第1の加
熱手段3、第2の加熱手段4が非動作状態、且つ液室8
よりノズル7に記録液が供給された印字可能な状態にお
ける記録ヘッドの様子である。 このような非動作状態(a)から、まず第1の加熱手段
2に記録信号を送り動作状態とする。第1の加熱手段3
の動作開始直後、吐出エネルギー発生手段2の動作を開
始する。これら加熱手段3および吐出エネルギー発生手
段2の動作により記録液に熱エネルギーが供給され、こ
の熱エネルギーにより記録液に発泡現象を生じ、該手段
3および2のそれぞれに接する部分の記録液に第2図(
b)に示す如き蒸気泡9および10が生成する。 第2図(b)は第1の加熱手段3を動作させることによ
り生じる蒸気泡9の最大体積時の様子を示、している。 第2図(C)は吐出エネルギー発生手段2(発熱抵抗体
)による蒸気泡10の最大体積時の様子である。尚、(
C)の状態は、第1の加熱手段3による蒸気泡9の自己
収縮開始直前から直後であることが望ましい。 この(b)〜(C)の状態において、第1の加熱手段に
より形成される蒸気泡9では液滴吐出が行なわれない。 これは、蒸気泡9の成長による作用力のオリフィス方向
成分が、ノズル構成壁によって記録液に生じる流れに対
する抵抗損失が大きいためである。また、第1の加熱手
段によって蒸気泡9を形成する目的は、吐出を行なうこ
とではなく、以下に述べるように、液滴吐出時における
エネルギー損失をなくlへ吐出エネルギーを有効利用す
るための流体ダイオードとして機能させることにあるの
で、吐出への寄与は牢でも一向にかまわない。 液滴】3の形成は、吐出エネルギー発生手段による蒸気
泡lOが発泡成長し、自己収縮する過程で行なわれる(
第2図(d)参照)。蒸気泡IOが発泡し成長する時の
作用力には液滴吐出のエネルギー損失となる液室方向成
分が存在する。この時、該方向への流れに対する抵抗を
大きくし、液滴吐出に寄与しない液室方向への作用力を
減じてやれば、全作用力・の吐出への寄与率をあげるこ
とができる訳である。この寄与率を向上させる方法とし
て、例えばノズルを長くしてノズル壁による抵抗を大き
くする、あるいは障壁を設けるなどの方法が考えられる
が、いずれも吐出後の記録液の供給時間t2を長くして
しまう。これに対して、本発明では、液滴吐出を行なう
時のみ抵抗を大きくし、供給時には該抵抗を小さくする
ことができるのである。すなわち、吐出を行なう時に第
1の加熱手段3による蒸気泡9がノズル7の液室方向へ
の抵抗を大きくして前記作用力の吐出への寄与率を高く
し、液滴の飛翔速度を大きく且つ安定なものとする。更
に、例えば長時間の放置後において吐出不良を発生する
ような高粘度の記録液に対しても、第1の加熱手段の作
用によって吐出エネルギーの有効利用ができるため、粘
性抵抗に打ち勝って液滴を吐出させることが可能となり
、記録再開直後の吐出不良発生頻度が減少するのである
。 蒸気泡IOが自己収縮すると液滴が形成され、メニスカ
ス12がオリフィス30よりノズル内へ後退し、毛管力
による記録液供給が始まる。この時、第2の加熱手段4
を動作状態にすることにより、該手段4と接する液室8
内の記録液に蒸気泡11が形成され、この発泡によりノ
ズル内に記録液が強制的に押込まれる。第2図(d)〜
(e)はその様子を示している。この動作により、前記
1zが大幅に短縮され、高い繰返し駆動周波数での記録
が可能となるのである。 蒸気泡11は、その後、自己収縮し消滅するが、このと
きメニスカスI2がノズル内に引込まれることは殆どな
い。この様子を第2図(f)に示した。 これは、以下の理由によるものと思われる。すなわち、
蒸気泡の成長と収縮を比較するとJ発泡時には高い圧力
を持った蒸気の核が発生し、周囲と力学的に平衡となる
まで蒸気泡が一気に成長するが、収縮は蒸気が記録液に
溶解しつつ行なわれるので、成長の3〜5倍の時間を要
することになる。このような急激な体積変化を伴なう成
長時の作用力は、必然的に収縮時に比べて大きなものと
なる。この発泡時の作用力はノズル壁の抵抗に打ち勝つ
に充分な大きなもので、メニスカスをオリフィス方向へ
強制的に押しやるが、収縮時にはノズル壁の抵抗で作用
力が損失しメニスカスの後退が防止されるのである。 以下、このような動作を行なう吐出エネルギー発生手段
および第1並びに第2の加熱手段を戴積した基板の細部
構成の一例と記録ヘッドの製造方法の−・例を示し、本
発明を更に説明する。 第3図(a)および(b)は、それぞれ本発明のインク
ジェット記録ヘッドに用いる基板の一例の平面部分図と
そのA−A断面図である。 この基板1には、吐出エネルギー発生手段としての発熱
抵抗体2、液滴吐出時に上記の如くノズル後方への流れ
に対する抵抗を大きくし、記録液の後退防止をする第1
の加熱手段としての発熱抵抗体3、液滴吐出後に上記の
如く記録液の単時間供給を達成し、液滴吐出の高速応答
性を実現する第2の加熱手段としての発熱抵抗体4、お
よびこれら丼発熱抵抗体に吐出パターンに応じた所望の
電気信号を印加するための共通電極14と個別電極15
.16.17が設置されている。そして、第3図(b)
に示すように、これらは例えばガラス、セラミックス、
Si等の所望の材質からなる基板1上に共通電極14、
絶縁保護層18、各発熱抵抗層2.3.4、各個別電極
15.16.17および絶縁保護層19を順に積層した
積層構成とされている。 このような基板は、例えば以下のように作成される。 まず、基板1に八u、 AI等で共通電極14を形成す
る。本例では、その表面に2〜5鱗の厚さの熱酸化層を
有するSi基板1上に八uを0.5μmの厚さにイオン
ビーム蒸着して作成した。次に、絶縁保護層18を作成
するが、該保護層18を構成する材料としては、例えば
酸化チタン、酸化バナジウム、酸化ニオブ、酸化モリブ
デン、酸化タンタル、酸化タングステン、酸化クロム、
酸化ジルコニウム、酸化ハフニウム、酸化ランタン、酸
化イツトリウム、酸化マンガン等の遷移金属化合物、更
に酸化アルミニウム、酸化カルシウム、酸化ストロンチ
ウム、酸化バリウム、酸化シリコン等の金属酸化物及び
それらの複合体、窒化シリコン、窒化アルミニウム、窒
化ボロン、窒化タンタル等の高抵抗窒化物およびこれら
酸化物、窒化物の複合体、更にアモルファスシリコン、
アモルファスセレン等の半導体などバルクでは低抵抗で
あってもスパッタリング法、CVD法、蒸着法、気相反
応法、液体コーティング法等の製造過程で高抵抗化し得
る薄膜材料を挙げることが出来、その層厚としては一般
に0.1u1〜5u+、好ましくは0.2p〜3pとさ
れるのが望ましい。本実施例ではスパッタリング法によ
り、厚さ2μの5in2層を作成した。 次に、発熱抵抗体層2.3.4を作成する。発熱抵抗体
層を構成する材料は、通電されることによって、所望通
りの熱が発生するものであれば大概の物が採用され得る
。 そのような材料としては、具体的には例えば窒化タンタ
ル、ニクロム、銀−パラジウム合金、シリコン半導体、
或いはハフニウム、ランタン、ジルコニウム、チタン、
タンタル、タングステン、モリブデン、ニオブ、クロム
、バナジウム等の金属の硼化物等が好ましいものとして
挙げられる。 これ等の発熱抵抗体層を構成する材料の中、殊に金属硼
化物が優れたものとして挙げることが出来、その中でも
最も特性の優れているのが硼化ハフニウムであり、次い
で硼化ジルコニウム、硼化ランタン、硼化タンタル、硼
化バナジウム、硼化ニオブの順である。 発熱抵抗体層は、上記した材料を使用して、電子ビーム
蒸着やスパッタリング等の手法を用いて形成することが
出来る。 その後、フォトリソグラフィーやエツチングなどの周知
のバターニング手法を用いて、これら各層の不要部分を
取り除いた後、電極14.15.16.17となる層を
作成し、上記同様のバターニング手法を用いて不要部分
を取り除き、所望とするパターンの電極層を作成する。 更に、必要に応じ、絶縁保護層19を作成する。本実施
例では絶縁保護層19として、スパッタリングにより5
i02を2騨成膜した。 更に蒸気泡消滅時に発生する機械的衝箪力に対する耐久
性能をより高性能にする目的で、AJ、Ta、 Ti、
 Zr、 +lf、 V、 Nb、 Mg、 Si、 
Mo、 W、 Y。 Laなとの金属及びそれらの合金、あるいはそれら金属
及び合金の酸化物、炭化物、窒化物、硼化物等を使用し
て保護層を設けてもよい。 尚、図には特に示さなかったが、各電極にはボンディン
グ等の方法で外部とコネクトするためのムキ出し部分が
設けである。また、前記発熱抵抗体は、目的を達成し得
る形状、大きさであれば所望のものとしてよく、各々が
異なる形、大きさでよい。しかし、本実施例においては
、駆動回路が複雑にならずにすむように、全て同じ大き
さ、形とし、幅30μ、長さ 150JLllとした。 以上のようにして作成したインクジェット記録ヘッド用
基板に、ノズル、液室、液供給口等を設け、例えば前述
の第1図に例示の如き本発明のインクジェット記録ヘッ
ドを完成する。第4図は、このような本発明のインクジ
ェット記録ヘッドの別の例であり、第4図には該ヘッド
の部分斜視図が示されている。 ノズル7としては、例えば感光性樹脂膜、感光性ガラス
等の感光性材料を利用して形成してもよいし、ガラスな
どの適当な平板に機械的方法、エツチング等で溝を形成
し、これを前記インクジェット記録ヘッド用基板に貼り
付ける等の方法で製造することもできる。また、この時
、液室、液供給口等を一体化して製造してもよい。本実
施例においては、感光性樹脂膜31を用い、フォトリソ
グラフィ工程、エツチング工程によりノズル壁および液
室壁を作成し、その上に図示していない液供給口付きの
ガラスプレートを接合してインクジェット記録ヘッドを
構成した。 ノズル7の長さは、短いほど前記t2が短くなるが、吐
出速度低下、安定性低下をひきおこすことは萌述した。 本発明では第1の加熱手段3により、該問題を解消して
いるのでノズルは必要なだけ短くすることができ、記録
ヘッドのコンパクト化が可能でとなる。しかし、第1の
加熱手段3はノズル7内に設置することが必要である。 本実施例ではノズル長さを5QOpとした。 以上の方法で作成した第4図に例示のインクジェット記
録ヘッドに、第5図(aL、 (b) 、(c)に示す
パルス信号を印加し、各発熱抵抗体2.3.4を順次動
作させた。本実施例においては、3つの発熱抵抗体は全
く同じ形、同じ抵抗値なので、同じ電圧波形で駆動でき
る。電圧波形はパルス状の矩形波であり、パルス幅はl
OμSQCを使用した。パルス幅は、飛翔液滴の速度、
繰返し安定性の観点からは、短いほど好ましいが、短く
することは発熱抵抗体により大きな電圧をかける必要を
生じ、発熱抵抗体の耐久性能を短くする原因となる。ま
た、パルス幅を必要以上に長くすると、液層の吐出に不
要な泡も発生するようになり好ましくない。従って、パ
ルス幅の選定は、上記諸点を考慮したバランス設計で決
定される。パルス幅は、50μsec以下の笥囲にある
ことが好ましく、好適には20μsec以内、最適には
10μsec以内である。 動作は、次のように行なう。まず、第1の発熱抵抗体3
を第5図(a)で示すタイミングで動作させ、蒸気泡を
生成させる。′fJ6図はそのような蒸気泡の成長曲線
である。図にて明らかなように、第1の発熱抵抗体3に
よる蒸気泡は最大体積の前後で急激な変化を生じず、液
滴吐出における液体ダイオードとして十分に機能する。 第1の発熱抵抗体3の蒸気泡が該状態にある時、吐出エ
ネルギー発生手段としての発熱抵抗体2による蒸気泡が
最大となるように、該発熱抵抗体2に電気信号を印加す
る(第5図(b)参照)。本実施例では第5図(b)の
タイミングで吐出エネルギー発生手段を動作させて生じ
る液滴の吐出スピードを、第1の発熱抵抗体3による蒸
気泡の存在により、約50%前後はやくすることができ
た。 第1の発熱抵抗体3および吐出エネルギー発生手段2に
よる蒸気泡が消滅し、メニスカスの交代が終了して記録
液の供給が開始された時、第2の発熱抵抗体4にパルス
を加える。本実施例では、第5図(C)に示すように第
1の発熱抵抗体3の動作開始から50μsec遅れて動
作させた。これにより、記録液の供給時間が短縮され、
最高IOにHzの繰返し周波数を得ることができた。更
に、第1の発熱抵抗体3による蒸気泡により、従来より
も吐出に係るエネルギーが増加し、長時間の放置後にに
おける記録液の粘度上昇による吐出不良を防止すること
ができ、長時間放置後にも安定な記録を行ない得るよう
になった。 第7図に、このような本発明のインクジェット記録ヘッ
ドを用いたインクジェット記録装置の一例としてのイン
クジェットプリンターを示す。 尚、第7図のプリンターは第4図に例示の記録ヘッドを
利用したものである。 このプリンターは、キャリッジ21に搭載した記録ヘッ
ド20をレール22および23上で左右に移動させなが
ら記録液を吐出させ、記録液のトッドマトリックスによ
って記録媒体に文字を印字するもので、25は記録媒体
としての紙、24は記録媒体を支持するプラテンである
。 [作用] 本発明では、吐出エネルギー発生手段とは別に、第1加
熱手段をノズルに、また第2の加熱手段を液室にそれぞ
れ設けることにより、液滴の飛翔速度を大きくすること
ができ、これによって飛翔が安定化し、記録媒体への着
弾位置の誤差が小さくなり、記録品位が向上した。また
、吐出エネルギーを記録液に有効に付与し得るようにな
ったので、長時間放置後にも安定な吐出を行なえるよう
になり、インクジェット記録ヘッドの信頼性を向上させ
ることができた。 [発明の効果] 以上に説明した如く、本発明によって、液滴吐出の高速
応答性と吐出安定性に優れた新規なインクジェット記録
ヘッドを提供し得るようになった。
[No matter how far a droplet forms, it is limited by the electric current.
There was a problem in that the repeat drive frequency could not be increased. One effective way to solve these problems is to shorten the length of the nozzle. Reducing the length of the nozzle is equivalent to reducing the resistance of the nozzle wall to the flow, which leads to a reduction in t2. However, shortening the nozzle causes a decrease in the speed of flying droplets and an increase in speed instability, causing the problem that stable recording cannot be performed. [Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned problems of the prior art. The purpose of the present invention is to provide a new inkjet recording head capable of recording. [Means for Solving the Problems] The above objects of the present invention are achieved by the present invention below. An inkjet recording head having a nozzle terminating in an orifice for discharging a recording liquid, a liquid chamber communicating with the nozzle, and an ejection energy generating means attached to the nozzle and supplying ejection energy to the recording liquid. , a first heating means is provided in the nozzle and a second heating means is provided in the liquid chamber separately from the ejection energy generating means, and the first heating means is connected to the ejection energy generating means and the ejection energy generating means. An inkjet recording head characterized in that it is provided between a second heating means. That is, the present invention provides, in addition to the ejection energy generating means, a first heating means mainly for the purpose of increasing and stabilizing the speed of the ejected droplet, and a second heating means mainly for the purpose of shortening the above-mentioned t2. By using these first and second heating means, it is possible to achieve high-speed responsiveness of droplet ejection during recording, and also eliminate the problem of recording liquid ejection failure when resuming recording after being left unused for a long time. This is what I did. [Example] Hereinafter, the present invention will be described in detail with reference to the drawings as necessary. FIG. 1 is a schematic illustration of a preferred embodiment of the present invention. The recording head of this example includes an ejection energy generating means 2,
On the substrate 1 on which the first heating means 3 and the second heating means 4 are provided, a partition wall 5-1 and an outer wall 5-2 are further provided, and a top plate 5 is stacked thereon to form a nozzle 7 and a liquid chamber 8. This is what I did. 30 is an orifice located at the end of the nozzle 7 for ejecting the recording liquid as flying droplets, and 6 is a liquid supply provided as necessary to supply recording liquid to the liquid chamber 8 from outside the recording head. It is the mouth. In the present invention, the discharge energy generating means 2 and the first heating means 3 are placed in the nozzle 7 in this order from the orifice 30 side, and the second heating means 4 is placed inside the nozzle 7 in this order. However, other than the provision of such a heating means, there are no particular limitations on the component structure or formation method of the recording head, and it is similar to that in conventional inkjet recording heads. The same may be desired. Of course, it goes without saying that the number of nozzles, the shape of the orifice, the shape of the liquid chamber, etc. may be set as desired. The ejection energy generating means 2 in the present invention may be of any type as long as it can eject droplets in the same manner as in conventional inkjet recording heads, and specifically, for example, it may use various heating resistors. Typical examples include thermal energy generating means and pressure energy generating means using various piezoelectric bodies. Incidentally, in FIG. 1, a heating resistor is illustrated as an example of the ejection energy generating means 2. The first and second heating means are provided separately from the ejection energy generating means 2, but are not particularly limited in their material, shape, etc., and may be heat generating resistors similar to the ejection energy generating means described above. are listed as typical examples that can be used. Incidentally, in order to make the present invention effective, it is necessary to replace the first heating means 3 with the discharge energy generating means 2.
It is better to have it close to. It is also preferable that the second heating means 4 be located in the liquid chamber 8 immediately after the nozzle 7 and as close to the nozzle 7 as possible to ensure the necessary recording liquid during supply. Hereinafter, the discharge energy generating means 2, the first heating means 3,
The present invention will be further explained by showing an example of the operation during recording when all of the second heating means 4 are heat generating resistors. FIGS. 2(a) to 2(f) show the discharge energy generating means 2.
FIG. 2 is a schematic partial view taken along the line AA in FIG. 1 over time to explain the operations of the first heating means 3 and the second heating means 4. FIG. FIG. 2(a) shows that the discharge energy generating means 2, the first heating means 3, and the second heating means 4 are in a non-operating state, and the liquid chamber 8 is in a non-operating state.
This is a view of the recording head in a printable state with recording liquid being supplied to the nozzles 7. From such a non-operating state (a), a recording signal is first sent to the first heating means 2 to bring it into an operating state. First heating means 3
Immediately after the start of the operation, the operation of the ejection energy generating means 2 is started. Thermal energy is supplied to the recording liquid by the operation of the heating means 3 and the ejection energy generating means 2, and this thermal energy causes a bubbling phenomenon in the recording liquid, and a second figure(
Steam bubbles 9 and 10 are generated as shown in b). FIG. 2(b) shows the state of the steam bubbles 9 generated by operating the first heating means 3 at the maximum volume. FIG. 2(C) shows the state of the vapor bubbles 10 when the volume is at its maximum due to the discharge energy generating means 2 (heating resistor). still,(
It is desirable that the state C) is between immediately before and immediately after the steam bubbles 9 start to self-contract by the first heating means 3. In these states (b) to (C), droplets are not discharged from the vapor bubbles 9 formed by the first heating means. This is because the orifice direction component of the acting force due to the growth of the vapor bubbles 9 has a large resistance loss against the flow caused in the recording liquid by the nozzle forming wall. Further, the purpose of forming the vapor bubbles 9 by the first heating means is not to discharge the vapor bubbles 9, but to eliminate energy loss during liquid droplet discharge and effectively utilize the discharge energy to the liquid, as described below. Since the purpose is to function as a diode, it does not matter at all that it contributes to discharge. The formation of droplets 3 is carried out in the process of foaming and growing of vapor bubbles 1O by the ejection energy generating means and self-shrinking (
(See Figure 2(d)). The acting force when the vapor bubble IO foams and grows includes a component toward the liquid chamber that results in energy loss during droplet ejection. At this time, if you increase the resistance to the flow in that direction and reduce the acting force in the liquid chamber direction that does not contribute to droplet ejection, you can increase the contribution rate of the total acting force to ejection. be. Possible ways to improve this contribution rate include, for example, lengthening the nozzle to increase the resistance caused by the nozzle wall, or providing a barrier, but both of these methods involve lengthening the recording liquid supply time t2 after ejection. Put it away. In contrast, in the present invention, the resistance can be increased only when discharging droplets, and can be decreased during supply. That is, when discharging, the vapor bubbles 9 generated by the first heating means 3 increase the resistance of the nozzle 7 in the direction of the liquid chamber, increasing the contribution rate of the acting force to the discharging, and increasing the flying speed of the droplets. And it should be stable. Furthermore, even for highly viscous recording liquid that may cause ejection failure after being left for a long period of time, the ejection energy can be used effectively by the action of the first heating means, so that droplets can be formed by overcoming viscous resistance. Therefore, the frequency of occurrence of ejection failure immediately after resuming recording is reduced. When the vapor bubble IO self-contracts, a droplet is formed, the meniscus 12 retreats from the orifice 30 into the nozzle, and recording liquid supply by capillary force begins. At this time, the second heating means 4
By activating the liquid chamber 8 in contact with the means 4,
Vapor bubbles 11 are formed in the recording liquid inside the nozzle, and this foaming forces the recording liquid into the nozzle. Figure 2(d)~
(e) shows this situation. This operation significantly shortens 1z, making it possible to record at a high repetitive drive frequency. The vapor bubble 11 then self-contracts and disappears, but at this time the meniscus I2 is hardly drawn into the nozzle. This situation is shown in FIG. 2(f). This seems to be due to the following reasons. That is,
Comparing the growth and contraction of vapor bubbles, we can see that during J-foaming, a nucleus of vapor with high pressure is generated, and the vapor bubble grows all at once until it reaches mechanical equilibrium with its surroundings, but in contraction, the vapor dissolves into the recording liquid. Since the growth is carried out simultaneously, it takes 3 to 5 times as long as the growth. The acting force during growth, which involves such a rapid volume change, is inevitably larger than that during contraction. This acting force during foaming is large enough to overcome the resistance of the nozzle wall, forcing the meniscus toward the orifice, but during contraction, the acting force is lost due to the resistance of the nozzle wall, preventing the meniscus from retreating. It is. The present invention will be further explained below by showing an example of a detailed configuration of a substrate on which ejection energy generating means and first and second heating means for performing such an operation are mounted, and an example of a method of manufacturing a recording head. . FIGS. 3(a) and 3(b) are a partial plan view and a sectional view taken along line AA of an example of a substrate used in the inkjet recording head of the present invention, respectively. This substrate 1 includes a heating resistor 2 as an ejection energy generating means, and a first resistor which increases the resistance to the flow toward the rear of the nozzle during droplet ejection and prevents the recording liquid from retreating.
a heating resistor 3 as a heating means, a heating resistor 4 as a second heating means that achieves a single-hour supply of recording liquid as described above after ejecting a droplet, and achieves high-speed responsiveness of droplet ejection; A common electrode 14 and individual electrodes 15 for applying desired electrical signals according to the ejection pattern to these bowl heating resistors.
.. 16.17 are installed. And Figure 3(b)
These include, for example, glass, ceramics,
A common electrode 14 is formed on a substrate 1 made of a desired material such as Si.
It has a laminated structure in which an insulating protective layer 18, each heating resistance layer 2.3.4, each individual electrode 15, 16, 17, and an insulating protective layer 19 are laminated in this order. Such a substrate is produced, for example, as follows. First, the common electrode 14 is formed on the substrate 1 using 8U, AI, or the like. In this example, 8U was ion beam deposited to a thickness of 0.5 μm on a Si substrate 1 having a thermal oxidation layer 2 to 5 scales thick on its surface. Next, the insulating protective layer 18 is created, and examples of materials constituting the protective layer 18 include titanium oxide, vanadium oxide, niobium oxide, molybdenum oxide, tantalum oxide, tungsten oxide, chromium oxide,
Transition metal compounds such as zirconium oxide, hafnium oxide, lanthanum oxide, yttrium oxide, manganese oxide, metal oxides such as aluminum oxide, calcium oxide, strontium oxide, barium oxide, silicon oxide, and their composites, silicon nitride, nitride High-resistance nitrides such as aluminum, boron nitride, tantalum nitride, and composites of these oxides and nitrides, as well as amorphous silicon,
Examples include thin film materials such as semiconductors such as amorphous selenium, which have low resistance in bulk but can become high in resistance during manufacturing processes such as sputtering, CVD, vapor deposition, gas phase reaction, and liquid coating. The thickness is generally 0.1u1 to 5u+, preferably 0.2p to 3p. In this example, a 5in2 layer with a thickness of 2μ was created by sputtering. Next, a heating resistor layer 2.3.4 is created. As the material constituting the heating resistor layer, almost any material can be used as long as it generates desired heat when energized. Specific examples of such materials include tantalum nitride, nichrome, silver-palladium alloy, silicon semiconductor,
Or hafnium, lanthanum, zirconium, titanium,
Preferred examples include borides of metals such as tantalum, tungsten, molybdenum, niobium, chromium, and vanadium. Among these materials constituting the heating resistor layer, metal borides are particularly excellent, and among these, hafnium boride has the best properties, followed by zirconium boride, The order is lanthanum boride, tantalum boride, vanadium boride, and niobium boride. The heating resistor layer can be formed using the above-mentioned materials using methods such as electron beam evaporation and sputtering. After that, unnecessary portions of these layers are removed using well-known buttering methods such as photolithography and etching, and then layers that will become the electrodes 14, 15, 16, and 17 are created, and the same patterning method as described above is used. Remove unnecessary portions to create an electrode layer with the desired pattern. Furthermore, an insulating protective layer 19 is formed if necessary. In this embodiment, the insulating protective layer 19 is formed by sputtering.
Two films of i02 were formed. Furthermore, in order to improve the durability performance against the mechanical impact force generated when vapor bubbles disappear, AJ, Ta, Ti,
Zr, +lf, V, Nb, Mg, Si,
Mo, W, Y. The protective layer may be formed using metals such as La, alloys thereof, or oxides, carbides, nitrides, borides, etc. of these metals and alloys. Although not particularly shown in the figure, each electrode is provided with an exposed portion for connection to the outside by a method such as bonding. Further, the heat generating resistors may be of any desired shape and size as long as they can achieve the purpose, and may have different shapes and sizes. However, in this embodiment, in order to avoid complicating the drive circuit, they are all the same size and shape, with a width of 30μ and a length of 150JLll. Nozzles, liquid chambers, liquid supply ports, etc. are provided on the inkjet recording head substrate prepared as described above to complete the inkjet recording head of the present invention as illustrated in FIG. 1, for example. FIG. 4 shows another example of such an ink jet recording head of the present invention, and FIG. 4 shows a partial perspective view of the head. The nozzle 7 may be formed using a photosensitive material such as a photosensitive resin film or photosensitive glass, or may be formed by forming a groove on a suitable flat plate such as glass by a mechanical method, etching, etc. It can also be manufactured by a method such as pasting it on the inkjet recording head substrate. Further, at this time, the liquid chamber, the liquid supply port, etc. may be manufactured in one piece. In this embodiment, a photosensitive resin film 31 is used to create a nozzle wall and a liquid chamber wall through a photolithography process and an etching process, and a glass plate with a liquid supply port (not shown) is bonded thereon to form an inkjet The recording head was configured. As mentioned above, the shorter the length of the nozzle 7, the shorter the above-mentioned t2, but this causes a reduction in the ejection speed and stability. In the present invention, this problem is solved by the first heating means 3, so the nozzle can be made as short as necessary, and the recording head can be made more compact. However, it is necessary that the first heating means 3 be installed within the nozzle 7. In this example, the nozzle length was set to 5QOp. The pulse signals shown in FIG. 5 (aL, (b), and (c)) are applied to the inkjet recording head illustrated in FIG. 4 created by the above method to sequentially operate each heating resistor 2.3. In this example, the three heating resistors have exactly the same shape and the same resistance value, so they can be driven with the same voltage waveform.The voltage waveform is a pulsed rectangular wave, and the pulse width is l.
OμSQC was used. The pulse width is the velocity of the flying droplet,
From the viewpoint of cyclic stability, the shorter the length, the better; however, if the length is short, it becomes necessary to apply a larger voltage to the heat generating resistor, which causes a shortening of the durability performance of the heat generating resistor. Furthermore, if the pulse width is made longer than necessary, unnecessary bubbles will be generated during ejection of the liquid layer, which is not preferable. Therefore, the selection of the pulse width is determined by a balanced design that takes into account the above points. The pulse width is preferably within 50 μsec, preferably within 20 μsec, and optimally within 10 μsec. The operation is performed as follows. First, the first heating resistor 3
is operated at the timing shown in FIG. 5(a) to generate steam bubbles. The 'fJ6 diagram is a growth curve of such a vapor bubble. As is clear from the figure, the vapor bubble caused by the first heating resistor 3 does not change sharply before and after its maximum volume, and functions sufficiently as a liquid diode in droplet ejection. When the vapor bubbles of the first heating resistor 3 are in this state, an electric signal is applied to the heating resistor 2 (the (See Figure 5(b)). In this embodiment, the ejection speed of droplets generated by operating the ejection energy generating means at the timing shown in FIG. 5(b) is increased by about 50% due to the presence of vapor bubbles caused by the first heating resistor 3. was completed. When the vapor bubbles caused by the first heating resistor 3 and the ejection energy generating means 2 disappear, the alternation of the meniscus is completed, and the supply of recording liquid is started, a pulse is applied to the second heating resistor 4. In this example, as shown in FIG. 5(C), the first heating resistor 3 was operated with a delay of 50 μsec from the start of its operation. This shortens the recording liquid supply time,
It was possible to obtain a repetition frequency of Hz at the highest IO. Furthermore, the vapor bubbles generated by the first heat generating resistor 3 increase the energy involved in ejection compared to the conventional method, making it possible to prevent ejection failure due to increased viscosity of the recording liquid after being left for a long time. It has also become possible to record stably. FIG. 7 shows an inkjet printer as an example of an inkjet recording apparatus using such an inkjet recording head of the present invention. The printer shown in FIG. 7 uses the recording head illustrated in FIG. 4. This printer discharges recording liquid while moving a recording head 20 mounted on a carriage 21 left and right on rails 22 and 23, and prints characters on a recording medium using a tod matrix of the recording liquid. 24 is a platen that supports the recording medium. [Function] In the present invention, the flying speed of droplets can be increased by providing the first heating means in the nozzle and the second heating means in the liquid chamber, separately from the ejection energy generating means. This stabilized the flight, reduced the error in the landing position on the recording medium, and improved the recording quality. Furthermore, since ejection energy can now be effectively applied to the recording liquid, stable ejection can be performed even after being left for a long time, and the reliability of the inkjet recording head can be improved. [Effects of the Invention] As described above, the present invention makes it possible to provide a novel inkjet recording head that is excellent in high-speed droplet ejection response and ejection stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のインクジェット記録ヘッドの一例の
概略的説明図、第2図(a)〜(f)は吐出エネルギー
発生手段および第1並びに第2の加熱手段の動作例を説
明するために時間を追って示した第1図のA−A断面の
部分概略図、第3図(a)および(b)はそれぞれ本発
明のインクジェット記録ヘッドに用いる基板の一例の平
面部分図とそのA−A断面図、第4図は本発明のインク
ジェット記録ヘッドの別の例の概略的説明図、第5図(
a)〜(C)は本発明のインクジェット記録ヘッドに印
加するパルス信号パターンの一例を示す図、第6図は第
1の加熱手段による蒸気泡の成長曲線の一例を示す図、
第7図は本発明のインクジェットエ己録ヘット°を川し
またインクジェットプリンターの一例を説明する図であ
る。 1;基板 2:吐出エネルギー発生手段
FIG. 1 is a schematic explanatory diagram of an example of an inkjet recording head of the present invention, and FIGS. 2(a) to (f) are for explaining operation examples of the ejection energy generating means and the first and second heating means. FIGS. 3(a) and 3(b) are a partial schematic view of an example of a substrate used in the inkjet recording head of the present invention and its A-A cross-sectional view, respectively. A sectional view, FIG. 4 is a schematic explanatory view of another example of the inkjet recording head of the present invention, and FIG.
a) to (C) are diagrams showing an example of a pulse signal pattern applied to the inkjet recording head of the present invention, FIG. 6 is a diagram showing an example of a growth curve of vapor bubbles by the first heating means,
FIG. 7 is a diagram illustrating an example of an inkjet printing head and an inkjet printer according to the present invention. 1; Substrate 2: Discharge energy generating means

Claims (1)

【特許請求の範囲】[Claims] (1)記録液を吐出させるための液体吐出口を終端とす
る液体流路と、該液体流路に連通する液室と、前記液体
流路に併設され、前記記録液に吐出エネルギーを供給す
る吐出エネルギー発生手段とを有する液体噴射記録ヘッ
ドにおいて、前記吐出エネルギー発生手段とは別に、前
記液体流路に第1の加熱手段を、また前記液室に第2の
加熱手段をそれぞれ有し、前記第1の加熱手段を前記吐
出エネルギー発生手段と前記第2の加熱手段との間に設
けたことを特徴とする液体噴射記録ヘッド。
(1) A liquid flow path that terminates in a liquid ejection port for ejecting recording liquid, a liquid chamber that communicates with the liquid flow path, and a liquid chamber that is provided alongside the liquid flow path and supplies ejection energy to the recording liquid. In the liquid jet recording head, the liquid jet recording head has a first heating means in the liquid flow path and a second heating means in the liquid chamber, separately from the ejection energy generating means, and a second heating means in the liquid chamber. A liquid jet recording head characterized in that a first heating means is provided between the ejection energy generating means and the second heating means.
JP8415986A 1986-04-14 1986-04-14 Liquid jet recording head Pending JPS62240558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8415986A JPS62240558A (en) 1986-04-14 1986-04-14 Liquid jet recording head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8415986A JPS62240558A (en) 1986-04-14 1986-04-14 Liquid jet recording head

Publications (1)

Publication Number Publication Date
JPS62240558A true JPS62240558A (en) 1987-10-21

Family

ID=13822717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8415986A Pending JPS62240558A (en) 1986-04-14 1986-04-14 Liquid jet recording head

Country Status (1)

Country Link
JP (1) JPS62240558A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0317171A2 (en) * 1987-11-13 1989-05-24 Hewlett-Packard Company Integral thin film injection system for thermal ink jet heads and methods of operation
EP0326428A2 (en) * 1988-01-27 1989-08-02 Canon Kabushiki Kaisha Discharge recovery method for an ink jet recording head, recording head adopting the same method and ink jet recording apparatus adopting the same method
US5053787A (en) * 1988-01-27 1991-10-01 Canon Kabushiki Kaisha Ink jet recording method and head having additional generating means in the liquid chamber
DE4317944A1 (en) * 1992-05-29 1993-12-09 Hitachi Koki Kk Ink jet spray heads - with special thin film resistors to project ink from head openings by pulsed heating
US5479196A (en) * 1990-02-26 1995-12-26 Canon Kabushiki Kaisha Ink jet recording apparatus and method of recovery ink discharging condition of the same
EP0816084A2 (en) * 1996-06-28 1998-01-07 Canon Kabushiki Kaisha Method of driving a plurality of heating elements at shifted timings
US5831648A (en) * 1992-05-29 1998-11-03 Hitachi Koki Co., Ltd. Ink jet recording head
US5966153A (en) * 1995-12-27 1999-10-12 Hitachi Koki Co., Ltd. Ink jet printing device
EP0894625A3 (en) * 1997-07-31 2000-08-23 Canon Kabushiki Kaisha A liquid discharge method and a liquid discharge apparatus
US6109735A (en) * 1996-06-07 2000-08-29 Canon Kabushiki Kaisha Liquid discharging method, liquid supplying method, liquid discharge head, liquid discharge head cartridge using such liquid discharge head, and liquid discharge apparatus
US6213592B1 (en) 1996-06-07 2001-04-10 Canon Kabushiki Kaisha Method for discharging ink from a liquid jet recording head having a fluid resistance element with a movable member, and head, head cartridge and recording apparatus using that method
US6260962B1 (en) 1991-01-19 2001-07-17 Canon Kabushiki Kaisha Liquid jetting device having a mechanism for introducing a bubble into a liquid chamber and recording apparatus using the device
US6926842B2 (en) 2001-11-08 2005-08-09 Benq Corporation Fluid injection head structure and method thereof
US6938993B2 (en) 2002-10-31 2005-09-06 Benq Corporation Fluid injection head structure
US6981323B2 (en) 2001-11-08 2006-01-03 Benq Corporation Method for fabricating a fluid injection head structure
JP2015136877A (en) * 2014-01-23 2015-07-30 セイコーエプソン株式会社 Liquid discharge device and liquid discharge state detection method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0317171A3 (en) * 1987-11-13 1990-07-18 Hewlett-Packard Company Integral thin film injection system for thermal ink jet heads and methods of operation
EP0317171A2 (en) * 1987-11-13 1989-05-24 Hewlett-Packard Company Integral thin film injection system for thermal ink jet heads and methods of operation
EP0326428A2 (en) * 1988-01-27 1989-08-02 Canon Kabushiki Kaisha Discharge recovery method for an ink jet recording head, recording head adopting the same method and ink jet recording apparatus adopting the same method
US5053787A (en) * 1988-01-27 1991-10-01 Canon Kabushiki Kaisha Ink jet recording method and head having additional generating means in the liquid chamber
US5479196A (en) * 1990-02-26 1995-12-26 Canon Kabushiki Kaisha Ink jet recording apparatus and method of recovery ink discharging condition of the same
CN1078534C (en) * 1991-01-19 2002-01-30 佳能株式会社 Liquid jetting device and recording apparatus using device
US6260962B1 (en) 1991-01-19 2001-07-17 Canon Kabushiki Kaisha Liquid jetting device having a mechanism for introducing a bubble into a liquid chamber and recording apparatus using the device
US5710583A (en) * 1992-05-29 1998-01-20 Hitachi Koki Co., Ltd. Ink jet image recorder
DE4317944A1 (en) * 1992-05-29 1993-12-09 Hitachi Koki Kk Ink jet spray heads - with special thin film resistors to project ink from head openings by pulsed heating
US5831648A (en) * 1992-05-29 1998-11-03 Hitachi Koki Co., Ltd. Ink jet recording head
US5966153A (en) * 1995-12-27 1999-10-12 Hitachi Koki Co., Ltd. Ink jet printing device
US6109735A (en) * 1996-06-07 2000-08-29 Canon Kabushiki Kaisha Liquid discharging method, liquid supplying method, liquid discharge head, liquid discharge head cartridge using such liquid discharge head, and liquid discharge apparatus
US6213592B1 (en) 1996-06-07 2001-04-10 Canon Kabushiki Kaisha Method for discharging ink from a liquid jet recording head having a fluid resistance element with a movable member, and head, head cartridge and recording apparatus using that method
EP0816084A2 (en) * 1996-06-28 1998-01-07 Canon Kabushiki Kaisha Method of driving a plurality of heating elements at shifted timings
EP0816084A3 (en) * 1996-06-28 1998-10-07 Canon Kabushiki Kaisha Method of driving a plurality of heating elements at shifted timings
US6382768B1 (en) 1996-06-28 2002-05-07 Canon Kabushiki Kaisha Method of driving a plurality of heating elements at shifted timings
EP0894625A3 (en) * 1997-07-31 2000-08-23 Canon Kabushiki Kaisha A liquid discharge method and a liquid discharge apparatus
US6375309B1 (en) 1997-07-31 2002-04-23 Canon Kabushiki Kaisha Liquid discharge apparatus and method for sequentially driving multiple electrothermal converting members
US6926842B2 (en) 2001-11-08 2005-08-09 Benq Corporation Fluid injection head structure and method thereof
US6981323B2 (en) 2001-11-08 2006-01-03 Benq Corporation Method for fabricating a fluid injection head structure
US6938993B2 (en) 2002-10-31 2005-09-06 Benq Corporation Fluid injection head structure
CN1322980C (en) * 2003-07-01 2007-06-27 明基电通股份有限公司 Fluid injection head structure
JP2015136877A (en) * 2014-01-23 2015-07-30 セイコーエプソン株式会社 Liquid discharge device and liquid discharge state detection method

Similar Documents

Publication Publication Date Title
US4336548A (en) Droplets forming device
JPS62240558A (en) Liquid jet recording head
JP3115720B2 (en) INK JET PRINT HEAD, INK JET PRINTING APPARATUS HAVING THE PRINT HEAD, AND METHOD OF MANUFACTURING THE PRINT HEAD
JPS62156969A (en) Liquid jet recording head
JPH1199649A (en) Ink jet head, manufacture thereof, and ink jet unit
JPS62169657A (en) Liquid jet recording head
JPH035151A (en) Liquid jet recording head
JP2902136B2 (en) Ink flight recording device
JPH05301345A (en) Ink jet head
JP2865943B2 (en) INK JET HEAD, METHOD OF MANUFACTURING THE SAME, AND INK JET RECORDING APPARATUS USING THE SAME
JPH064326B2 (en) Liquid jet recording head
JP2866256B2 (en) INK JET HEAD, METHOD OF MANUFACTURING THE SAME, AND INK JET RECORDING APPARATUS USING THE SAME
JPH05124208A (en) Liquid jet recording head and production thereof
JPH11198387A (en) Manufacture of ink jet recording head
JPS5931942B2 (en) Droplet jet recording device
JP2865945B2 (en) INK JET HEAD, METHOD OF MANUFACTURING THE SAME, AND INK JET RECORDING APPARATUS USING THE SAME
JP3336312B2 (en) Color printing head
JP3262959B2 (en) Recording device
JP2866253B2 (en) INK JET HEAD, METHOD OF MANUFACTURING THE SAME, AND INK JET RECORDING APPARATUS USING THE SAME
JPH07314687A (en) Ink-jet recording head
JPH0584910A (en) Liquid jet recording head
JP2866255B2 (en) INK JET HEAD, METHOD OF MANUFACTURING THE SAME, AND INK JET RECORDING APPARATUS USING THE SAME
JP2866254B2 (en) INK JET HEAD, METHOD OF MANUFACTURING THE SAME, AND INK JET RECORDING APPARATUS USING THE SAME
JPH10226068A (en) Ink jet head
JP2001150679A (en) Ink-jet printing head