JPS62239B2 - - Google Patents
Info
- Publication number
- JPS62239B2 JPS62239B2 JP52127335A JP12733577A JPS62239B2 JP S62239 B2 JPS62239 B2 JP S62239B2 JP 52127335 A JP52127335 A JP 52127335A JP 12733577 A JP12733577 A JP 12733577A JP S62239 B2 JPS62239 B2 JP S62239B2
- Authority
- JP
- Japan
- Prior art keywords
- machining
- fine particles
- fluid
- acids
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003754 machining Methods 0.000 claims description 35
- 239000010419 fine particle Substances 0.000 claims description 25
- 239000012530 fluid Substances 0.000 claims description 25
- 238000012545 processing Methods 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 150000007513 acids Chemical class 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 239000000839 emulsion Substances 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims 2
- 150000004706 metal oxides Chemical class 0.000 claims 2
- 239000003792 electrolyte Substances 0.000 claims 1
- 239000011859 microparticle Substances 0.000 claims 1
- 239000003921 oil Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 description 10
- -1 sodium lauryl fatty acid Chemical class 0.000 description 7
- 238000002156 mixing Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 238000009760 electrical discharge machining Methods 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 238000000227 grinding Methods 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Lubricants (AREA)
Description
本発明は、電気加工用液に極めて細かいミリミ
クロン・オーダーの微粒子を、またはこれと共に
分散剤もしくは防錆剤を混合し、加工効率を向上
させるための改良に関する。
従来、放電加工、電解加工、電解研削、電気メ
ツキ、電鋳、電解加熱などの電気加工用液として
用いてきた液は、多くの改良についての提案がさ
れている。たとえば、放電加工には、軽質油、ケ
ロシン、純水、電解加工には、表面活性剤を添加
したり金属イオンを含有させたもの、その他高分
子化合物を含む水溶液、防錆剤たとえばソルビツ
ト添加液などが用いられているがいずれも加工速
度などの加工性能は充分とは言えない。
本発明は、各種電気加工用の加工液を改良し
て、各々の加工分野において著しく高性能を発揮
する加工液であつて、また電極消耗を低下し加工
精度を維持し且つ加工時間を短縮する加工液を、
在来の加工液を基礎として、効果的な添加により
加工性を良好にする加工液を提供することが目的
である。
本発明は、前記した目的を達成するために、在
来用いられてきた加工液に、ミリミクロンないし
オングストロームオーダーの寸法の硬質微粒子、
たとえば無機物質の1〜150ミリミクロン・サイ
ズのものを添加混合する。微粒子としては
SiO2、Al2O3、MgO、ZrO、TiO2、Fe2O3など、
その他の硬質粒子が用いられる。さらに前記微粒
子添加液にラウリル脂肪族の酸、該酸の誘導体、
該酸の塩、該酸の誘導体の塩、またはこれらの混
合体の中から少なくとも一つを選んで添加し混合
し均一分散させるものである。
次に、本発明の若干の実施例について説明す
る。
実施例 1
電解加工液として常用されているNaNO210
%、NaNO315%の水溶液に、アエロジル(商品
名)主成分の直径5ミリミクロン微粒子を、この
微粒子は本質的に硬質であるが、これを前記の水
溶液に対し容積で6%を混入すると共に、ラウリ
ル脂肪酸ナトリウムを容積で0.01%混入した。粒
径の非常に小さい前記微粒子は水溶液中で凝集し
やすいものであるが、分散剤として作用するラウ
リル脂肪族の化合物を添加することにより、前記
微粒子を水溶液中に容易に均一分散させることが
できる。しかして、混入前の粘度が4×102cpで
あつたものが、混入によつて、5×103cpと高く
なつた。この混入液を用いて電解加工するときの
噴流圧力を、3.5Kg/cm2として、直径10mmφ噴流
孔5mmφの鋼電極を用いてWC―Co合金材の加工
をした。前記微粒子を混入しない場合に、常に発
生した“液割れ”による表面の粗さが前記の硬質
微粒子を混入した液を用いた場合には、ほとんど
認められない平滑な加工面を得られた。また加工
液の噴流によつて混入微粒子がメカノケミカル的
な作用をし、被加工体の加工表面に衝突して傷付
け電解生成酸化膜等を除去し常に活性化状態を保
持するために電解作用が向上し、加工電源に
10V、500Aの電源を用いて平均加工電圧6Vで加
工したとき、加工送り速度は約4.5mm/min、面
粗さ約6〜7μRmaxで、従来の約2倍程度に加
工速度が向上した。このように本発明の加工液に
よれば加工速度、加工能率を著しく高めることが
でる。また前記混入微粒子は流動中に液との相互
摩擦、電界等の作用によつて荷電をし、荷電粒子
が電界によつて吸引、反発等の作用で移動をし飛
散をし衝突をするから、これによる液の撹拌効果
を高め、衝突効果を高め加工効果の向上に著しく
影響を与え、性能を向上せしめる効果がある。し
たがつて、さらに安定確実な平滑加工面が得られ
る。作業効率も向上する。さらに、前記作業にお
いても、また他の作業、たとえば研削、研磨など
の作業においても、微粒子混合によつて、加工精
度が向上する。また電解による研削、研磨作業の
場合、混入微粒子による研磨表面の活性化効果は
勿論あるが、研磨工具と研磨面との圧接間隙に微
粒子が入り込み、これが間隔子となつて液の流入
を容易にし、常に薄い液膜を介在させることがで
き、冷却効果を高め、加工性を高め、加工精度を
高める。
実施例 2
純水(105オーム・センチ)をイオン交換によ
つて得て、SiO2またはAl2O3の5ミリミクロン直
径の微粒子、この微粒子も本質的に硬質である
が、これらを容積で2%混入すると共に、ラウリ
ル脂肪酸のラクトンを容積で0.01%混入して、前
記微粒子を均一分散させた放電加工液を用いてワ
イヤカツト加工をしたとき、電極消耗率は従来の
純水を用いたときの32%が1.2%に改善され、加
工面粗さが、パルス高さ(Ip)15Aパルス幅(τ
on)5ミクロン秒で行い、8μRmaxのブランク
値に対し5μRmaxに低下した。微粒子の種類
を、Fe2O3、TiO2またはこれらの混合物に代えた
場合も、同様な結果をもたらした。また前記の
(純水+2%SiO2)の加工液にラウリル脂肪酸の
ラクトンが混入されていることにより、前記微粒
子を容易に均一分散混合することができると共に
被加工体加工面に対する防錆効果があり、加工後
発錆は全く見られなかつた。
実施例 3
放電加工用に常用されているケロシンまたはケ
ロシンの水エマルジヨン工作加工液に、7〜8ミ
リミクロン直径のSiO2粒子を容積比で3〜4%
混入すると共に、ラウリル脂肪酸のラクトンを容
積比で0.01%混入した加工液を用いると、τon
160ミクロン秒Ip20Aのパルス幅と高さの下での
EDMは、加工面の粗さが、ほぼ50%低下し、電
極消耗率がブランクが4%に比較して0.2%に改
善された。添加するSiO2粒に水を吸着させるよ
うにし、実際に1.8%の水分を吸着させたものを
用いると効果が早く得られることを確認した。ま
たSiO2微粒子は、5〜100ミリミクロンを用い得
ること、また電極の既加工部とのアーク放電を阻
止する効果の大であることも確認した。さらに、
前記のようにラウリル脂肪族を分散剤として0.01
%を添加し、均一分散させることによつて、混合
微粒子が沈澱することなく安定して分散し、加工
液を循環使用するとき、加工性能を落すことなく
安定に加工することができ、加工能率を向上させ
ることを確認した。
また以上の各実験において微粒子は、1〜150
ミリミクロンの場合に、有効なことが確認され
た。なお微粒子の生成にはアエロジルと同じ気相
法とか電解法等の任意の方法が利用できる。ラウ
リル脂肪族を0.01〜0.5%添加すると、良好な結
果がもたらされた。
すでに述べたように、本発明の電気加工用液
に、無機物質、その他の無機酸化物の中から用途
に応じ選択した少なくとも一つたとえばSiO2、
Al2O3、MgO、ZrO、Fe2O3、TiO2の、大きさが
1〜150ミリミクロン程度の硬質微粒子を、加工
用液に対し10%以下の量を添加混和した加工液
は、加工効率と精度を向上する。放電加工の場合
には、電極消耗量を、著るしく少なくする。また
ラウリル脂肪族の酸、該酸の誘導体、これらの塩
またはこれらの混合物のうちの少なくとも一種を
用途に応じて選択して用いて、これの分散剤とし
ての作用により前記混合微粒子が沈澱分離などす
ることなく常に均一分散状態に混合していて安定
にメカノケミカル的な加工を促集させるので、加
工効果を向上させることができる。また作業性と
作業精度を良好にし、加工液の使用耐用期間を延
長させる。
次に、各種加工液の実施例を表に示す。
The present invention relates to an improvement for improving processing efficiency by mixing extremely fine particles on the order of millimicrons or a dispersant or rust preventive agent together with the particles in an electrical processing fluid. BACKGROUND ART Many improvements have been proposed for liquids that have been conventionally used as electrolytic machining liquids for electrical discharge machining, electrolytic machining, electrolytic grinding, electroplating, electroforming, electrolytic heating, and the like. For example, for electrical discharge machining, light oil, kerosene, and pure water are used; for electrolytic machining, aqueous solutions containing surfactants or metal ions, other polymeric compounds, and anti-corrosion agents such as sorbitol are used. However, the machining performance such as machining speed cannot be said to be sufficient. The present invention improves machining fluids for various electrical machining applications, and provides a machining fluid that exhibits remarkable high performance in each machining field, reduces electrode wear, maintains machining accuracy, and shortens machining time. processing fluid,
The purpose is to provide a machining fluid based on conventional machining fluids that improves processability through effective addition. In order to achieve the above-mentioned object, the present invention adds hard fine particles with dimensions on the order of millimicrons to angstroms to a conventionally used machining fluid.
For example, inorganic substances with a size of 1 to 150 millimicrons are added and mixed. As fine particles
SiO2 , Al2O3 , MgO, ZrO, TiO2 , Fe2O3 , etc.
Other hard particles may be used. Further, in the fine particle addition liquid, a lauryl aliphatic acid, a derivative of the acid,
At least one of a salt of the acid, a salt of a derivative of the acid, or a mixture thereof is added, mixed, and uniformly dispersed. Next, some embodiments of the present invention will be described. Example 1 NaNO 2 10 commonly used as electrolytic processing fluid
%, NaNO 3 15% aqueous solution, 5 millimicron diameter fine particles of Aerosil (trade name) as the main component, which are essentially hard, are mixed in an amount of 6% by volume based on the above aqueous solution. At the same time, 0.01% by volume of sodium lauryl fatty acid was mixed. The fine particles, which have a very small particle size, tend to aggregate in an aqueous solution, but by adding a lauryl aliphatic compound that acts as a dispersant, the fine particles can be easily and uniformly dispersed in an aqueous solution. . However, the viscosity was 4×10 2 cp before mixing, but it increased to 5×10 3 cp due to mixing. The jet pressure during electrolytic processing using this mixed liquid was set to 3.5 Kg/cm 2 , and a WC-Co alloy material was processed using a steel electrode with a diameter of 10 mm and a jet hole of 5 mm. A smooth machined surface was obtained in which the surface roughness caused by "liquid cracking" that always occurred when the fine particles were not mixed was hardly observed when the liquid containing the hard fine particles was used. In addition, the jet of machining fluid causes the mixed particles to have a mechanochemical effect, colliding with the machining surface of the workpiece to remove the damaged electrolytically generated oxide film, etc., and to maintain the activated state at all times, electrolytic action is performed. Improved processing power
When machining was performed using a power source of 10 V and 500 A with an average machining voltage of 6 V, the machining feed rate was approximately 4.5 mm/min and the surface roughness was approximately 6 to 7 μRmax, which is approximately twice the machining speed compared to the conventional method. As described above, the machining fluid of the present invention can significantly increase machining speed and machining efficiency. In addition, the mixed fine particles become charged due to mutual friction with the liquid and the action of an electric field while flowing, and the charged particles move due to the action of attraction, repulsion, etc. due to the electric field, scatter, and collide. This has the effect of increasing the stirring effect of the liquid, increasing the collision effect, and significantly influencing the improvement of the processing effect, thereby improving performance. Therefore, a more stable and reliable smooth machined surface can be obtained. Work efficiency will also improve. Furthermore, in the above operations as well as in other operations such as grinding and polishing, the processing accuracy is improved by mixing fine particles. In addition, in the case of electrolytic grinding and polishing work, mixed fine particles naturally have the effect of activating the polishing surface, but fine particles also enter the pressure gap between the polishing tool and the polishing surface, and this acts as a spacer and facilitates the inflow of liquid. , it is possible to always have a thin liquid film interposed, which increases the cooling effect, improves workability, and improves processing accuracy. Example 2 Pure water (10 5 ohm cm) was obtained by ion exchange, and fine particles of SiO 2 or Al 2 O 3 with a diameter of 5 millimeters, which are also hard in nature, were collected by volume. When wire cutting was performed using an electrical discharge machining fluid containing 2% of lactone and 0.01% of lauryl fatty acid lactone by volume to uniformly disperse the fine particles, the electrode wear rate was lower than that of conventional pure water. The machined surface roughness was improved from 32% to 1.2% when the pulse height (Ip) was 15A and the pulse width (τ
on) for 5 μm seconds, and the blank value of 8 μRmax was reduced to 5 μRmax. Similar results were obtained when the type of fine particles was replaced with Fe 2 O 3 , TiO 2 or a mixture thereof. In addition, by mixing lauryl fatty acid lactone into the above-mentioned (pure water + 2% SiO 2 ) processing fluid, the fine particles can be easily dispersed and mixed, and the rust prevention effect on the machined surface of the workpiece can be achieved. Yes, and no post-processing rust was observed. Example 3 SiO 2 particles with a diameter of 7 to 8 millimeters were added to 3 to 4% by volume of kerosene or kerosene water emulsion machining fluid commonly used for electric discharge machining.
In addition, when using a processing fluid containing 0.01% by volume of lauryl fatty acid lactone, τon
Pulse width and height below 160 microns Ip20A
With EDM, the roughness of the machined surface was reduced by almost 50%, and the electrode wear rate was improved to 0.2% compared to 4% for the blank. We made sure that the two SiO grains we added were able to adsorb water, and we confirmed that the effect could be obtained more quickly if we used one that had 1.8% of water adsorbed. It was also confirmed that SiO 2 fine particles having a size of 5 to 100 millimicrons can be used, and that they are highly effective in preventing arc discharge with the already processed part of the electrode. moreover,
0.01 lauryl aliphatic as a dispersant as described above.
% and dispersed uniformly, the mixed fine particles are stably dispersed without sedimentation, and when the machining fluid is circulated, stable machining can be performed without reducing machining performance, increasing machining efficiency. It was confirmed that it improved. In each of the above experiments, the number of fine particles ranged from 1 to 150.
It was confirmed that it is effective in the case of millimicrons. Note that any method such as the same gas phase method or electrolytic method as used for Aerosil can be used to generate the fine particles. Addition of 0.01-0.5% lauryl aliphatic gave good results. As already mentioned, the electroworking liquid of the present invention contains at least one material selected from inorganic substances and other inorganic oxides depending on the application, such as SiO 2 ,
A machining fluid in which hard fine particles of Al 2 O 3 , MgO, ZrO, Fe 2 O 3 , and TiO 2 with a size of about 1 to 150 millimicrons are added to the machining fluid in an amount of 10% or less is Improve machining efficiency and accuracy. In the case of electrical discharge machining, the amount of electrode wear is significantly reduced. In addition, at least one of lauryl aliphatic acids, derivatives of the acids, salts thereof, or mixtures thereof may be selected and used depending on the purpose, and the mixed fine particles may be precipitated and separated by the action of this as a dispersant. It is possible to improve the processing effect because the mechanochemical processing is stably facilitated by constantly mixing in a uniformly dispersed state without any turbidity. It also improves workability and accuracy and extends the service life of the machining fluid. Next, examples of various processing fluids are shown in the table.
【表】
以上のように、ラウリル脂肪族の酸、及び該酸
の誘導体等の添加量は、加工液に対し0.01Vol%
で既に相当に有効なもので、その添加量の下限を
0.005Vol%とすることができる。尚ラウリル脂肪
族の化合物は表中では、代表的にラウリル脂肪酸
ナトリウムを示した。他の誘導体、それらの塩で
も同様である。[Table] As shown above, the amount of lauryl aliphatic acid and its derivatives added is 0.01Vol% to the processing fluid.
It is already quite effective, and the lower limit of its addition amount has to be set.
It can be 0.005Vol%. Note that sodium lauryl fatty acid is typically shown as a lauryl aliphatic compound in the table. The same applies to other derivatives and their salts.
Claims (1)
ルジヨンを主体とする加工液に於て、1乃至150
ミリミクロン程度の硬質無機物からなる微粒子を
前記加工液に対し10Vol%以下の量を添加すると
共に、ラウリル脂肪族の酸、該酸の誘導体、該酸
の塩、該酸の誘導体の塩又はこれらの混合体の中
から少なくとも一つを用途に応じて選定し前記加
工液に対し0.005〜0.5Vol%添加し混和して、前
記微粒子を前記加工液中に均一分散させてなるこ
とを特徴とする電気加工用液。 2 1乃至150ミリミクロン程度の硬質無機物か
らなる微粒子として、SiO2、Al2O3、MgO、
ZrO、TiO、Fe2O3その他の金属酸化物の中か
ら、用途に応じて選択した少なくとも1以上を用
いるものである特許請求の範囲第1項に記載の電
気加工用液。[Scope of Claims] 1. In a machining fluid mainly composed of water, electrolyte, oil or emulsion used in electrical machining, from 1 to 150
In addition to adding microparticles made of hard inorganic substances of millimicron size to the processing liquid in an amount of 10 vol% or less, lauryl aliphatic acids, derivatives of the acids, salts of the acids, salts of the derivatives of the acids, or At least one of the mixtures is selected according to the application, and 0.005 to 0.5 Vol% is added to the processing fluid and mixed to uniformly disperse the fine particles in the processing fluid. Processing fluid. 2 As fine particles made of hard inorganic substances with a size of about 1 to 150 millimicrons, SiO 2 , Al 2 O 3 , MgO,
The electroworking fluid according to claim 1, which uses at least one metal oxide selected from ZrO, TiO, Fe 2 O 3 and other metal oxides depending on the intended use.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12733577A JPS5461380A (en) | 1977-10-24 | 1977-10-24 | Improved machining liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12733577A JPS5461380A (en) | 1977-10-24 | 1977-10-24 | Improved machining liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5461380A JPS5461380A (en) | 1979-05-17 |
JPS62239B2 true JPS62239B2 (en) | 1987-01-06 |
Family
ID=14957368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12733577A Granted JPS5461380A (en) | 1977-10-24 | 1977-10-24 | Improved machining liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5461380A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01113850U (en) * | 1988-01-27 | 1989-07-31 | ||
JPH05225656A (en) * | 1992-02-14 | 1993-09-03 | Mitsubishi Electric Corp | Tape loading mechanism |
JPH05303802A (en) * | 1992-04-23 | 1993-11-16 | Sanyo Electric Co Ltd | Tape loading device |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5827318B2 (en) * | 1981-02-27 | 1983-06-08 | 出光興産株式会社 | How to prevent metalworking oil from rotting |
AU603927B2 (en) * | 1987-09-21 | 1990-11-29 | Unilever Plc | A lubricant comprising an oil-in water emulsion, a process for the preparation thereof and the use of the lubricant |
US6383991B1 (en) | 1998-04-03 | 2002-05-07 | Kao Corporation | Cutting oil composition |
KR102677223B1 (en) * | 2015-11-04 | 2024-06-20 | 헨켈 아게 운트 코. 카게아아 | Powder lubricants based on fatty acids and fatty acid glycerides and their uses |
CN110125495B (en) * | 2019-05-11 | 2021-04-09 | 北京工业大学 | Machining fluid for improving electric spark machining efficiency and preparation method thereof |
CN110699157B (en) * | 2019-10-18 | 2021-09-21 | 中科孚迪科技发展有限公司 | Cutting oil for titanium alloy processing and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS498681A (en) * | 1972-05-30 | 1974-01-25 |
-
1977
- 1977-10-24 JP JP12733577A patent/JPS5461380A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS498681A (en) * | 1972-05-30 | 1974-01-25 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01113850U (en) * | 1988-01-27 | 1989-07-31 | ||
JPH05225656A (en) * | 1992-02-14 | 1993-09-03 | Mitsubishi Electric Corp | Tape loading mechanism |
JPH05303802A (en) * | 1992-04-23 | 1993-11-16 | Sanyo Electric Co Ltd | Tape loading device |
Also Published As
Publication number | Publication date |
---|---|
JPS5461380A (en) | 1979-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumar | Development of mirror like surface characteristics using nano powder mixed electric discharge machining (NPMEDM) | |
JPS62239B2 (en) | ||
DE3912887A1 (en) | METHOD FOR ELECTROEROSIVE GRINDING WITH ABRASIVE | |
US20220372648A1 (en) | Solid electrolyte for dry electropolishing of metals with activity moderator | |
WO2023168780A1 (en) | Polishing solution having low abrasive material content and weak acidity for ultra-precise machining of optical glass, preparation method therefor | |
CN107937965A (en) | A kind of magnesium alloy anodic oxidation electrolyte and anodic oxidation method for magnesium alloy | |
JP2004331737A (en) | Fluid for working | |
JP2012076200A (en) | Water-soluble cutting fluid | |
JP2741582B2 (en) | EPD grinding and cutting method | |
DE3240469C2 (en) | ||
JPH05156239A (en) | Slurry and paste for ultra-precision processing | |
JP2875923B2 (en) | Grinding oil for electrolytic dressing grinding and electrolytic dressing method | |
JP2609342B2 (en) | Electric discharge machining method, electric discharge machine, and powder | |
JP4823142B2 (en) | Manufacturing method of semiconductor device | |
EP2133400A1 (en) | Ceroxide and dispersion containing particulate additive | |
US3355369A (en) | Process using a fluoride electrolyte for the electrolytic and electrochemical working of metals | |
Abdul Razak et al. | Effect of surfactant on EDM of low conductivity reaction-bonded silicon carbide | |
JP3113557B2 (en) | Diamond blade for EPD grinding and cutting | |
CN113798611B (en) | Free abrasive particle processing liquid for ultrasonic hydrogen embrittlement composite processing and application thereof | |
JPS5993239A (en) | Machining fluid for electric discharge machining | |
JP3486198B2 (en) | Powder concentrated dispersion liquid and powder dispersion electric discharge machining liquid | |
Inada et al. | Effects of ELID-electrolytic coolant with nanometer size carbon particles on the cutting phenomena | |
Ji et al. | Study on emulsion for electrical discharge milling of SiC ceramic | |
JPH08150515A (en) | Wire discharge finishing work method and power source for wire discharge finishing work | |
Tak et al. | Studies in Pulsed Electrochemical Micro-Drilling on Titanium Alloy with an Addition of Complexing Agent to Electrolyte |