JPS62238525A - Liquid crystal optical switch device - Google Patents

Liquid crystal optical switch device

Info

Publication number
JPS62238525A
JPS62238525A JP8101486A JP8101486A JPS62238525A JP S62238525 A JPS62238525 A JP S62238525A JP 8101486 A JP8101486 A JP 8101486A JP 8101486 A JP8101486 A JP 8101486A JP S62238525 A JPS62238525 A JP S62238525A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
state
optical switch
crystal molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8101486A
Other languages
Japanese (ja)
Other versions
JP2522645B2 (en
Inventor
Shoichi Kudo
工藤 省一
Kazutoshi Sawada
和利 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP61081014A priority Critical patent/JP2522645B2/en
Publication of JPS62238525A publication Critical patent/JPS62238525A/en
Application granted granted Critical
Publication of JP2522645B2 publication Critical patent/JP2522645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To execute a response at a high speed without lowering a contrast, by turning on and off a voltage which is applied between both transparent electrodes, and changing a transmittivity of light by utilizing a specific torsion state of a liquid crystal molecule. CONSTITUTION:When a voltage is not applied between both transparent electrodes 2A, 2B, a liquid crystal 4 molecule takes a torsion state of about 90 deg.+180 deg. in a cell, and when the voltage is applied, the liquid crystal 4 molecule takes a vertically oriented state. Thereafter, when the voltage has been turned off, the liquid crystal 4 molecule takes successively a torsion state (m) of about 90 deg.+180 deg.Xm (m is an integer of 0<=m<n), which is a relaxed state to a torsion state at the time when no voltage is applied, extending from '0' to (n)-1. Also, a transmittivity of light is changed by utilizing two states of the vertically oriented state at the time when this voltage is applied, and the torsion state of about 90 deg.+180 deg.Xm of the liquid crystal molecule at the time when the voltage has been turned off. In such a way, switching can be executed much more quickly than a conventional liquid crystal display device of a TN mode.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高速でオン、オフを繰り返す液晶光学スイッ
チ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal optical switch device that repeatedly turns on and off at high speed.

[従来の技術] 従来高速でオン、オフを繰り返す液晶光学スイッチ装置
としては、二周波駆動法によるプリンターへンド装置が
知られている。
[Prior Art] As a conventional liquid crystal optical switch device that repeatedly turns on and off at high speed, a printer hand device using a dual-frequency drive method is known.

この二周波駆動法においては、数KHzまでの低周波と
数1・KH2〜数百KHzの高周波が用いられている。
In this two-frequency drive method, a low frequency of up to several KHz and a high frequency of several 1.KH2 to several hundred KHz are used.

このため、高周波領域では透明電極ノ2(板の電極抵抗
を低くしなければ、液晶に印加される有効電圧が低ドす
ることとなり、大面積を駆動することが難しいという欠
点を有する。
For this reason, in the high frequency range, unless the electrode resistance of the transparent electrode plate 2 is lowered, the effective voltage applied to the liquid crystal will be lowered, making it difficult to drive a large area.

また、二周波駆動に適する液晶材料は、液晶分子−の分
子軸に対して横方向の相互作用が強くなるため、通常の
ネマチック液晶に比べ粘性が非常に高くなっている。こ
のため、高速応答を111るためには、高電圧が必要と
なり、ひいては消費電力が大きくなる欠点を有していた
Furthermore, liquid crystal materials suitable for dual-frequency driving have a much higher viscosity than normal nematic liquid crystals because the interaction in the lateral direction with respect to the molecular axes of liquid crystal molecules is strong. Therefore, in order to achieve high-speed response, a high voltage is required, which has the disadvantage of increasing power consumption.

そこで数KHzまでの低周波中−信号による駆動方式が
望まれている。この従来の低周波中・信号による駆動方
式では、通常のツイストネマチック(T N)モードに
おいては、その電圧印加(オン)時の応答性は、′市川
を高くすることにより速くすることができる。しかし、
その電圧を!、lJった(オフ)時の応答性は、電圧に
よって速くすることができなく、セルの基板間隙をIX
しくしたり、液晶を低粘性化することにより多少は速く
できるが、この応答速度は0℃でせいぜい数1−m5e
c程度にすぎなかった。また、この基板間隙の薄型化及
び液晶の低粘性化により、液晶光学スイッチ装置自体の
コントラストが低fしてしまうこともあり、コントラス
トが良くかつ高速応答が得られる液晶光学スイッチ装置
は得られていなかった。
Therefore, a drive system using low frequency medium signals of up to several KHz is desired. In this conventional driving method using a low frequency medium signal, in the normal twisted nematic (TN) mode, the response when voltage is applied (on) can be made faster by increasing the voltage. but,
That voltage! , lJ (off) response cannot be made faster by voltage, and the cell substrate gap IX
Although it can be made somewhat faster by increasing the viscosity of the liquid crystal or lowering the viscosity of the liquid crystal, this response speed is at most a few 1-m5e at 0°C.
It was only about c. Furthermore, due to the thinning of the gap between the substrates and the lowering of the viscosity of the liquid crystal, the contrast of the liquid crystal optical switching device itself may become low f, making it difficult to obtain a liquid crystal optical switching device that has good contrast and high-speed response. There wasn't.

[発明の解決しようとする問題点] 未発(!rlの目的は、従来技術が有していた前述の問
題点を解消しようとするものであり、低消費電力の低周
波中・信号による駆動方式で、コントラストの低ドなし
に高速応答がrtf能な液晶光学スイッチ装置を得るこ
とである。
[Problems to be solved by the invention] The purpose of the undeveloped (!rl) is to solve the above-mentioned problems that the prior art had, and to drive by low-frequency medium/signal with low power consumption. The object of the present invention is to obtain a liquid crystal optical switch device capable of high-speed response to RTF without low contrast.

[問題を解決するためのL段] 本発明はかかる問題点を解決すべくなされたものであり
、 ・対の透明電極付の透明J、(板を透り1電極が相
対向するように配置し1周辺をシール材でシールし、内
部にネマチック液晶をM人し、そのネマチック液晶層よ
りも外側に一対の偏光膜を配;δしてなる液晶光学スイ
ッチ装置において、夫//の透明)、(板が水)i配向
処理され。
[L stage for solving the problem] The present invention has been made to solve the problem, and includes: - A transparent J with a pair of transparent electrodes (arranged so that one electrode faces each other through a transparent plate) In a liquid crystal optical switch device formed by sealing the surrounding area with a sealing material, placing a nematic liquid crystal inside, and disposing a pair of polarizing films on the outside of the nematic liquid crystal layer; , (plate is water) i-oriented treated.

両透明基板間では相1.−にその氷に^’、 Ii+l
−J目i+1がほぼ直交するように配置され、夫々の偏
光膜の偏光軸を夫々の)、(板面の液晶分子−の配向方
向にほぼ1L行またはこれにほぼ直交するように配置し
、ネマチック液晶のピッチPと基板間隙dとの関係d/
pが0.5X nより大きく、かつ0.5i、5X n
よりも小さく(nは1以にのg!!数を示す)され1両
透明電極間に印加する電圧を順次オンオフすることによ
り、電圧オフ時には液晶分子−がほぼ90°+180’
 X nのねじれ状yEを取り、電圧オン時には液晶分
子が縦配向状!Eを取り、電圧オン後の短時間の電圧オ
フ時には液晶分子が電圧オフ時のねじれ状態への緩和状
態であるほぼ90°+180°×m(mはO≦m < 
n (7)整数を示す)のねじれ状yEとされ、この電
圧オン11νの液晶分子−の縦配向状yEと−し圧オフ
時の液晶分Y−のほぼ90°+  180’ Xmのね
じれ状態との2つの状態を利用して光の透過率を変える
ことを特徴とする液晶光学スイッチ装置を提供するもの
である。
Between both transparent substrates, phase 1. − to that ice ^', Ii+l
- arranged so that the J-th i+1 is almost orthogonal to each other, and the polarization axis of each polarizing film is arranged to be about 1L row or almost perpendicular to the orientation direction of liquid crystal molecules - on the plate surface, Relationship d/ between pitch P of nematic liquid crystal and substrate gap d
p is greater than 0.5X n, and 0.5i, 5X n
By sequentially turning on and off the voltage applied between the two transparent electrodes, the liquid crystal molecules - are approximately 90° + 180' when the voltage is turned off.
Take the twisted shape yE of X n, and when the voltage is on, the liquid crystal molecules are vertically aligned! Taking E, when the voltage is turned off for a short time after the voltage is turned on, the liquid crystal molecules are in a relaxed state to the twisted state when the voltage is turned off, which is approximately 90° + 180° x m (m is O≦m<
When the voltage is on, the liquid crystal molecules are vertically aligned yE, and when the voltage is off, the liquid crystal molecules Y- are twisted at approximately 90° + 180' Xm. The present invention provides a liquid crystal optical switch device characterized in that the transmittance of light is changed using two states.

本発明は、液晶を通常の液晶で使用される電圧オン時と
オフ時の2つの安定状態のみを利用して光の透過テ4イ
を変えるのではなく、長時間電圧オフによる完全なオフ
時で通常の液晶よりもより大きくねじれた状yITiと
し、電圧オン時の安定状yEとその後の電圧オフによる
完全なオフ状51への緩和状yEの準安定状態との2つ
の状yEを利用して光の透過率を変えるものであり、高
速応答で高コントラストが(りられる。
The present invention does not change the light transmission rate by using only the two stable states of voltage on and voltage off, which are used in ordinary liquid crystals, but completely turns off the liquid crystal by turning off the voltage for a long time. yITi, which is more twisted than a normal liquid crystal, and utilizes two states yE: a stable state yE when the voltage is on, and a metastable state of the relaxed state yE, which changes to a completely off state 51 when the voltage is turned off. It changes the transmittance of light, allowing for high-speed response and high contrast.

本発明は、この準安定状態を使用しているため、数m5
ec−asee程度のある程度高速で液晶の光透過率を
繰り変えして変化させる用途に適している。
Since the present invention uses this metastable state, several m5
It is suitable for applications in which the light transmittance of liquid crystal is repeatedly changed at a certain high speed such as ec-asee.

本発明の構成を、第1図及び第2図を参照しつつ説明す
る。
The configuration of the present invention will be explained with reference to FIGS. 1 and 2.

第1図は本発明の液晶光学スイッチ装置の基本的構成を
示す断面図である。
FIG. 1 is a sectional view showing the basic structure of a liquid crystal optical switch device of the present invention.

第1図において、 IA、IBはガラス、プラスチック
等の透明)、(板であり、その内面には酸化スズ、酸化
インジウム−酸化スズ等の透明電極2A、2Bが必要に
応じて所望のパターンにパターニングされて形成されて
いる。この透明電極の表面は、液晶分子−が・方向に水
層配向するようにラビングまたは創め蒸着等により水平
配向処理がなされ、この木モ配向方向が2枚の)1(板
でriいに直交するように向い合せて、周辺でシール材
3によりシールされ、内部にネマチック液晶4が封入さ
れて液晶セルを形成している。この液晶セルの外面に・
対の偏光膜5A、5Bを、夫々の偏光膜の偏光軸を夫々
のJ、l板面の液晶分子の配向方向にほぼ平行またはこ
れにほぼ直交するよ′うに配置して、これら一対の偏光
膜の偏光軸がほぼ平行するかまたは直交するように配置
されるように設けられる。
In Fig. 1, IA and IB are transparent plates made of glass, plastic, etc., and transparent electrodes 2A and 2B made of tin oxide, indium oxide-tin oxide, etc. are attached to the inner surface of the plate in a desired pattern as necessary. The surface of this transparent electrode is horizontally aligned by rubbing or vacuum deposition so that the liquid crystal molecules are oriented in the direction of the water layer. ) 1 (plates face each other perpendicularly to each other and are sealed at the periphery with a sealing material 3, and a nematic liquid crystal 4 is sealed inside to form a liquid crystal cell.On the outer surface of this liquid crystal cell,
The pair of polarizing films 5A and 5B are arranged so that the polarization axes of the respective polarizing films are substantially parallel to or substantially perpendicular to the orientation direction of the liquid crystal molecules on the respective J and L plate surfaces, so that the polarized light of the pair is The polarization axes of the films are arranged so as to be substantially parallel or perpendicular to each other.

なお、この説明においては省略したが、一般の液晶表示
装置で行われているような応用、例えば、透明電極に金
属リードを形成したり、光の透過率を変化させる部分を
除いて無電解Niメッキ、Cr蒸着笠により不透明のマ
スクを形成したり、カラーフィルターを形成したり、ポ
リイミド、ポリアミド、シリカ、アルミナ等の配向膜用
のオーバーコートを透明電極にに形成したり、液晶セル
内に)、(板間隙を正確に保つためのガラスm維、アル
ミナ粒子、プラスチック粒子等のスペーサーを散布若し
くはそれらスペーサー入りのシール材を点付けしたりす
る等してもよい。
Although omitted in this explanation, applications such as those used in general liquid crystal display devices, such as forming metal leads on transparent electrodes and using electroless Ni except for parts that change light transmittance, are possible. Forming an opaque mask with plating or Cr vapor deposition shade, forming a color filter, forming an overcoat for alignment films such as polyimide, polyamide, silica, alumina on transparent electrodes, and inside liquid crystal cells) (In order to accurately maintain the gap between the plates, spacers such as glass fibers, alumina particles, plastic particles, etc. may be scattered, or a sealing material containing such spacers may be dotted.)

第2図は、第1図の液晶光学スイッチ装置の配向処理方
向と偏光膜切傷光軸方向との関係を示すモ面説III図
である。
FIG. 2 is a model III diagram showing the relationship between the orientation processing direction of the liquid crystal optical switch device of FIG. 1 and the polarizing film cut optical axis direction.

第2図において、11は表側の偏光膜5Aの偏光軸方向
、12は表側の透明)、(板IAのラビング処理方向、
13は裏側の偏光膜5Bの偏光軸方向、14は表側の透
明)1(板IBのラビング処理方向を示している。
In FIG. 2, 11 is the polarization axis direction of the polarizing film 5A on the front side, 12 is the transparent front side), (the rubbing direction of the plate IA,
Reference numeral 13 indicates the polarization axis direction of the polarizing film 5B on the back side, and 14 indicates the direction of the rubbing treatment of the transparent plate IB on the front side.

この例では、偏光膜の偏光軸方向と配向処理方向を平行
な方向としているが、IT!直な方向とすることもでき
、また両方の偏光膜の偏光軸もこの例のように直交させ
るのではなくて、平行にすることもできる。もっとも、
この例のように偏光軸を直交させて使用すれば、必要な
部分のみを必要な時に光をさえぎることができる。
In this example, the polarization axis direction of the polarizing film and the alignment treatment direction are parallel, but IT! The directions can be perpendicular to each other, and the polarization axes of both polarizing films can also be parallel to each other instead of being perpendicular to each other as in this example. However,
If the polarization axes are orthogonal to each other as in this example, it is possible to block the light only in the necessary areas when necessary.

なお、この配向方向及び偏光膜の偏光軸の交差角並びに
配向方向と偏光軸の関係は、正確に41行または直交と
するのみに限られなく、例えば5°、 10” 、 2
0°程度ずらすこともできる。
Note that the intersection angle between the orientation direction and the polarization axis of the polarizing film, and the relationship between the orientation direction and the polarization axis are not limited to exactly 41 lines or orthogonal, but are, for example, 5°, 10", 2", etc.
It is also possible to shift it by about 0°.

[作用] 本発明でも、通常の液晶表示装;11!1と同様に液晶
分子が電圧オフ時にはほぼ90’ +180°×nのね
じれ状7gである第1の安定状flf、を取り、電圧オ
ン時には縦配向状ff、である第2の安定状IEを堆り
、ここまでは従来の液晶表示装置と同じである。
[Function] Also in the present invention, as in the normal liquid crystal display device; 11!1, when the voltage is off, the liquid crystal molecules assume the first stable state flf, which is a twisted shape of approximately 90' + 180° x n, and when the voltage is on. A second stable state IE, which is a vertically oriented state ff, is sometimes formed, and up to this point it is the same as a conventional liquid crystal display device.

しかし、本発明では液晶分子のねじれ角が大きいため、
この2つの安定状態の外に電圧オンの第2の安定状態で
ある縦配向状態の後に電圧をオフにした際に、短時間で
はあるが完全な電圧オフ時の前記第1の安定状態である
ねじれ状態への緩和状態であるほぼ90’+180°×
m(mは0≦m<nの整数を示す)のねじれ状yEであ
るべれ安定状態を少なくとも1つとる。このべれ安定状
態は1本発明では液晶自身のねじれようとする力が強い
ため、第2の安定状態である縦配向状態から極めて速<
、r4体的には室温でl〜fIrasec程度と高速で
到達し、かつある程度の時間保持され、次のべ町安定状
Jgか第1の安定状態に到達する。本発明は、この電圧
オン時の第2の安定状yEと少なくとも1つの準安定状
ff)との2つの状態の間で駆動し、高速でオンオフす
るものである。
However, in the present invention, since the twist angle of the liquid crystal molecules is large,
In addition to these two stable states, there is a second stable state when the voltage is on, which is the vertical alignment state, and then when the voltage is turned off, the first stable state is when the voltage is completely off, albeit for a short time. Approximately 90'+180°× which is a relaxed state to a twisted state
At least one stable state of torsion yE with m (m represents an integer of 0≦m<n) is taken. In the present invention, the twisting force of the liquid crystal itself is strong, so this stable state of bevel is extremely fast.
, r4 physically reaches the state at a high speed of about 1 to fIrasec at room temperature, is maintained for a certain period of time, and reaches the next stable state Jg or the first stable state. The present invention is designed to drive between two states, the second stable state yE when the voltage is on, and at least one metastable state ff), and to turn on and off at high speed.

この準安定状71は長時間安定な状態ではないため、 
Ill’i次次のべ軸安定状態か第1の安定状態に移行
するが、これらはいずれも配向方向により定まるため、
これらの間ではねじれが180@ずつ増加することとな
る。このため、準安定状態と準安定状態との間での光透
過率変化及び準安定状態と第1の安定状態との間での光
透過・(へ変化は比較的に少ない、特に80°と270
aの準安定状IE間の変化は少なく、状態が変化したこ
とはほとんど認識されない。
Since this metastable state 71 is not stable for a long time,
It shifts to the next horizontal stable state or the first stable state, but both of these are determined by the orientation direction, so
Between these, the twist increases by 180@. Therefore, there are relatively few changes in light transmittance between the metastable states and between the metastable states and the first stable state, especially at 80°. 270
Changes between the metastable IEs of a are small, and changes in state are hardly recognized.

この場合、ネマチンク液晶のピッチpと基板間隙dとの
関係は0.5X n < d / p < 0.5+0
.5×n(nはl以1〕の整数を示す)とされればよい
。これにより、両方のノ1(板での水平配自刃向が直交
している場合に、電圧オフ時には液晶外Y・は90°+
180°×nのねじれ状態を取る。こらが第1の安定状
1Bである。
In this case, the relationship between the pitch p of the nematic liquid crystal and the substrate gap d is 0.5X n < d/p < 0.5+0
.. 5×n (n is an integer greater than or equal to 1). As a result, when both No. 1 (horizontal alignment blade directions on the board are perpendicular to each other), when the voltage is off, the Y outside the liquid crystal is 90° +
Take a twisted state of 180°×n. This is the first stable state 1B.

ここで、電圧を印加すると液晶分子は立ち玉かり、はぼ
垂直になり縦配向となる。これが第2の安定状jmであ
る。
Here, when a voltage is applied, the liquid crystal molecules stand up, become almost vertical, and become vertically oriented. This is the second stable state jm.

次いで電圧を!、IJると、液晶分子はねじれ状1ムと
なろうとし、基板の配向方向に液晶分子がそろおうとす
る。この場合1本発明では、完全な゛電圧オン時に液晶
分子が第1の安定状態である80°−180” X n
 c7)ねじれ状f1.埋ち270°。
Next, check the voltage! , IJ, the liquid crystal molecules tend to form a twisted pattern, and the liquid crystal molecules tend to align in the orientation direction of the substrate. In this case, in the present invention, when the voltage is completely turned on, the liquid crystal molecules are in the first stable state, 80°-180"
c7) Twisted f1. Buried 270°.

450 ” 、 830 ’ 、・・・・・・・・・と
いうように大きくねじれているため、電圧をオフにして
も液晶分子は直ちにこの状態にはならなく、まず90’
になり、続いて270” 、 450 ” 、・・・・
・・・・・というように順次そのねじれが拡大していく
こととなり、1以ヒの準安定状11をとる0本発明はこ
の中間段階のねしれ状態であるベロ安定状態を利用する
ものである。
450'', 830', etc., so even if the voltage is turned off, the liquid crystal molecules do not immediately return to this state; they first twist to 90'.
, followed by 270”, 450”, etc.
The torsion gradually expands in this way, and takes the metastable state 11 from 1 to 1.0 The present invention utilizes the tongue stable state, which is the torsion state in the intermediate stage. be.

また、この場合、液晶分子の配向状態がほぼ90°+ 
 180” Xm (tnはO≦m<nのI!Ii数を
示す)のねしれ状態で水平配向処理によるプレティルト
角と整合するようにしておくことにより、この特定のべ
町安定状態が他の準安定状!Eに比してはるかに長く続
く傾向があり、数秒具りも続くこともある。このため、
液晶のらせん方向を考慮して、配向処理方向を定めるこ
とが好ましい。特に、:tSlの安定状態よりも 18
0°ねじれの少ない準安定状態で整合するようにしてお
くことにより1 この準安定状態が安定し易くなrまし
い。
In addition, in this case, the alignment state of liquid crystal molecules is approximately 90°+
By aligning the pretilt angle by the horizontal alignment process in the torsion state of 180" Metastable state!Tends to last much longer than E, sometimes lasting for several seconds.For this reason,
It is preferable to determine the direction of alignment treatment in consideration of the helical direction of the liquid crystal. In particular, than the steady state of :tSl 18
By aligning in a metastable state with less 0° twist, this metastable state can be easily stabilized.

この例を、第3図及び第4図に示して説明する。This example will be explained with reference to FIGS. 3 and 4.

第3図は及び第4図は液晶分子−のプレティルト方向の
みが異なる例を示しており、(A)は270°ねじれ状
態、(B)は450°ねじれ状IEを示している。
3 and 4 show examples in which only the pretilt direction of the liquid crystal molecules differs, where (A) shows a 270° twisted state and (B) shows a 450° twisted IE.

この第3図の例では、この状態でL側のノ^板21A、
218では基板に液晶分子の左端22A、22Bが接し
ており、−ド側の基板23A、23Bでは基板に液晶分
子の奥側24A 、24Bが接している。このため第3
図(A)の270°ねじれで整合状yEとなっており、
図の曲線25Aと28Aとで示されるピッチが同一とな
り、安定した整合状態となる。逆に、第3図(B)の4
50”ねじれは不整合状態となり、図の曲線25Bと2
’8Bとで示されるピッチが異なる。このため、  4
50”ねじれを第1の安定状態とする液晶光学スイッチ
装置の場合に適しており、第1のべり安定状態の90°
ねじれは短く、第2の準安定状71の270”ねじれが
長く続くこととなる。
In the example shown in FIG. 3, in this state, the L side plate 21A,
At 218, the left ends 22A and 22B of the liquid crystal molecules are in contact with the substrate, and at the negative side substrates 23A and 23B, the back sides 24A and 24B of the liquid crystal molecules are in contact with the substrate. For this reason, the third
The 270° twist in figure (A) results in a consistent state yE,
The pitches shown by curves 25A and 28A in the figure are the same, resulting in a stable matching state. Conversely, 4 in Figure 3 (B)
A 50" twist results in a misaligned condition, resulting in curves 25B and 2 in the figure.
The pitch indicated by '8B' is different. For this reason, 4
Suitable for liquid crystal optical switch devices with 50” twist as the first stable state, and 90° of the first slip stable state.
The twist is short and the 270'' twist of the second metastable state 71 continues for a long time.

また第4図の例では、この状態でL側の基板31A、3
18−r!(*基板ニM 品分子’ (7)左端32A
、32B 、!+<接しており、ド側の)、1.、板3
:lA 、33Bでは基板に液晶分子のr前側34A、
34Bが接している。このため第4図(A)の270°
ねじれで不整合状態となっており1図の曲線35Aと3
6Aとで示されるピッチが異なる。逆に、第4図(B)
の450゜ねじれは整合状j”aiとなり、図の曲線3
5Bと38Bとで示されるビッナが同=・となる、この
ため。
Further, in the example shown in FIG. 4, in this state, the L side substrates 31A, 3
18-r! (*Substrate Ni M Product Molecule' (7) Left end 32A
,32B,! +<contacting, on the C side), 1. , board 3
:lA, 33B, the front side 34A of liquid crystal molecules on the substrate,
34B is in contact. Therefore, 270° in Figure 4 (A)
Curves 35A and 3 in Figure 1 are in an inconsistent state due to twisting.
The pitch indicated by 6A is different. On the contrary, Figure 4 (B)
The 450° twist of
Therefore, the bina indicated by 5B and 38B are the same =.

450°ねじれを第1の安定状態とする液晶光′1スイ
フチ装置の場合に適しており、第1の準安定状Jgの8
0″ねじれは整合状態という点からは比較的安定ではあ
るが液晶分子・のねじれようとする力が強いため比較的
短く、第2の準安定状態の270’ねじれは不整合状I
Eのため短く、第3の準安定状IEの450°ねじれが
長く続くこととなる。
Suitable for liquid crystal optical '1 swift device with 450° twist as the first stable state, and 8 of the first metastable state Jg.
Although the 0'' twist is relatively stable from the point of view of a coherent state, it is relatively short because the twisting force of liquid crystal molecules is strong, and the 270' twist in the second metastable state is a mismatched state I.
E, the 450° twist of the third metastable IE continues for a long time.

例えば、水41配向処理方法として、ラビング法を使用
すると、ラビング方向に液晶分子−のプレティルトが生
じる。ここで左らせんで第1の安定状1ムが450°の
液晶を使用するとすると。
For example, when a rubbing method is used as the water 41 alignment treatment method, pretilting of liquid crystal molecules occurs in the rubbing direction. Here, suppose we use a liquid crystal whose first stable state is 450° in the left helix.

第2図に示すような処理方向とすることが&fましいこ
ととなる。
It is desirable to use the processing direction as shown in FIG.

即ち、表側の透明基板IAではラビング方向をセル外側
(手前側)から見て左ドから右りへとり、′A側の透明
基板IBではラビング方向を右下から左Fへとればよい
That is, for the transparent substrate IA on the front side, the rubbing direction may be set from left to right when viewed from the outside (front side) of the cell, and for the transparent substrate IB on the 'A side, the rubbing direction may be set from lower right to left F.

また、右らせんの液晶を使用し、表側の透明基板IAの
ラビング方向を前記例と同じにとるとすれば、裏側のの
透明基板IBではラビング方向を左ヒから右ドへとれば
よいこととなる。
Also, if a right-handed spiral liquid crystal is used and the rubbing direction of the front transparent substrate IA is the same as in the above example, then the rubbing direction of the back transparent substrate IB should be from left a to right do. Become.

本発明では、第1の安定状態を450°とするように液
晶を調整し、即ち、 l< d / p < 1.5の
液晶を使用し、準安定状態を270°とし、この270
°で整合状態とすることが好ましい。
In the present invention, the liquid crystal is adjusted so that the first stable state is 450°, that is, a liquid crystal with l<d/p<1.5 is used, and the metastable state is 270°, and this 270°
Preferably, the alignment condition is at .degree.

これは、液晶のd/pが大きく液晶分子のねじれようと
する力が強いほど速<90°の第1の準安定状態になる
速さが速くなるためであり、第1の安定状態が270@
の場合よりも450°の場合の方が高速応答が可能とな
るためである。
This is because the larger the d/p of the liquid crystal and the stronger the force that forces the liquid crystal molecules to twist, the faster the first metastable state where the velocity <90° is reached, and the first stable state is 270°. @
This is because a faster response is possible in the case of 450° than in the case of .

この第1の安定状態が270°の場合と450°の場合
との差は、450°の場合と 630°の場合との差に
比して大きい。これは、第1の安定状y8が270°の
ものはべり安定状!8が90”のみであるためであり、
第1の安定状態が90’である従来の液晶表示装置に比
してはかなり速いが、第1の安定状態が450°のもの
はさらに速いものとなる。また1本発明では電圧オン時
の第2の安定状態と電圧オフ直後の帛安定状態との2つ
の状態との間でオンオフするものであり、準安定状yE
が長い程使用可俺性が大きく、第1の安定状態が450
”のものが好ましい。特に、第1の安定状態を450°
とし、 270”の準安定状態で液晶分子の配向とプレ
ティルトが一致する整合状態となるようにしてお乏こと
により、スイッチングの繰り返しが数秒程度でも使用可
能となる。
The difference between the first stable state being 270° and 450° is larger than the difference between 450° and 630°. This means that when the first stable state y8 is 270°, it is stable! This is because 8 is only 90",
This is considerably faster than a conventional liquid crystal display device in which the first stable state is 90', but one in which the first stable state is 450° is even faster. In addition, in the present invention, the on-off state is switched between two states: the second stable state when the voltage is turned on and the stable state immediately after the voltage is turned off, and the quasi-stable state yE
The longer the value, the greater the usability, and the first stable state is 450
” is preferable. In particular, the first stable state is 450°.
By making sure that the orientation of the liquid crystal molecules matches the pretilt in the metastable state of 270'', it is possible to use the device even if the switching is repeated for several seconds.

ねじれ角が大きくなると準安定状態への移行の応答速度
は向ヒする傾向はあるが、 830”以1−のねじれ角
とすることは、第1の安定状IEが270°の場合と 
450°の場合との差はど大きくなく、逆に駆動電圧が
高くなり、円偏光性が増加し、光透過−4シが低ドし、
コントラストが低ドしてくるため、 450°とするこ
とが最も好ましい。また、ねじれ角を大きくすると、リ
ターデーシ、ンイl「が11! くなる傾向もあり、I
I−fましくない色が生じることがある。
As the torsion angle becomes larger, the response speed for transition to the metastable state tends to slow down, but setting the torsion angle to 1-1 or more than 830'' is different from the case where the first stable state IE is 270°.
The difference from the case of 450° is not very large; on the contrary, the driving voltage becomes higher, the circular polarization increases, and the light transmission becomes lower.
Since the contrast becomes low, it is most preferable to set the angle to 450°. In addition, when the helix angle is increased, the retardation tends to increase to 11!
I-f colors may appear.

この場合、第3図で説明したように270°ねしれで整
合状態となるようにされることが好ましく、 270°
ねじれの準安定状IEが比較的に長く、具体的には数秒
程度続き、電圧オン時の第2の安定状態と電圧オフ時の
ベロ安定状態との間でオンオフできる時間範囲が広くな
り、速い応答速度でかつ高いコントラストで使用できる
範囲が広くなるため好ましい。
In this case, as explained in FIG.
The torsional metastable IE is relatively long, specifically lasting several seconds, and the time range in which it can be turned on and off between the second stable state when the voltage is on and the tongue stable state when the voltage is off is wide and fast. This is preferable because it has a wide usable range with high response speed and high contrast.

また、本発明に使用するの液晶の屈折率異方性Δnと基
板間隙dとの積Δndは0.5〜0.7または0.9〜
1.2とすることが好ましく、これにより高いコントラ
ストを得ることができる。
Further, the product Δnd of the refractive index anisotropy Δn of the liquid crystal used in the present invention and the substrate gap d is 0.5 to 0.7 or 0.9 to
It is preferable to set it to 1.2, whereby high contrast can be obtained.

未発13+1では、電圧オフ時の第2の安定状fKjと
電圧オフ直後のべり安定状態との2つの状IEを使用し
て液晶をオンオフするものである。
In 13+1, the liquid crystal is turned on and off using two states IE: the second stable state fKj when the voltage is turned off and the slip stable state immediately after the voltage is turned off.

これにより、電I〔オフ時に第2の安定状態から?ll
;安定状態に移行するのは前述したように速く1逆に、
電圧オン時にべれ安定状道;から第2の安定状態に移行
するのも、第1の安定状!ムから第2の安定状yE番と
一移行するよりも速いためである。
As a result, the power I [from the second stable state when off?] ll
; As mentioned above, the transition to a stable state is fast; conversely,
The transition from the flat stable state to the second stable state when the voltage is on is also the first stable state! This is because it is faster than the transition from the first stable state to the second stable state yE number.

さらに、第1の安定状態は液晶のねしれが大きくなるた
め円偏光性が出やすくなり、この第1の安定状態に到達
する前に再度電圧がオンになるように高速で繰り返して
オンオフされることにより、この悪影響がでなく好まし
いものである。
Furthermore, in the first stable state, the twist of the liquid crystal increases, making circular polarization more likely, and the voltage is repeatedly turned on and off at high speed so that the voltage is turned on again before reaching the first stable state. This is preferable because it does not have this negative effect.

[実施例] ガラス基板トにパターニングされた透明電極を有する表
側基板と裏側基板の夫々の電極面側に配向膜用オーバー
コートとしてポリイミドを塗布し、熱硬化後の膜厚を約
800人とした。これらポリイミド膜の表面をラビング
法により。
[Example] Polyimide was applied as an overcoat for an alignment film on the electrode surface side of each of the front and back substrates having transparent electrodes patterned on a glass substrate, and the film thickness after thermosetting was approximately 800 mm. . The surface of these polyimide films was rubbed using a rubbing method.

水47−配向処理し、第2図に示すように、そのラビン
グ方向が直交するように2枚の基板を配置し1周辺を注
入11部を除きンール材でシールしてセルを形成した。
As shown in FIG. 2, two substrates were arranged so that their rubbing directions were perpendicular to each other, and the periphery of one was sealed with a glue material except for the injection 11 part to form a cell.

このセルの液晶注入前のセル間隙は4.88部mであっ
た。
The cell gap of this cell before liquid crystal injection was 4.88 parts m.

このセルに、屈折率異方性Δnが0.13のメルク社製
液晶rZLI−+5f15Jをそのらせんピッーチ′が
3.7gmとなるようにカイラル成分としてコレステリ
ルノナネートを5.5w t%添加した液晶を注入して
、注入11を11市した。
In this cell, a liquid crystal rZLI-+5F15J manufactured by Merck Co., Ltd. with a refractive index anisotropy Δn of 0.13 was added with 5.5 wt% of cholesteryl nonanate as a chiral component so that the helical pitch' was 3.7 gm. Injected 11 injections and made 11 injections.

このセルの表と裏には第2図に示すように・対の偏光膜
をその偏光軸がセルのラビング方向に平行となるように
設置して液晶光学スイッチ装置を製造した。
A liquid crystal optical switch device was manufactured by installing a pair of polarizing films on the front and back sides of this cell so that their polarization axes were parallel to the rubbing direction of the cell, as shown in FIG.

このようにして製造した液晶光学スイッチ装置は、電圧
を印加しない状態では液晶分子が450”ねじれた状態
となっており、第1の安定状態となっていた。この状態
では液晶セル内で光は液晶分子−のねじれに沿って進み
、 450°ねじれることとなり、液晶光学スイッチ装
置に入射した光は一対の偏光膜の偏光軸が直交している
ため透過した。
In the liquid crystal optical switch device manufactured in this way, when no voltage was applied, the liquid crystal molecules were in a state twisted by 450", which was the first stable state. In this state, light was not transmitted within the liquid crystal cell. The light propagated along the twist of the liquid crystal molecules and was twisted by 450 degrees, and the light incident on the liquid crystal optical switch device was transmitted because the polarization axes of the pair of polarizing films were perpendicular to each other.

次に電圧を印加すると、液晶分子が縦配向状態となり、
第2の安定状態となった。この状態では液晶セルは光に
対して等方的となり、液晶光学スイッチ装置に入射した
光は一対の偏光膜の偏光軸が直交しているため遮断され
た。
Next, when a voltage is applied, the liquid crystal molecules become vertically aligned,
A second stable state has been reached. In this state, the liquid crystal cell became isotropic with respect to light, and the light incident on the liquid crystal optical switch device was blocked because the polarization axes of the pair of polarizing films were perpendicular to each other.

この状IEから電圧を切ると、セル内で液晶分子−は瞬
時に90@ねじれた第1の準安定状IEとなり1表側偏
光膜を通った入射光はセル内を液晶のねじれ構造に従っ
てその偏光成分は90°ねじられ裏側偏光膜を透過iT
7能となり、光が透過した。
When the voltage is turned off from this IE, the liquid crystal molecules within the cell instantly turn into the first metastable IE twisted by 90@1.The incident light that passes through the front polarizing film travels inside the cell and becomes polarized according to the twisted structure of the liquid crystal. Components are twisted 90° and transmitted through the back polarizing film iT
It became 7-power, and light was transmitted through it.

この第1のや安定状jaiは不整合状態でありあまり安
定でないため、比較的短時間で液晶分pはさらにねじれ
が進行し、 270°ねじれ構造の第2の準安定状7.
iTとなる。この状fEでも90°ねしれ構造と同様に
入射光は透過しており、この変化におけるコントラスト
変化はわずかであった。この270°ねしれ構造は、液
晶分子の配向状態が水平配向処理によるプレティルト角
と ・致しており、整合状!Eとなっているため比較的
に安定で、室温で数秒間継続した。
Since this first semi-stable state jai is in a mismatched state and is not very stable, the liquid crystal component p further progresses in twisting in a relatively short period of time, resulting in a second meta-stable state with a 270° twisted structure7.
It becomes iT. Even in this state fE, incident light was transmitted as in the 90° heel structure, and the contrast change due to this change was slight. In this 270° twisting structure, the orientation state of the liquid crystal molecules matches the pretilt angle created by the horizontal alignment process, making it a consistent state! E, it was relatively stable and continued for several seconds at room temperature.

この状!Eを経た後、 450°ねじれ構造に移行して
いき、セル内では入射光の偏光成分は楕円偏光となり、
透過光H,+−はやや減少した。
This situation! After passing through E, it transitions to a 450° twisted structure, and inside the cell, the polarization component of the incident light becomes elliptically polarized light.
The transmitted light H, +- decreased slightly.

この450°ねじれ構造に移行する前の第2の準安定状
態である270°ねじれ構造の間に電圧を印加すると速
やかに第1の安定状IEである縦配向に移行し、高速で
かつコントラストの高いスイッチングがri丁能であっ
た。
When a voltage is applied between the 270° twisted structure, which is the second metastable state before the transition to the 450° twisted structure, it immediately shifts to the vertical orientation, which is the first stable state, and has a high speed and contrast. High switching was the key.

[発明の効果] 本発明は、誘電異方性が正であり、その液晶のピッチp
とノ^板間隙dとの関係のd/pが0.5X n < 
d / p < 0.5+0.5X nのネマチック液
晶を用い、電圧が印加されない時はセル内で液晶分子が
液晶分子・がほぼ90°÷180°×nのねじれ状ff
、を取り、電圧を印加した時には液晶分子か1it配向
状態を取り、その後の電圧を切った11νには液晶分子
が電圧が印加されない時のねしれ状態への緩和状態であ
るほぼ90” +180’ X m(mはO≦m<nの
%tvを示す)のねじれ状態をmがOからn−1まで順
次取り、この電圧を印加した時の縦配向状y、!1と電
圧を切った時の液晶分子−のほぼ80°+180°×m
のねしれ状態との2つの状yムを利用して光の透過−(
ぺを変えることにより、従来のTNモートの液晶表示装
置に比してはるかに速くスイッチングが可能であるとい
う優れた効果を有する。
[Effect of the invention] The present invention has positive dielectric anisotropy, and the pitch p of the liquid crystal is
The relationship d/p between and plate gap d is 0.5X n <
A nematic liquid crystal with d/p < 0.5+0.5
, and when a voltage is applied, the liquid crystal molecules take a 1it alignment state, and after that, at 11ν when the voltage is turned off, the liquid crystal molecules are in a relaxed state to the twisted state when no voltage is applied, which is approximately 90" + 180' The twisted states of X m (m indicates %tv where O≦m<n) were sequentially taken from m O to n-1, and when this voltage was applied, the vertical orientation state y was !1, and the voltage was turned off. liquid crystal molecule - approximately 80°+180°×m
Transmission of light by using the two states of bending and bending - (
By changing the number of pixels, it has an excellent effect of being able to switch much faster than the conventional TN mode liquid crystal display device.

また、゛市川が印加されない時のねじれ状yEである大
きくねじれた状IEを使用しないことにより、ねじれが
大きいものにもかかわらずコントラストの低下が少なく
、リターデーションによる悪影響も少ない。
Furthermore, by not using a highly twisted IE, which is the twisted shape yE when no Ichikawa is applied, there is little decrease in contrast despite the large twist, and there is little adverse effect due to retardation.

本発明は、この外、本発明の効果を損しない範囲内で種
々な応用が可使なものであり、高速の表示装置、カメラ
用高速シャッター、光プリンター等の高速のスイッチン
グが要求される用途に応用が可能なものである。
In addition, the present invention can be used in various other applications without detracting from the effects of the present invention, including applications that require high-speed switching such as high-speed display devices, high-speed shutters for cameras, and optical printers. It can be applied to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の液晶光学スイッチ装置のノ、(末的
構成を示す断面図。 第2図は、第1図の液晶光学スイッチ装置の配向処理方
向と偏光11りの偏光軸との関係を示すモ面図。 第3図及び第4図は液晶分子のプレティルト方向と整合
の関係を説明する断面説明図。 透明基板      :lA、lB 透明電J4i       :2A、2Bシール材  
    :3 ネマチック液晶   ・4
FIG. 1 is a sectional view showing the final configuration of the liquid crystal optical switch device of the present invention. FIG. A cross-sectional view showing the relationship. Figures 3 and 4 are cross-sectional views explaining the relationship between the pretilt direction and alignment of liquid crystal molecules. Transparent substrate: 1A, 1B Transparent electrode J4i: 2A, 2B sealing material
:3 Nematic liquid crystal ・4

Claims (6)

【特許請求の範囲】[Claims] (1)一対の透明電極付の透明基板を透明電極が相対向
するように配置し、周辺をシール材でシールし、内部に
ネマチック液晶を封入し、そのネマチック液晶層よりも
外側に一対の偏光膜を配置してなる液晶光学スイッチ装
置において、夫々の透明基板が水平配向処理され、両透
明基板間では相互にその水平配向方向がほぼ直交するよ
うに配置され、夫々の偏光膜の偏光軸を夫々の基板面の
液晶分子の配向方向にほぼ平行またはこれにほぼ直交す
るように配置し、ネマチック液晶のピッチpと基板間隙
dとの関係d/pが0.5×nより大きく、かつ0.5
+0.5×nよりも小さく(nは1以上の整数を示す)
され、両透明電極間に印加する電圧を順次オンオフする
ことにより、電圧オフ時には液晶分子がほぼ90°+1
80°×nのねじれ状態を取り、電圧オン時には液晶分
子が縦配向状態を取り、電圧オン後の短時間の電圧オフ
時には液晶分子が電圧オフ時のねじれ状態への緩和状態
であるほぼ90°+180°×m(mは0≦m<nの整
数を示す)のねじれ状態とされ、この電圧オン時の液晶
分子の縦配向状態と電圧オフ時の液晶分子のほぼ90°
+180°×mのねじれ状態との2つの状態を利用して
光の透過率を変えることを特徴とする液晶光学スイッチ
装置。
(1) A pair of transparent substrates with transparent electrodes are arranged so that the transparent electrodes face each other, the periphery is sealed with a sealant, nematic liquid crystal is sealed inside, and a pair of polarized light is placed outside the nematic liquid crystal layer. In a liquid crystal optical switch device formed by arranging films, each transparent substrate is horizontally aligned, and both transparent substrates are arranged so that their horizontal alignment directions are substantially orthogonal to each other, and the polarization axis of each polarizing film is The substrates are arranged substantially parallel to or substantially perpendicular to the alignment direction of liquid crystal molecules on each substrate surface, and the relationship d/p between the pitch p of the nematic liquid crystal and the substrate gap d is larger than 0.5×n, and 0. .5
Less than +0.5×n (n indicates an integer greater than or equal to 1)
By sequentially turning on and off the voltage applied between both transparent electrodes, the liquid crystal molecules are aligned at approximately 90°+1 when the voltage is off.
When the voltage is on, the liquid crystal molecules are in a vertically aligned state, and when the voltage is off for a short time after the voltage is on, the liquid crystal molecules are relaxed to the twisted state when the voltage is off, which is approximately 90°. +180°×m (m is an integer of 0≦m<n), and the vertical alignment state of the liquid crystal molecules when the voltage is on and the approximately 90° alignment state of the liquid crystal molecules when the voltage is off.
A liquid crystal optical switch device characterized in that the transmittance of light is changed using two states: a twisted state of +180°×m.
(2)液晶分子の配向状態がほぼ90°+180°×m
のねじれ状態で水平配向処理によるプレティルト角と整
合するようにされる特許請求の範囲第1項記載の液晶光
学スイッチ装置。
(2) The alignment state of liquid crystal molecules is approximately 90° + 180° × m
2. The liquid crystal optical switch device according to claim 1, wherein the twisted state of the liquid crystal optical switch is made to match a pretilt angle obtained by horizontal alignment processing.
(3)d/pが1<d/p<1.5とされ、電圧無印加
時の完全緩和状態で液晶分子が450°ねじれるように
され、短時間の電圧オフ時には液晶分子がほぼ270°
ねじれるようにされる特許請求の範囲第1項または第2
項記載の液晶光学スイッチ装置。
(3) d/p is set to 1<d/p<1.5, so that the liquid crystal molecules are twisted by 450° in a completely relaxed state when no voltage is applied, and when the voltage is turned off for a short time, the liquid crystal molecules are twisted by approximately 270°.
Claim 1 or 2 made to be twisted
The liquid crystal optical switch device described in Section 1.
(4)液晶の屈折率異方性Δnと基板間隙dとの積Δn
dが0.5〜0.7である特許請求の範囲第3項記載の
液晶光学スイッチ装置。
(4) Product Δn of refractive index anisotropy Δn of liquid crystal and substrate gap d
4. The liquid crystal optical switch device according to claim 3, wherein d is 0.5 to 0.7.
(5)液晶の屈折率異方性Δnと基板間隙dとの積Δn
dが0.9〜1.2である特許請求の範囲第3項記載の
液晶光学スイッチ装置。
(5) Product Δn of refractive index anisotropy Δn of liquid crystal and substrate gap d
4. The liquid crystal optical switch device according to claim 3, wherein d is 0.9 to 1.2.
(6)一対の偏光膜の偏光軸がほぼ直交するように配置
される特許請求の範囲第1項または第2項記載の液晶光
学スイッチ装置。
(6) The liquid crystal optical switch device according to claim 1 or 2, wherein the pair of polarizing films are arranged so that their polarization axes are substantially perpendicular to each other.
JP61081014A 1986-04-10 1986-04-10 Liquid crystal optical switch device Expired - Lifetime JP2522645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61081014A JP2522645B2 (en) 1986-04-10 1986-04-10 Liquid crystal optical switch device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61081014A JP2522645B2 (en) 1986-04-10 1986-04-10 Liquid crystal optical switch device

Publications (2)

Publication Number Publication Date
JPS62238525A true JPS62238525A (en) 1987-10-19
JP2522645B2 JP2522645B2 (en) 1996-08-07

Family

ID=13734640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61081014A Expired - Lifetime JP2522645B2 (en) 1986-04-10 1986-04-10 Liquid crystal optical switch device

Country Status (1)

Country Link
JP (1) JP2522645B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266520A (en) * 1986-05-15 1987-11-19 Asahi Glass Co Ltd Polarization converting element
US7002643B2 (en) 1996-05-10 2006-02-21 Citizen Watch Co., Ltd. Liquid crystal shutter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928130A (en) * 1982-06-29 1984-02-14 イギリス国 Liquid crystal device
JPS62127714A (en) * 1985-11-29 1987-06-10 Konishiroku Photo Ind Co Ltd Liquid crystal display
JPS62131226A (en) * 1985-12-03 1987-06-13 Matsushita Electric Ind Co Ltd Liquid crystal display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928130A (en) * 1982-06-29 1984-02-14 イギリス国 Liquid crystal device
JPS62127714A (en) * 1985-11-29 1987-06-10 Konishiroku Photo Ind Co Ltd Liquid crystal display
JPS62131226A (en) * 1985-12-03 1987-06-13 Matsushita Electric Ind Co Ltd Liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266520A (en) * 1986-05-15 1987-11-19 Asahi Glass Co Ltd Polarization converting element
US7002643B2 (en) 1996-05-10 2006-02-21 Citizen Watch Co., Ltd. Liquid crystal shutter

Also Published As

Publication number Publication date
JP2522645B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US6678027B2 (en) Fringe field switching mode LCD
EP0125841A2 (en) Rapid starting, high-speed liquid crystal variable retarder
JPH10333171A (en) Liquid crystal display device
KR970007426A (en) Ferroelectric Nematic Liquid Crystal Display
KR960002689B1 (en) Liquid crystal electro-optic device
US6876425B2 (en) LCD device implementing FLCP orientation film
JPS62238525A (en) Liquid crystal optical switch device
KR0163944B1 (en) Liquid crystal display device using liquid crystal compound with chirality of negative dielectric anisotropy
JP2522647B2 (en) Polarization conversion element
JP2519939B2 (en) Liquid crystal element
JPS62287225A (en) Liquid crystal optical switch device
KR100280636B1 (en) Liquid crystal display
JPS63124030A (en) Ferroelectric liquid crystal element
KR890004374B1 (en) The liquid crystal display cells of supertwisted birefringence effect
JPH07333599A (en) Liquid crystal display element
JPS5957219A (en) Liquid crystal display element using plastic substrate
JPH0754382B2 (en) Method for manufacturing liquid crystal electro-optical device
JP4510213B2 (en) Liquid crystal display
JPS56125723A (en) Liquid crystal display
JPS62222218A (en) Liquid crystal display element
JPH07333616A (en) Ferroelectric liquid crystal display device
JPH03118513A (en) Liquid crystal display device
JPH0211888B2 (en)
JPH08304830A (en) Liquid crystal electro-optic device
JPS62215236A (en) Liquid crystal display element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term