JPS62238133A - Power supply method for electric railroad - Google Patents

Power supply method for electric railroad

Info

Publication number
JPS62238133A
JPS62238133A JP8256986A JP8256986A JPS62238133A JP S62238133 A JPS62238133 A JP S62238133A JP 8256986 A JP8256986 A JP 8256986A JP 8256986 A JP8256986 A JP 8256986A JP S62238133 A JPS62238133 A JP S62238133A
Authority
JP
Japan
Prior art keywords
power
rectifier
power supply
electric
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8256986A
Other languages
Japanese (ja)
Inventor
Sadaji Noki
能木 貞治
Toyomi Gondo
権藤 豊美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP8256986A priority Critical patent/JPS62238133A/en
Publication of JPS62238133A publication Critical patent/JPS62238133A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it unnecessary to control the phase, prevent the drop of power factor and a higher harmonics, and realize a low cost, by supplying the power, through a power rectifier without output voltage control function when the operation is less than a specific load rate, and through a power rectifier not to be controlled the phase when the operation is at the specific load or more. CONSTITUTION:In the operational area between the no load and a specific load rate, the AC power of a commercial frequency power source is supplied to an electric rolling stock through A/D converting by the first power rectifier, a diode rectifier 11, for example, which has no output voltage control function. On the other hand, in the operational area at a specific load rate or above, as well as the AC power of a commercial frequency power source is A/D converted, the second power rectifier, a thyristor rectifier 14, for example, which cannot control the phase, is operated, whose output power and the output power of the first rectifier 11 are added to feed to the electric rolling stock. In such a composition,the phase control of the power rectifiers is unnecessary, and a low cost is realized as well as the drop of power factor and a higher harmonics are prevented.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は直流電車線の電圧降下を補償した直流式電気鉄
道の給電方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a power supply method for a DC electric railway that compensates for the voltage drop in a DC overhead contact line.

B1発明の概要 本発明は、商用周波電源から導かれろ交流電力を直流変
換して直流電車線下に存在する電気車に供給する直流式
電気鉄道の給電方法において、無負荷から所定負荷率に
至る運転領域内では、出力電圧制御機能のない第1の順
電力変換器によって給電を行ない、所定負荷率以上の運
転領域では、位相制御されない第2の順電力変換器を動
作せしめ、該変換器の出力電力と前記第1の類型ツノ変
換器の出力電力とを電車線に供給するようにしたことに
より、 順電力変換動作時の位相制御を不要にして力率低下およ
び高調波発生を防止するとともに、歪の少ない電圧波形
が得られろようにし、且つ電車線の電圧降下を確実に補
償できるようにしたものである。
B1 Summary of the Invention The present invention provides a power supply method for a DC electric railway that converts AC power derived from a commercial frequency power supply into DC and supplies it to electric cars existing under a DC overhead contact line, in which operation from no load to a predetermined load factor is performed. Within the range, power is supplied by the first forward power converter without an output voltage control function, and in the operating range above a predetermined load factor, the second forward power converter, which is not phase-controlled, is operated to adjust the output of the converter. By supplying the electric power and the output power of the first type horn converter to the overhead contact line, phase control during forward power conversion operation is not required, and a decrease in the power factor and generation of harmonics are prevented. This makes it possible to obtain a voltage waveform with less distortion, and also to reliably compensate for the voltage drop in the overhead contact line.

C1従来の技術 一般に直流式電気鉄道の電力変換装置として、出力電圧
制御機能のない順電力変換器を備えた直流変電所では、
変電所の出力電圧を制御するために例えば第3図のよう
に出力電圧制御機能を有する順電力変換器が設けられて
いる。第3図においてlは商用周波電源(図示省略)か
らダイオード整流器用変圧器2を介して導かれる交流電
力を直流変換“4゛る順電力変換器であり、例えばダイ
オード整流器で構成されている。このダイオード整流器
lの正側出力端は、図示しない電車線が接続される直流
1?J線3に接続されている。ダイオード整流器1の負
側出力端は出力電圧制御機能を有する順電力変換器、例
えばサイリスタ整流器4の正側出力端に接続されている
。このサイリスタ整流器4の交流入力側はサイリスタ整
流器用変圧器5を介してダイオード整流器用変圧器2の
1次側に接続されており、負側出力端はレール6に接続
されている。サイリスク整流器4の正負出力端間には図
示極性の環流ダイオード7が接続されている。上記のよ
うに構成された装置において、ダイオード整流器1の出
力電圧をED、サイリスタ整流器4の出力電圧をedと
すると、直流変電所の出力電圧Eo’はEo’ = E
o + e(1(可変)となる。この出力電圧E D/
が直流母線3に印加されることによって、直流母線3に
接続される電車線下に存在する電気車(図示省略)に直
流電力が供給される。ここでサイリスク整流器4の出力
電圧edは、前記電気車の負荷率に応じて第4図の特性
図の如く制御される。第4図において無負荷時、ed=
Oであるため直流母線電圧(EDB)はダイオード整流
器1の出力電圧IEooに等しくなる。このダイオード
整流器lの出力電圧は、電気車の負荷率の増大にともな
って直線a、の如く低下していくが、サイリスク整流器
4を負荷率に応じて図示斜線領域ed’の如く位相制御
する。
C1 Conventional technology In general, a DC substation equipped with a forward power converter without an output voltage control function is used as a power converter for DC electric railways.
In order to control the output voltage of the substation, a forward power converter having an output voltage control function is provided, as shown in FIG. 3, for example. In FIG. 3, l is a forward power converter which converts AC power led from a commercial frequency power source (not shown) through a diode rectifier transformer 2 to DC, and is composed of, for example, a diode rectifier. The positive output terminal of this diode rectifier 1 is connected to the DC 1?J line 3 to which an overhead contact line (not shown) is connected.The negative output terminal of the diode rectifier 1 is connected to a forward power converter having an output voltage control function. , for example, is connected to the positive side output terminal of a thyristor rectifier 4.The AC input side of this thyristor rectifier 4 is connected to the primary side of a diode rectifier transformer 2 via a thyristor rectifier transformer 5, The negative output terminal is connected to the rail 6. A freewheeling diode 7 with the polarity shown is connected between the positive and negative output terminals of the silice rectifier 4. In the device configured as described above, the output of the diode rectifier 1 When the voltage is ED and the output voltage of the thyristor rectifier 4 is ed, the output voltage Eo' of the DC substation is Eo' = E
o + e (1 (variable). This output voltage E D/
is applied to the DC bus 3, so that DC power is supplied to an electric car (not shown) located under the overhead contact line connected to the DC bus 3. Here, the output voltage ed of the silice rectifier 4 is controlled as shown in the characteristic diagram of FIG. 4 according to the load factor of the electric vehicle. In Fig. 4, when no load is applied, ed=
0, the DC bus voltage (EDB) becomes equal to the output voltage IEoo of the diode rectifier 1. The output voltage of the diode rectifier 1 decreases as shown by a straight line a as the load factor of the electric vehicle increases, and the phase of the silice rectifier 4 is controlled as shown in the hatched area ed' according to the load factor.

これによって直線q、の如り100%負荷IRまでの間
直流母線電圧(EDB)をEd、に一定制御ずろことが
できろ。これによって直流母線3に接続される電車線の
電圧降下が補償される。
This makes it possible to control and shift the DC bus voltage (EDB) to Ed until 100% load IR, as shown by straight line q. This compensates for the voltage drop in the overhead contact line connected to the DC bus 3.

D1発明が解決しようとす、る問題点 上記のような給電方法は、サイリスタ整流器4の位相制
御を行なうので、力率が低下するとともに高調波電流が
発生する欠点がある。また、直流側電圧波形歪が増大し
て平滑回路が必要になる問題点がある。さらに同一電源
に接続されるサイリスク整流器用変圧器5は、ダイオー
ド整流器1による電圧波形歪の影響を避けるためにダイ
オード整流器用変圧器2と別個に(変圧器2の1次側に
)設けろ必要がある。このため前記変圧器5およびサイ
リスク整流器4の設備が大型となり、装置価格が非常に
高騰してしまう欠点がある。
D1 Problems to be Solved by the Invention The above-described power supply method has the disadvantage that the power factor decreases and harmonic currents are generated because the phase of the thyristor rectifier 4 is controlled. Further, there is a problem in that DC side voltage waveform distortion increases and a smoothing circuit is required. Furthermore, the Sirisk rectifier transformer 5 connected to the same power supply must be installed separately from the diode rectifier transformer 2 (on the primary side of the transformer 2) to avoid the influence of voltage waveform distortion caused by the diode rectifier 1. be. Therefore, the equipment of the transformer 5 and the silice rectifier 4 becomes large-sized, and the cost of the equipment becomes extremely high.

本発明は上記の点に鑑みてなされたもので順電力変換器
の位相制御を不要にして力率低下および高調波を防止す
るとともに装置価格の低廉化を図った直流式電気鉄道の
給電方法を提供することを目的としている。
The present invention has been made in view of the above points, and provides a power supply method for a DC electric railway that eliminates the need for phase control of a forward power converter, prevents a drop in power factor and harmonics, and reduces the cost of the device. is intended to provide.

E1問題点を解決するための手段および作用本発明は、
商用周波電源より導かれる交流電力を直流変換して直流
電車線下に存在する電気車に供給する直流式電気鉄道の
給電方法において、無負荷から所定負荷率に至る運転領
域内では、商用周波電源の交流電力を出力電圧制御機能
のない第1の順電力変換器によって直流変換して直流電
車線下の電気車に供給し、前記所定負荷率以上の運転領
域内では、前記商用周波電源の交流電力を直流変換4゛
るとともに位相制御されない第2の順電力変換器を動作
せしめ、該第2の順電力変換器の出力電力と13り配下
1の順電力変換器の出力電力とを加算して前記直流電車
線下の電気車に供給することを特徴としている。
Means and operation for solving the E1 problem The present invention has the following features:
In the power supply method of DC electric railways, which converts AC power derived from a commercial frequency power supply into DC and supplies it to electric cars existing under the DC overhead contact line, within the operating range from no load to a predetermined load factor, the power of the commercial frequency power supply is AC power is converted to DC by a first forward power converter without an output voltage control function and is supplied to an electric car under the DC overhead contact line, and within an operating range where the load factor is higher than the predetermined load factor, the AC power of the commercial frequency power source is A second forward power converter which has DC conversion and is not phase-controlled is operated, and the output power of the second forward power converter and the output power of the forward power converter 1 subordinate to the 13th are added to obtain the above-mentioned result. It is characterized by supplying electric cars under the DC power line.

F、実施例 以下、図面を参照しながら本発明の一実施例を説明する
。第1図において第3図と同一部分は同一符号を持って
示し、その説明は省略する。第1図は本発明の給電方法
を実施するための給電装置を示しており、11は商用周
波電源(図示省略)から変圧器12を介して導かれる交
流電力を直流変換する第1の順電力変換器であり、例え
ば出力電圧制御機能のないダイオード整流器で構成され
ている。
F. Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the same parts as in FIG. 3 are shown with the same reference numerals, and their explanation will be omitted. FIG. 1 shows a power supply device for carrying out the power supply method of the present invention, and reference numeral 11 denotes a first forward power for converting AC power led from a commercial frequency power source (not shown) through a transformer 12 into DC. A converter, for example, composed of a diode rectifier without output voltage control function.

このダイオード整流illの負側出力端はレール6に接
続されている。ダイオード整流器Hの正側出力端は第2
の順電力変換器、例えばサイリスク整t&器14の負側
出力端に接続されている。サイリスク整流器14の正側
出力端は、図示しない電車線が接続される直流母線3に
接続されている。サイリスタ整流器14の交流入力側は
変圧a l 5を介して前記変圧器12の2次側に接続
されている。サイリスク整流器14の正負出力端間には
図示極性のダイオード17か接続されている。サイリス
タ整流器14は、オンとオフの制御がなされるが位相制
御はなされない乙のとする。
The negative output end of this diode rectifier ill is connected to the rail 6. The positive output terminal of the diode rectifier H is the second
It is connected to the negative side output terminal of a forward power converter, for example, a sirisk adjuster 14. The positive output end of the silice rectifier 14 is connected to the DC bus 3 to which an unillustrated overhead contact line is connected. The AC input side of the thyristor rectifier 14 is connected to the secondary side of the transformer 12 via a transformer a l 5. A diode 17 having the polarity shown is connected between the positive and negative output terminals of the silice rectifier 14. It is assumed that the thyristor rectifier 14 is controlled to turn on and off, but not to control the phase.

次に上記のように+1′It成された装置の動作を第2
図の電圧特性図とともに述べる。まず直流母線3に接続
される電車線下に存在する電気車(図示省略)の負荷率
が、無負荷から所定負荷率、例えば50%負6すに至る
までの間、サイリスタ整流器[4の各サイリスタ゛r 
Hをオフ状態にしておく。これによって変圧′a12を
介して導かれた交流電力はダイオード整流器11によっ
て直流変換され、該直流電力はダイオード17を介して
直流母線3の図示しない電気車に供給される。、このと
き直流母線3の電圧(Eon)は、ダイオード整流器1
1の出力電圧Eoに等しく、電気車の負荷率の上昇にと
もなって低下していく。次に負荷率が50%以上の領域
ではサイリスク整流器14の各サイリスタT Hをオン
制御する。すると直流母線3には、変圧器I2おにび1
5を介して導かれる交流電力を直流変換して得られるサ
イリスタ整流器14の出力電力と前記ダイオード整流器
11の出力電力とが供給される。このため直流母線電圧
(Eon)は、負荷率50%時点(サイリスタオン時点
)で前記電圧Eoにサイリスタ整流器14の出力電圧e
tlが加算された電圧となる。その後直流母線電圧(E
DR)は負荷率の上昇にともなってEo + edに示
ず直線に沿って推移する。従ってダイオード整流器11
の出力電圧Eoとサイリスタ整流器14の出力電圧6d
を適当な値に選定すれば、無負荷時の給電電圧を低くで
きるとと6に負荷率が所定値以上に増加したときの電圧
降下を確実に補償することができる。
Next, the operation of the device made +1'It as described above is
This will be explained along with the voltage characteristic diagram shown in the figure. First, while the load factor of an electric car (not shown) existing under the overhead contact line connected to the DC bus 3 is from no load to a predetermined load factor, for example, 50%, each of the thyristor rectifiers [4] thyristor
Leave H in the off state. As a result, the AC power led through the transformer 'a12 is converted into DC by the diode rectifier 11, and the DC power is supplied via the diode 17 to an electric car (not shown) on the DC bus 3. , at this time, the voltage (Eon) of the DC bus 3 is the diode rectifier 1
It is equal to the output voltage Eo of 1, and decreases as the load factor of the electric vehicle increases. Next, in a region where the load factor is 50% or more, each thyristor TH of the thyrisk rectifier 14 is controlled to be turned on. Then, the DC bus 3 is connected to the transformer I2
The output power of the thyristor rectifier 14 and the output power of the diode rectifier 11 obtained by converting the AC power led through the thyristor rectifier 5 into DC are supplied. Therefore, the DC bus voltage (Eon) changes from the output voltage e of the thyristor rectifier 14 to the voltage Eo at the time of 50% load factor (when the thyristor is turned on).
The voltage is the sum of tl. After that, the DC bus voltage (E
DR) changes along a straight line as the load factor increases, not shown in Eo + ed. Therefore the diode rectifier 11
Output voltage Eo of thyristor rectifier 14 and output voltage 6d of thyristor rectifier 14
By selecting an appropriate value, it is possible to lower the power supply voltage when no load is applied, and also to reliably compensate for the voltage drop when the load factor increases beyond a predetermined value.

従来のようにサイリスタ整流器を位相制御する方法は、
交流入力波形が歪むとサイリスタ整流器を構成する各サ
イリスタの制御角不平衡により電圧波形歪が増大してし
まう。しかし前記実施例では位相制御を行なわないので
前記電圧波形歪は増大しない。また、サイリスタ整流器
14用の変圧器15は前記変圧器12の2次側に接続す
ることができ、変圧器の構成を小型化することができる
The conventional method of controlling the phase of a thyristor rectifier is
When the AC input waveform is distorted, voltage waveform distortion increases due to unbalanced control angles of the thyristors that make up the thyristor rectifier. However, in the embodiment described above, since phase control is not performed, the voltage waveform distortion does not increase. Further, the transformer 15 for the thyristor rectifier 14 can be connected to the secondary side of the transformer 12, so that the structure of the transformer can be miniaturized.

G4発明の効果 以−にのよ・うに本発明ににれば次のような効果が得ら
れる。4−なわし、 (+)  電屯線の電圧降下を確実に補償して、安定し
た直流電力を供給することかできる。
G4 Effects of the Invention The following effects can be obtained by the present invention as described above. 4-Nawashi, (+) It is possible to reliably compensate for the voltage drop in the power line and supply stable DC power.

(2)順電力変換動作時の位相制御を不要にしたので、
力率低下および高調波発生が防止できるとともに歪の少
ない電圧波形が得られる。
(2) Eliminates the need for phase control during forward power conversion operation, so
A drop in power factor and generation of harmonics can be prevented, and a voltage waveform with less distortion can be obtained.

(3)位相制御装置が不要になるので、給電装置全体が
簡素化されるとともに信頼性が向上する。
(3) Since a phase control device is not required, the entire power supply device is simplified and its reliability is improved.

(4)位相制御されないため第2の順電力変換器を小型
化することができるとともに、第2の順電力変換器用の
変圧器は第1の順電力変換器用の変圧器の2次側に接続
することができ、変圧器の構成を小型化することができ
る。これによって給電装置を安価に構成できる。
(4) Since the phase is not controlled, the second forward power converter can be made smaller, and the transformer for the second forward power converter is connected to the secondary side of the transformer for the first forward power converter. This allows the structure of the transformer to be miniaturized. This allows the power supply device to be constructed at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の給電方法を給電装置に適用した一実施
例を示す回路図、第2図は本発明の給電方法を説明する
だめの電圧特性図、第3図は従来の給電装置の一例を示
す回路図、第4図は従来の給電方法の一例を示す電圧電
流特性図である。 3・・・直流母線、6・・レール、11・・・ダイオー
ド整流器、12.15・・・変圧器、14・・・サイリ
スタ整流器、17・・・ダイオード。 第1図 電圧特性因
Fig. 1 is a circuit diagram showing an embodiment in which the power feeding method of the present invention is applied to a power feeding device, Fig. 2 is a voltage characteristic diagram for explaining the power feeding method of the present invention, and Fig. 3 is a diagram of a conventional power feeding device. FIG. 4 is a circuit diagram showing an example, and a voltage-current characteristic diagram showing an example of a conventional power supply method. 3... DC bus, 6... Rail, 11... Diode rectifier, 12.15... Transformer, 14... Thyristor rectifier, 17... Diode. Figure 1 Voltage characteristic factors

Claims (1)

【特許請求の範囲】 商用周波電源より導かれる交流電力を直流変換して直流
電車線下に存在する電気車に供給する直流式電気鉄道の
給電方法において、 無負荷から所定負荷率に至る運転領域内では、商用周波
電源の交流電力を出力電圧制御機能のない第1の順電力
変換器によって直流変換して直流電車線下の電気車に供
給し、 前記所定負荷率以上の運転領域内では、前記商用周波電
源の交流電力を直流変換するとともに位相制御されない
第2の順電力変換器を動作せしめ、該第2の順電力変換
器の出力電力と前記第1の順電力変換器の出力電力とを
加算して前記直流電車線下の電気車に供給することを特
徴とする直流式電気鉄道の給電方法。
[Scope of Claims] In a power supply method for a DC electric railway that converts AC power derived from a commercial frequency power source into DC and supplies it to electric cars existing under a DC overhead contact line, within an operating range from no load to a predetermined load factor. In this case, the AC power of the commercial frequency power supply is converted to DC by a first forward power converter without an output voltage control function and is supplied to the electric car under the DC overhead contact line. Converting the alternating current power of the frequency power supply to direct current, operating a second forward power converter whose phase is not controlled, and adding the output power of the second forward power converter and the output power of the first forward power converter. A method for supplying power to a DC electric railway, characterized in that the electric current is supplied to electric cars under the DC overhead contact line.
JP8256986A 1986-04-10 1986-04-10 Power supply method for electric railroad Pending JPS62238133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8256986A JPS62238133A (en) 1986-04-10 1986-04-10 Power supply method for electric railroad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8256986A JPS62238133A (en) 1986-04-10 1986-04-10 Power supply method for electric railroad

Publications (1)

Publication Number Publication Date
JPS62238133A true JPS62238133A (en) 1987-10-19

Family

ID=13778117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8256986A Pending JPS62238133A (en) 1986-04-10 1986-04-10 Power supply method for electric railroad

Country Status (1)

Country Link
JP (1) JPS62238133A (en)

Similar Documents

Publication Publication Date Title
AU699992B2 (en) Device and method for direct current power supply to a traction system by means of converters from different alternating current or direct current voltages
JP5968553B2 (en) Power converter
US5521487A (en) Active filter for single-phase overhead contact wire energized locomotive
JPS6131881B2 (en)
EP3091631A1 (en) Method for operating a bidirectional converter arrangement
US5109327A (en) Electronic system and method for supplying power to single-phase loads using a three-phase power supply
JPS62238133A (en) Power supply method for electric railroad
JPH08230523A (en) Method and apparatus for controlling voltage of changeover section in ac feeder circuit
RU2334348C1 (en) Undercarriage device for power supply of passenger railroad carriage
JPS62268303A (en) Auxiliary power circuit for rolling stock
KR100511645B1 (en) Serial dc voltage supply system for recycled electric train
JPH11286229A (en) Power regenerative inverter device
JPS6280134A (en) Transformation equipment for d.c. electric railroad
KR100511644B1 (en) Parallel dc voltage supply system for recycled electric train cope
JPS6117231B2 (en)
JPH0618441B2 (en) Auxiliary power supply for train
JPS61273103A (en) Ac and dc electric railcar
JPS62241742A (en) Dc system electric railway
JPS61226339A (en) Dc feeding device
JPH05111108A (en) Controller for universal electric vehicle
JPS61200038A (en) Direct current feeder
KR100491864B1 (en) dirct current(D.C)power supply system used of revivable 2-level PWM converter, for electromotive car
JPS636000B2 (en)
JPH0360688B2 (en)
JPH02155401A (en) Auxiliary power supply device for electric vehicle