JPS6223786B2 - - Google Patents

Info

Publication number
JPS6223786B2
JPS6223786B2 JP53112674A JP11267478A JPS6223786B2 JP S6223786 B2 JPS6223786 B2 JP S6223786B2 JP 53112674 A JP53112674 A JP 53112674A JP 11267478 A JP11267478 A JP 11267478A JP S6223786 B2 JPS6223786 B2 JP S6223786B2
Authority
JP
Japan
Prior art keywords
isoprene
butadiene
rubber
block copolymer
copolymer rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53112674A
Other languages
Japanese (ja)
Other versions
JPS5538857A (en
Inventor
Hideo Takamatsu
Naotake Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP11267478A priority Critical patent/JPS5538857A/en
Priority to DE2935845A priority patent/DE2935845C2/en
Publication of JPS5538857A publication Critical patent/JPS5538857A/en
Priority to US06/326,052 priority patent/US4409056A/en
Publication of JPS6223786B2 publication Critical patent/JPS6223786B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はすぐれた加工性、熱安定性および弾性
を有するゴム加硫物の製造方法に関する。さらに
詳しくは、ゴム成分として低分子量のイソプレン
−ブタジエンブロツク共重合体ゴムを用いるゴム
加硫物の製造方法に関する。 近年、建築・土木、自動車工業等の各種の分野
において多種のシーリング材が実際に使用されて
いる。シーリング材は、その用いられる用途によ
り要求される性能が様々であるが、基本的性能と
して常温あるいはそれに近い温度でコーキングガ
ンまたはヘラを用いて必要とされる部分に充てん
でき、施工後は充分にシール機能をもつことが要
求される。この目的には常温で液状あるいは充分
な流動性をもち、加硫等の硬化反応により適当な
強度を持ちうる低分子量のポリマーの使用が最も
好ましい。また、シーリング材は一般に被着材間
の振動、歪の吸収という機能を必要とする場合が
多く、ゴム弾性を有することも必要であり、この
目的にはジエン系ポリマーは、加硫することによ
つて得られるシーリング材がすぐれた弾性を示
し、しかもこの弾性が低温から比較的高温までの
広い温度範囲にわたつてほとんど変化がなく、シ
ール機能にすぐれ、最も適当である。 しかしながら、シーリング材のうちで自動車、
航空機、船舶等における継目シール、タンク製造
におけるシール等においてはシーリング材の施工
後、焼付塗装のためかなりの高温下にさらされる
など、熱的に厳しい条件下におかれる場合が多
く、そのためにシーリング材の耐熱性は本質的に
そのベースとなるポリマーの耐熱性に依存するの
で耐熱性のすぐれたポリマーを用いることが必要
になるが、従来の、弾性等にすぐれた従来のジエ
ン系ゴムは耐熱性が不充分であつて熱により軟化
あるいは硬化劣化し、ゴム弾性を消失してしまう
ものであつた。すなわち、ポリイソプレン、ポリ
ブタジエンまたはそれらの加硫物は加熱すること
により各々軟化あるいは硬化劣化し、またそれら
の混合物またはその加硫物ではその混合比に応じ
て軟化あるいは硬化劣化してしまい、すぐれた熱
安定性を示すことができなかつた。 本発明者等は上述した問題点に鑑み、すぐれた
ジエン系ゴムの加硫物を得るべく鋭意検討した結
果、特定のイソプレン−ブタジエンブロツク共重
合体を用いることによつて加工性にすぐれ、熱安
定性及び弾性にすぐれゴム加硫物が得られること
を見出し、本発明を完成するに至つた。 すなわち、本発明はイソプレン−ブタジエンブ
ロツク共重合体ゴムに加硫剤および所望により他
種添加剤を混合して加硫するに際し、イソプレン
−ブタジエンブロツク共重合体ゴムとして粘度平
均分子量が7000〜70000であり、該共重合体ゴム
中の(イソプレン/ブタジエン)の重量組成比が
25/75〜85/15であり、かつ一般式(B−I)oBま
たは(B−I)o+1(但し、式中Bはポリブタジエ
ンブロツク、Iはポリイソプレンブロツク、nは
1〜10の整数を表わす)で表わされる構造を有す
るイソプレン−ブタジエンブロツク共重合体ゴム
を用いることを特徴とするゴム加硫物の製造方法
に関する。 本発明で使用されるイソプレン−ブタジエンブ
ロツク共重合体ゴムの粘度平均分子量(以下、単
に分子量と記す。)は7000〜70000の範囲にある必
要がある。なお分子量(Mv)はトルエン中30℃
で測定された固有粘度(〔η〕)によつて式〔η〕
=1.21×10-4Mv0.77により算出される値と定義す
る。分子量が前記範囲より低い場合にはその加硫
物の物理的性質、例えば機械的強度が不充分であ
り、汎用性がなく、また他のエラストマーと混合
した物の加硫物はしみ出しが認められし、逆に高
い場合にはかなり高粘度となり、作業性及び加工
性が著しく低下するなどして不適当である。 また、本発明で使用されるイソプレン−ブタジ
エンブロツク共重合体ゴムのイソプレン/ブタジ
エンの重量組成比は25/75〜85/15、より好ましく
は35/65〜75/25の範囲にある必要がある。イソプ
レンの量が上記範囲より多いと、得られる共重合
体ゴムは加熱により軟化劣化を起し、逆にブタジ
エンの量が多い場合には硬化劣化が著しく、いず
れの場合も熱安定性に乏しい。 さらに本発明で使用されるイソプレン−ブタジ
エンブロツク共重合体ゴムは(B−I)oBまたは
(B−I)o+1なる構造をとらなければならない。
なおBはポリブタジエンブロツク、Iはポリイソ
プレンブロツク、nは1〜10、好ましくは1〜4
の整数である。このような構造を有するブロツク
共重合体ゴムはおどろくべきことに一方の成分が
他の成分よりかなり多くを占る場合においてもそ
の優先的な成分の特性が顕著に現われることな
く、バランスのとれたすぐれた熱安定性を示す。
一方B−IまたはI−B−Iなる構造を有するブ
ロツク共重合体ゴムはポリイソプレンゴムとポリ
イソプレンゴムとの混合物と同様、量的に優先的
な成分の特性が支配的となり、軟化あるいは硬化
のいずれかの著しい劣化を示す。逆にnが10を超
える場合にはBあるいはIのブロツク当りの分子
量が小さくなり過ぎてバランスのとれた熱安定性
を示し得ない。かかる観点からnはブロツク当り
のポリマーの重合度がすくなくとも約20以上であ
るような値をとり得る数、好ましくは4以下が望
ましい。またこのとき各ブロツクの重合体の粘度
平均分子量は多くても70000以下であるのが好ま
しい。 かかるイソプレン−ブタジエンブロツク共重合
体ゴムはアニオン開始剤を用いたリビング重合法
により容易に得ることができ、この方法によれば
分子量の制御、イソプレン/ブタジエンの重量比
の制限とも容易に行ない得る。アニオン開始剤と
してはより熱安定性にすぐれ、かつゴム弾性に有
機な1,4結合、特にシス−1,4結合をより多
く生成させ得るリチウム系触媒の使用が好まし
い。リチウム系触媒の例としては金属リチウム、
プロピルリチウムやブチルリチウム等のアルキル
リチウム、シクロヘキシルリチウム、シクロペン
チルリチウム等のシクロアルキルリチウム、フエ
ニルリチウム等のアリールリチウム、フエニルメ
チルリチウム、フエニルシクロヘキシルリチウム
等のアラールキルリチウム等のオルガノモノリチ
ウム、ナフタレンジリチウムやテトラフエニルジ
リチウム等のオルガノジリチウム等が挙げられ
る。重合は重合溶媒の存在下または非存在下に実
施されるが、一般に重合熱の除去、重合系の均一
化などのために溶媒を用いる方がより好ましい。
用い得る溶媒としては連鎖移動剤として働くこと
のない不活性炭化水素が用いられ、ブタン、ペン
タン、ヘキサン、シクロヘキサン、シクロオクタ
ン、ベンゼン等が好ましく用いられる。オルガノ
モノリチウムを触媒とした重合方法の例としては
触媒を添加した反応器中に所定量のブタジエンモ
ノマーを添加し、ブタジエンモノマーが完全に重
合し、まだ生成重合体が重合活性を有している状
態で所定量のイソプレンモノマーを添加し、この
場合も上記と同様完全に重合させるという操作を
所定の回数繰り返し、B−I−B、B−I−B−
I、…(B−I)oB、(B−I)o+1の構造を有す
るブロツク共重合体を製造する方法、B−Iなる
重合体を得た後、活性なる状態で例えばジブロム
ベンゼンのようなカツプリング剤を用いてカツプ
リングすることによりB−I−Bなる共重合体を
製造する方法が挙げられる。またオルガノジリチ
ウムを用いる場合にはまずイソプレンを重合さ
せ、続いてブタジエンを添加して重合させること
によりB−I−Bなる共重合体を得る方法が採用
しうる。重合温度は特に規定されるものではない
が、重合温度が低過ぎる場合には反応速度が著し
く遅くなり、逆に高過ぎる場合には触媒の分解あ
るいは生成する共重合体の着色などの好ましくな
い副反応がおこる恐れがあり、一般には20〜70℃
で重合するのが好ましい。 このようにしてリチウム系触媒を用いて製造さ
れたイソプレン−ブタジエンブロツク共重合体ゴ
ムはポリイソプレンブロツク、ポリブタジエンブ
ロツクの各ブロツクとも、1,4結合を少なくと
も75%以上含み、分子鎖の不飽和度が高く、イオ
ウやパーオキサイドによる加硫が好適にできるも
のである。 なお、本発明で使用されるブロツク共重合体ゴ
ムはその分子末端あるいは分子中に水酸基、カル
ボキシル基等の官能基が付加されていても何ら差
し支えない。 本発明で得られる加硫物は上記した特定のイソ
プレン−ブタジエンブロツク共重合体ゴムをイオ
ウあるいはパーオキサイドなどの加硫剤や加硫促
進剤、カーボンブラツク、炭酸カルシウム、クレ
ー等の充てん剤、亜鉛華、ステアリン酸等の活性
剤、老化防止剤等の薬品を配合して加熱すること
によつて得られる。 本発明で得られる加硫物はイソプレン−ブタジ
エンブロツク共重合体ゴムを加硫剤等の混合物と
しておき、シールすべき個所に充てんした後加熱
により得られる。このような使用方法としてはす
ぐれた熱安定性により、耐熱性の要求されるシー
リング材等が挙げられる。天然ゴム、合成シス−
1,4−ポリイソプレン、ポリブタジエン、スチ
レン−ブタジエン共重合体、クロロプレンゴム、
アクリロニトリル−ブタジエン共重合体等の固型
の合成ゴムにイソプレン−ブタジエンブロツク共
重合体ゴムをゴム用加硫剤やゴム配合薬品ととも
にバンバリーミキサーまたはニーダー等の混練り
機で混合した後プレス加硫機、熱空気加硫機また
はスチーム加硫機で加硫成形して得られる。この
ような使用方法としてはタイヤ、ベルトなどが挙
げられる。 以下、実施例によつて本発明を具体的に説明す
るが、本発明はそれら実施例に何ら限定されるも
のではない。 実施例 1 3の反応器に脱水したシクロヘキサンを
500CC添加し、これにsec−ブチルリチウムを
10mmo添加し、40℃に加熱する。次いでこの
系に充分に脱水したブタジエンモノマー70gを
徐々に添加し、重合させた。70gのモノマーを全
て添加しおえてからさらに30分間40℃に保ち重合
を完結させ、反応器中の気層部をサンプリング
し、ガスクロによる分析によりブタジエンモノマ
ーが残つていないことを確認した後に充分脱水し
たイソプレンモノマー170gを徐々に添加して重
合させた。イソプレンモノマーをすべて添加し終
つてからさらに30分間加熱し、重合を完結させ、
同じくイソプレンモノマーが残つていないことを
確認し、再度ブタジエンモノマー70gを添加し
た。このブタジエンモノマーが全て重合しおえた
後冷却し、反応混合物を大量のメタノール中に注
ぎ、重合体を回収した。重合体の収率は99.8%で
あり、添加したブタジエン、イソプレンモノマー
がB−I−Bの形で全て重合していることを裏付
けている。なお、重合体の分子量は40500であつ
た。 このようにして得られたイソプレン−ブタジエ
ンブロツク共重合体ゴムを表1に示す配合により
配合物を作製し、この配合物約5gをとりヘラで
鉄板上に半円球状にのせて150℃で20分間加熱す
ることにより加硫した。加硫後さらに175℃で30
分間加熱し、熱安定性の評価を行なつた。表1に
示す結果より明らかなようにすぐれた熱安定性を
示す。 実施例 2 溶媒に脱水したn−ヘキサンを用い触媒として
n−ブチルリチウム7mmoを使用し、モノマー
をブタジエン45g、イソプレン105g、ブタジエ
ン45g、イソプレン105gの順に添加するほかは
実施例1と同様にしてB−I−B−Iなる構造を
有するブロツク共重合体を得た。収率は99.7%で
あり、B−I−B−Iなる構造を持つことが裏付
けられた。分子量は62300であつた。このイソプ
レン−ブタジエンブロツク共重合体ゴムを実施例
1と同様にして加硫物の熱安定性を評価した。こ
の加硫物の熱安定性はすぐれたものであつた。 実施例 3 テトラヒドロフラン中でリチウム分散体とナフ
タレンとを室温で48時間振とうし、未反応物を除
去した後にテトラヒドロフランを留去することに
より得たナフタレンジリチウム10mmoを3
反応器で脱水ベンゼンに分散させて50℃に加熱し
ておく。この系にイソプレンモノマー100gを添
加し重合させ、さらにブタジエンモノマー100g
を添加し、重合させた。重合の完結は実施例1と
同様にガスクロで分析して確認した。重合体の収
率は99.8%であり、B−I−Bなる構造を有し、
その分子量は27500であつた。このブロツク共重
合体ゴムを実施例1と同様にして加硫物とし、そ
の加硫物の熱安定性を評価した。表1より判るよ
うにこの加硫物はすぐれた熱安定性を有してい
る。 実施例 4 溶媒に脱水したヘキサンを用い、触媒として
sec−ブチルリチウム16mmoを使用し、モノマ
ーをブタジエン180g、イソプレン120gの順に添
加してB−Iなるブロツク共重合体を重合させ、
重合を停止させずにこの系に脱水したジブロムベ
ンゼンを添加し、カツプリング反応を行なわせ、
B−I−Bなる形のブロツク共重合体を得た収率
は99.6%であり、分子量は49800であつた。この
ブロツク共重合体を用いて実施例1と同様にして
その加硫物を得た。その加硫物の熱安定性につい
て評価したところ、すぐれた熱安定性を示した。 比較例 1 イソプレンおよびブタジエンを各々ブチルリチ
ウムを触媒として溶液重合することにより、分子
量が62000であり、シス−1,4結合が80%のポ
リイソプレン(ホモポリマー)および分子量が
59500のポリブタジエン(ホモポリマー)を得
た。このポリイソプレンおよびポリブタジエンを
用い、表1に示す配合により配合物を調整し、実
施例1と同様にそれらの加硫物をつくつた。これ
らの加硫物の熱安定性を調べたところ、ポリイソ
プレンを用いた場合には軟化し、べとつき、ポリ
ブタジエンを用いた場合には硬化し、ボロボロす
るなどして熱安定性が悪かつた。
The present invention relates to a method for producing a rubber vulcanizate having excellent processability, thermal stability and elasticity. More specifically, the present invention relates to a method for producing a rubber vulcanizate using a low molecular weight isoprene-butadiene block copolymer rubber as a rubber component. In recent years, various types of sealants have been actually used in various fields such as architecture, civil engineering, and the automobile industry. Sealants have various performance requirements depending on their intended use, but the basic performance is that they can be applied to the required areas using a caulking gun or spatula at room temperature or a temperature close to it, and after installation, It is required to have a sealing function. For this purpose, it is most preferable to use a low-molecular-weight polymer that is liquid or has sufficient fluidity at room temperature and can have appropriate strength through curing reactions such as vulcanization. In addition, sealants generally require the function of absorbing vibrations and strains between adhered materials, and they also need to have rubber elasticity.For this purpose, diene-based polymers are required to be vulcanized. The sealing material thus obtained exhibits excellent elasticity, and this elasticity hardly changes over a wide temperature range from low temperatures to relatively high temperatures, making it the most suitable sealing material. However, among sealants, automobiles,
Seam seals in aircraft, ships, etc., seals in tank manufacturing, etc. are often subjected to harsh thermal conditions, such as being exposed to quite high temperatures after applying the sealant due to baking paint. The heat resistance of a material essentially depends on the heat resistance of the base polymer, so it is necessary to use a polymer with excellent heat resistance, but conventional diene rubbers with excellent elasticity etc. are not heat resistant. It had insufficient properties and deteriorated due to softening or hardening due to heat, and lost its rubber elasticity. That is, polyisoprene, polybutadiene, or their vulcanized products soften or harden and deteriorate when heated, and their mixtures or their vulcanizates soften or harden and deteriorate depending on the mixing ratio, resulting in superior performance. It could not demonstrate thermal stability. In view of the above-mentioned problems, the present inventors have made extensive studies to obtain an excellent diene rubber vulcanizate, and have found that by using a specific isoprene-butadiene block copolymer, it has excellent processability and heat resistance. It was discovered that a rubber vulcanizate with excellent stability and elasticity can be obtained, and the present invention was completed. That is, in the present invention, when the isoprene-butadiene block copolymer rubber is mixed with a vulcanizing agent and optionally other additives and vulcanized, the isoprene-butadiene block copolymer rubber has a viscosity average molecular weight of 7,000 to 70,000. Yes, the weight composition ratio of (isoprene/butadiene) in the copolymer rubber is
25/75 to 85/15, and has the general formula (B-I) o B or (B-I) o+1 (wherein B is a polybutadiene block, I is a polyisoprene block, and n is 1 to 10 The present invention relates to a method for producing a rubber vulcanizate characterized by using an isoprene-butadiene block copolymer rubber having a structure represented by (representing an integer of ). The viscosity average molecular weight (hereinafter simply referred to as molecular weight) of the isoprene-butadiene block copolymer rubber used in the present invention must be in the range of 7,000 to 70,000. The molecular weight (Mv) is measured at 30℃ in toluene.
The formula [η] is determined by the intrinsic viscosity ([η]) measured at
= 1.21×10 -4 Mv 0.77 is defined as the value calculated. If the molecular weight is lower than the above range, the physical properties of the vulcanizate, such as mechanical strength, will be insufficient and it will not be versatile, and the vulcanizate mixed with other elastomers will show oozing. On the other hand, if the viscosity is high, the viscosity will be quite high and the workability and processability will be significantly reduced, which is unsuitable. Furthermore, the weight composition ratio of isoprene/butadiene in the isoprene-butadiene block copolymer rubber used in the present invention must be in the range of 25/75 to 85/15, more preferably 35/65 to 75/25. . If the amount of isoprene is greater than the above range, the resulting copolymer rubber will undergo softening deterioration due to heating, while if the amount of butadiene is large, conversely, curing deterioration will be significant, and in either case, thermal stability will be poor. Further, the isoprene-butadiene block copolymer rubber used in the present invention must have the structure (B-I) o B or (B-I) o+1 .
Note that B is a polybutadiene block, I is a polyisoprene block, and n is 1 to 10, preferably 1 to 4.
is an integer. Surprisingly, block copolymer rubber with such a structure maintains a well-balanced structure without exhibiting the preferential characteristics of that component, even when one component occupies a much larger amount than the other. Shows excellent thermal stability.
On the other hand, in block copolymer rubbers having a structure of B-I or I-B-I, similar to a mixture of polyisoprene rubber and polyisoprene rubber, the quantitatively preferential properties of the components are dominant, resulting in softening or hardening. Indicates significant deterioration of any of the following. On the other hand, if n exceeds 10, the molecular weight per block of B or I will be too small, making it impossible to exhibit balanced thermal stability. From this point of view, n is a number that can take a value such that the degree of polymerization of the polymer per block is at least about 20 or more, preferably 4 or less. Further, at this time, it is preferable that the viscosity average molecular weight of the polymer of each block is at most 70,000 or less. Such isoprene-butadiene block copolymer rubber can be easily obtained by a living polymerization method using an anionic initiator, and by this method, the molecular weight and the isoprene/butadiene weight ratio can be easily controlled. As the anionic initiator, it is preferable to use a lithium-based catalyst which has better thermal stability and can generate more organic 1,4 bonds, particularly cis-1,4 bonds, in rubber elasticity. Examples of lithium-based catalysts include metallic lithium,
Alkyl lithium such as propyl lithium and butyl lithium, cycloalkyl lithium such as cyclohexyl lithium and cyclopentyl lithium, aryl lithium such as phenyl lithium, organomonolithium such as aralkyl lithium such as phenyl methyl lithium and phenyl cyclohexyl lithium, naphthalene Examples include organodilithium such as dilithium and tetraphenyldilithium. Although polymerization is carried out in the presence or absence of a polymerization solvent, it is generally more preferable to use a solvent in order to remove polymerization heat, homogenize the polymerization system, and the like.
As the solvent that can be used, inert hydrocarbons that do not act as chain transfer agents are used, and butane, pentane, hexane, cyclohexane, cyclooctane, benzene, etc. are preferably used. As an example of a polymerization method using organomonolithium as a catalyst, a predetermined amount of butadiene monomer is added to a reactor containing a catalyst, and the butadiene monomer is completely polymerized and the resulting polymer still has polymerization activity. Add a predetermined amount of isoprene monomer to the B-I-B, B-I-B-
A method for producing a block copolymer having the structure I,...(B-I) o B, (B-I) o+1. After obtaining the polymer B-I, for example, dibromide is added in an active state. Examples include a method of producing a B-I-B copolymer by coupling with a coupling agent such as benzene. When organodilithium is used, a method may be employed in which isoprene is first polymerized, and then butadiene is added and polymerized to obtain a B-I-B copolymer. The polymerization temperature is not particularly specified, but if the polymerization temperature is too low, the reaction rate will be extremely slow, and if it is too high, undesirable side effects such as decomposition of the catalyst or coloring of the copolymer produced may occur. There is a risk of a reaction occurring, so generally 20 to 70℃
It is preferable to polymerize with The isoprene-butadiene block copolymer rubber produced using a lithium catalyst in this manner contains at least 75% of 1,4 bonds in both the polyisoprene block and the polybutadiene block, and has a high degree of unsaturation in the molecular chain. vulcanization with sulfur or peroxide. It should be noted that the block copolymer rubber used in the present invention may have a functional group such as a hydroxyl group or a carboxyl group added to the end or in the molecule thereof without any problem. The vulcanizate obtained in the present invention contains the above-mentioned specific isoprene-butadiene block copolymer rubber, a vulcanizing agent or accelerator such as sulfur or peroxide, a filler such as carbon black, calcium carbonate, or clay, and zinc. It is obtained by blending activators such as hydrangea, stearic acid, and chemicals such as anti-aging agents and heating the mixture. The vulcanizate obtained in the present invention is obtained by preparing a mixture of isoprene-butadiene block copolymer rubber and a vulcanizing agent, filling the area to be sealed, and heating the mixture. Examples of such uses include sealing materials that require heat resistance due to their excellent thermal stability. Natural rubber, synthetic cis-
1,4-polyisoprene, polybutadiene, styrene-butadiene copolymer, chloroprene rubber,
Solid synthetic rubber such as acrylonitrile-butadiene copolymer is mixed with isoprene-butadiene block copolymer rubber along with a rubber vulcanizing agent and rubber compounding chemicals using a kneading machine such as a Banbury mixer or kneader, followed by a press vulcanizer. , obtained by vulcanization molding in a hot air vulcanizer or steam vulcanizer. Examples of such uses include tires, belts, etc. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way. Example 1 Dehydrated cyclohexane was placed in the reactor of 3.
Add 500CC and add sec-butyllithium to it.
Add 10 mmo and heat to 40℃. Next, 70 g of a sufficiently dehydrated butadiene monomer was gradually added to this system and polymerized. After all 70g of monomer has been added, hold the temperature at 40°C for another 30 minutes to complete polymerization, sample the gas phase in the reactor, and confirm that no butadiene monomer remains by gas chromatography analysis. 170 g of dehydrated isoprene monomer was gradually added and polymerized. After all isoprene monomer has been added, heat for an additional 30 minutes to complete polymerization.
After confirming that no isoprene monomer remained, 70 g of butadiene monomer was added again. After all of the butadiene monomer had been polymerized, the reaction mixture was cooled and poured into a large amount of methanol to recover the polymer. The yield of the polymer was 99.8%, which confirms that the added butadiene and isoprene monomers were all polymerized in the form of B-I-B. The molecular weight of the polymer was 40,500. A compound of the isoprene-butadiene block copolymer rubber thus obtained was prepared according to the formulation shown in Table 1. Approximately 5 g of this compound was taken and placed in a hemispherical shape on an iron plate with a spatula at 150°C for 20 minutes. Vulcanization was achieved by heating for minutes. After vulcanization, further 30 at 175℃
The mixture was heated for 1 minute to evaluate thermal stability. As is clear from the results shown in Table 1, it exhibits excellent thermal stability. Example 2 B was prepared in the same manner as in Example 1, except that dehydrated n-hexane was used as the solvent, 7 mmo of n-butyllithium was used as the catalyst, and the monomers were added in the order of 45 g of butadiene, 105 g of isoprene, 45 g of butadiene, and 105 g of isoprene. A block copolymer having the structure -I-B-I was obtained. The yield was 99.7%, confirming that it had the structure B-I-B-I. The molecular weight was 62,300. The thermal stability of the vulcanizate of this isoprene-butadiene block copolymer rubber was evaluated in the same manner as in Example 1. The thermal stability of this vulcanizate was excellent. Example 3 10 mmol of naphthalene dilithium obtained by shaking a lithium dispersion and naphthalene in tetrahydrofuran at room temperature for 48 hours, removing unreacted materials, and distilling off tetrahydrofuran
Disperse it in dehydrated benzene in a reactor and heat it to 50℃. Add 100g of isoprene monomer to this system and polymerize, and then add 100g of butadiene monomer.
was added and polymerized. Completion of polymerization was confirmed by gas chromatography analysis in the same manner as in Example 1. The yield of the polymer was 99.8%, and it had a structure of B-I-B,
Its molecular weight was 27,500. This block copolymer rubber was made into a vulcanizate in the same manner as in Example 1, and the thermal stability of the vulcanizate was evaluated. As can be seen from Table 1, this vulcanizate has excellent thermal stability. Example 4 Using dehydrated hexane as a solvent, as a catalyst
Using 16 mmo of sec-butyllithium, add monomers 180 g of butadiene and 120 g of isoprene in order to polymerize a block copolymer called B-I,
Dehydrated dibromobenzene is added to this system without stopping the polymerization to cause a coupling reaction,
The yield of a B-I-B block copolymer was 99.6%, and the molecular weight was 49,800. A vulcanizate of this block copolymer was obtained in the same manner as in Example 1. When the thermal stability of the vulcanizate was evaluated, it showed excellent thermal stability. Comparative Example 1 Polyisoprene (homopolymer) with a molecular weight of 62,000 and 80% of cis-1,4 bonds and a molecular weight of
59500 polybutadiene (homopolymer) was obtained. Using the polyisoprene and polybutadiene, a compound was prepared according to the formulation shown in Table 1, and a vulcanizate thereof was prepared in the same manner as in Example 1. When examining the thermal stability of these vulcanizates, it was found that when polyisoprene was used, the vulcanizates became soft and sticky, while when polybutadiene was used, they hardened and fell apart, resulting in poor thermal stability.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 イソプレン−ブタジエンブロツク共重合体ゴ
ムに加硫剤および所望によりその他の各種添加剤
を混合して加硫するに際し、イソプレン−ブタジ
エンブロツク共重合体ゴムとして粘度平均分子量
が7000〜70000であり、該共重合体ゴム中の(イ
ソプレン/ブタジエン)の重量組成比が25/75〜8
5/15であり、かつ一般式(B−I)oBまたは(B
−I)o+1(但し、式中Bはポリブタジエンブロツ
ク、Iはポリイソプレンブロツク、nは1〜10の
整数を示す)で表わされる構造を有するイソプレ
ン−ブタジエンブロツク共重合体ゴムを用いるこ
とを特徴とするゴム加硫物の製造方法。
1. When vulcanizing the isoprene-butadiene block copolymer rubber by mixing it with a vulcanizing agent and optionally other various additives, the isoprene-butadiene block copolymer rubber has a viscosity average molecular weight of 7,000 to 70,000; The weight composition ratio of (isoprene/butadiene) in the copolymer rubber is 25/75 to 8
5/15, and general formula (B-I) o B or (B
-I) o+1 (where B is a polybutadiene block, I is a polyisoprene block, and n is an integer from 1 to 10). Characteristic method for producing rubber vulcanizate.
JP11267478A 1978-09-12 1978-09-12 Preparation of vulcanizate Granted JPS5538857A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11267478A JPS5538857A (en) 1978-09-12 1978-09-12 Preparation of vulcanizate
DE2935845A DE2935845C2 (en) 1978-09-12 1979-09-05 Use of a compound based on rubber as a hardenable sealing compound
US06/326,052 US4409056A (en) 1978-09-12 1981-11-30 Curable sealing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11267478A JPS5538857A (en) 1978-09-12 1978-09-12 Preparation of vulcanizate

Publications (2)

Publication Number Publication Date
JPS5538857A JPS5538857A (en) 1980-03-18
JPS6223786B2 true JPS6223786B2 (en) 1987-05-25

Family

ID=14592632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11267478A Granted JPS5538857A (en) 1978-09-12 1978-09-12 Preparation of vulcanizate

Country Status (1)

Country Link
JP (1) JPS5538857A (en)

Also Published As

Publication number Publication date
JPS5538857A (en) 1980-03-18

Similar Documents

Publication Publication Date Title
JP6004081B2 (en) Tire member and polymer composition
TWI617612B (en) Silane-containing carboxyl-terminated polymers
JP4236216B2 (en) Polymer production method and polymer using lithium aminomagnesate polymerization initiator
JP2667420B2 (en) Method for producing rubber composition
JPH0657767B2 (en) Modified rubber composition
TWI829906B (en) Hydrogenated conjugated diene polymers, polymer compositions, cross-linked bodies and tires
JPH01229017A (en) Abc-block copolymer based butadiene, isoprene and styrene, its production and use
JPS634579B2 (en)
JPH06279620A (en) Conjugated diene-based rubber composition
JP4123019B2 (en) Cis-1,4-polybutadiene and method for producing the same
WO2020203984A1 (en) Cross-linked product and tire
JP2002212227A (en) Terminal modified diene copolymer and tread rubber composition for tire containing the same
JP7019818B2 (en) A functionalized polymer, a process for preparing the functionalized polymer, and a rubber composition containing the functionalized polymer.
JPH01234443A (en) Rubber composition
JP2006137858A (en) Conjugative diene base polymer and rubber composition containing the same
JPS6223786B2 (en)
US4409056A (en) Curable sealing composition
JP3729831B2 (en) Rubber composition comprising a polymer bonded to fullerene
JP5815317B2 (en) Anionic polymerization initiator and method for producing the same
JP4556658B2 (en) Modified polymer and polymer composition containing the same
JPH0456043B2 (en)
JP2019172808A (en) Conjugated diene polymer
KR20190064351A (en) Modified styrene-butadiene copolymer with excellent dispersion property, it’s production method and rubber composition including the same
JPS6223785B2 (en)
US3362931A (en) Calking composition comprising liquid carboxy terminated conjugated diene polymers and boron nitride