JPS62237412A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPS62237412A
JPS62237412A JP8091486A JP8091486A JPS62237412A JP S62237412 A JPS62237412 A JP S62237412A JP 8091486 A JP8091486 A JP 8091486A JP 8091486 A JP8091486 A JP 8091486A JP S62237412 A JPS62237412 A JP S62237412A
Authority
JP
Japan
Prior art keywords
lens
light
light receiving
projecting
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8091486A
Other languages
Japanese (ja)
Inventor
Naoya Kaneda
直也 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8091486A priority Critical patent/JPS62237412A/en
Publication of JPS62237412A publication Critical patent/JPS62237412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)

Abstract

PURPOSE:To reduce a distance measuring parallax by a simple constitution, by turning one of a projecting element and a projecting lens, and one of a light receiving element and a light receiving lens, centering around the same revolving shaft, by interlocking with a movement of a photographic lens group. CONSTITUTION:Both a projecting lens 2 and a light receiving lens 3 are attached to a connecting plate 15, and rotated by a prescribed angle by using a revolving shaft 16 as the center of a rotation, in accordance with feed-out and feed-in of a photographic lens group 8 by an AF cam 19. In this case, as for a movement of the projecting lens 2, when the projecting lens 2 and the light receiving lens 3 rotate clockwise centering around the revolving shaft 16, the direction of a projected light beam changes its angle in the lower direction of L1' from L1. In this case, a distance in which the projected light beam crosses an optical axis of the photographic lens group 8 becomes a focused distance of the photographic lens group 8, and also, a reflected light therefrom is made to form an image on a boundary of a light receiving element 4, a distance measuring optical system which scarcely causes a parallax can be obtained by only a rotational operation by one revolving shaft 16.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被写体に向けて光線を投射し、その反射光を
受光素子で受光して距離を知る所謂差動型アクティブ方
式の測距装置において、測距パララックスを少なくした
自動焦点調節装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a so-called differential active type distance measuring device that projects a light beam toward a subject and receives the reflected light with a light receiving element to determine the distance. The present invention relates to an automatic focusing device that reduces distance measurement parallax.

[従来の技術] 従来から被写体までの距離を検出し、この検出結果に基
づいて駆動モータ、表示器等を駆動し、自動的に被写体
までの距離を検出し、同時に撮影レンズ又は撮影面を移
動して、被写体像が自動的に合焦状態になるように調節
する各種装置が提案されている。その代表的なものとし
て、被写体に特定のパターンの投光を行い、被写体から
の反射光を2つの受光部で検知し、両受光部の出力差に
基づいて、被写体距離を検出する所謂差動型アクティブ
方式の測距装置があり、簡易な構成により比較的高精度
の測距動作が得られる利点がある。
[Prior art] Conventionally, the distance to the subject is detected, the drive motor, display, etc. are driven based on the detection result, the distance to the subject is automatically detected, and the photographing lens or photographing surface is moved at the same time. Various devices have been proposed that automatically adjust the subject image to be in focus. A typical example is the so-called differential mode, in which a specific pattern of light is projected onto the subject, the reflected light from the subject is detected by two light receiving sections, and the distance to the subject is detected based on the difference in output between the two light receiving sections. There is an active type distance measuring device, which has the advantage of being able to obtain a relatively high-precision distance measuring operation with a simple configuration.

第1θ図及び第11図は従来から公知の差動型アクティ
ブ測距装置を備えた自動焦点調節装置付きのカメラを示
し、近赤外光を発する赤外ダイオード又は半導体レーザ
ー等の投光素子1から発射された光線は1例えばモール
ド製の非球面レンズである投光レンズ2によって被写体
S上に投光スポットを形成する。この投光スポットは被
写体S上で反射され、その反射光は例えばモールド製の
非球面レンズである受光レンズ3により、例えばSPC
等から成り領域4a、4bに2分割された受光素子4上
に結像される。
FIG. 1θ and FIG. 11 show a camera with an automatic focus adjustment device equipped with a conventionally known differential type active distance measuring device, in which a light emitting element 1 such as an infrared diode or semiconductor laser that emits near-infrared light is used. The light rays emitted from the lens 1 form a projection spot on the subject S by a projection lens 2 which is, for example, a molded aspherical lens. This projected light spot is reflected on the subject S, and the reflected light is passed through the light receiving lens 3, which is a molded aspherical lens, for example, to the SPC.
An image is formed on the light-receiving element 4, which is divided into two areas 4a and 4b.

第1O図に示すような合焦状態においては、受光素子4
上に形成された投光スポット像は、その中心が領域4a
と4bの境界線上にあり、領域4aの出力をA、領域4
bの出力をBとすると、A−B=0となっている。この
ように、出力AとBが同一のとき、或いはその差が極め
て小さいときが合焦状態であり、被写体Sの像はフィル
ム面、撮像管、又は撮像素子の結像面上に正しく結像さ
れる。
In the focused state shown in FIG. 1O, the light receiving element 4
The center of the projected spot image formed above is the area 4a.
and 4b, and the output of area 4a is A, and area 4
Letting the output of b be B, A-B=0. In this way, when the outputs A and B are the same, or when the difference between them is extremely small, the state is in focus, and the image of the subject S is correctly formed on the film plane, image pickup tube, or imaging plane of the image pickup device. be done.

ところで、第11図に示すように第10図の合焦状態か
ら、例えば被写体Sがカメラ側に瞬間的に移動した場合
には、受光素子4上の投光スポット像は領域4b側寄り
に結像され、領域4a、4bからの出力を信号処理回路
5で増幅・積分した後にその差を求めると、A−Bは負
となり後ピントが検出される。この信号処理回路5から
得られた差信号の符号と大きさを、マイクロプロセッサ
6で演算してAFモモ−7を駆動制御し、合焦用レンズ
群を含む撮影レンズ群8、受光レンズ3が連動して矢印
方向に移動する。この結果、A−B=OとなるとAFモ
モ−7が停止し、新たな被写体距離に対して合焦する。
By the way, as shown in FIG. 11, if, for example, the subject S momentarily moves toward the camera side from the focused state of FIG. When the outputs from the regions 4a and 4b are amplified and integrated by the signal processing circuit 5 and the difference is calculated, A-B becomes negative, and after-focus is detected. The sign and magnitude of the difference signal obtained from the signal processing circuit 5 are calculated by the microprocessor 6 to drive and control the AF mode 7, and the photographing lens group 8 including the focusing lens group and the light receiving lens 3 are operated. Move together in the direction of the arrow. As a result, when A-B=O, the AF momo-7 stops and focuses on a new subject distance.

なお、A−Bは実際の構成ではノイズ等を考慮して、I
A−Blくkで合焦となるように不感帯kを有している
Note that in the actual configuration, A-B is I
It has a dead zone k so that it is in focus at A-Blk.

しかしながら、このように投光素子1及び投光レンズ2
を固定して配置した場合には、測距しているポイントが
常に撮影画面の中心にあるとは限らず、距離に応じて変
化するという所謂測距のパララックスを生じてしまう。
However, in this way, the light emitting element 1 and the light emitting lens 2
If they are fixedly arranged, the point being measured is not always at the center of the photographic screen, but changes depending on the distance, resulting in so-called distance measurement parallax.

例えば、カメラの前方から見て第12図に示すように投
光レンズ2と受光レンズ3が、撮影レンズ群8を挟んで
上下に配置された場合の画面内の測距ポイント位置を第
13図に示す。第10図における距IaRの時の測距視
野位置をPOとすると、それよりも近距離側での成る距
離の測距位置はPi、遠距離側での成る距離はP2とな
る。なお、投光レンズ2が撮影レンズ群8の鉛直線上に
ないときには、更に横方向のずれも生じてくる。
For example, when the light emitting lens 2 and the light receiving lens 3 are arranged one above the other with the photographing lens group 8 in between as shown in FIG. 12 when viewed from the front of the camera, the distance measurement point position in the screen is shown in FIG. 13. Shown below. If the distance measurement visual field position at the time of distance IaR in FIG. 10 is PO, then the distance measurement position at a distance closer to it is Pi, and the distance at a longer distance is P2. Note that when the light projecting lens 2 is not on the vertical line of the photographing lens group 8, a lateral shift also occurs.

このような測距視野位置のずれは、特にズームレンズの
場合にはその望遠端で大きくなり、被写体Sの大きさ等
によっては測距誤差の原因となる。従って、この測距の
バララックスをなくすための手段が、従来から幾つか提
案されている。
Such a shift in the field of view for distance measurement becomes large especially in the case of a zoom lens at its telephoto end, and depending on the size of the subject S, etc., it may cause a distance measurement error. Therefore, several methods have been proposed to eliminate this variation in distance measurement.

第14図は測距視野のバララックスを画面中心に保つた
めの一実施例であり、第10図、第11図の例と比較す
ると、受光レンズ3だけでなく投光レンズ2も撮影レン
ズ群8と連動している。これにより新たな合焦状態では
、2点鎖線で示したような投光光線と受光光線を通り、
測距パララックスがなく合焦に至ることになる。しかし
ながら、このような場合は投光レンズ2と受光レンズ3
の両方を作動するために機構的に複雑になったり、測距
精度が稍々劣化したり1組立や調整が困難でコスト高に
なる等の欠点がある。なお、第10図、第11図、第1
4図では、投・受光レンズ2.3を作動するタイプを述
べているが、投光素子1や受光素子4又は構成によって
はミラーを設けて、このミラーを作動するなどの変形例
が考えられる。
Fig. 14 shows an example for keeping the disparity of the distance measurement field at the center of the screen, and when compared with the examples shown in Figs. It is linked to 8. As a result, in the new focused state, the emitting ray and the receiving ray pass as shown by the two-dot chain line,
This means that there is no distance measurement parallax and the lens is in focus. However, in such a case, the light emitting lens 2 and the light receiving lens 3
It has disadvantages such as being mechanically complex because it operates both, the distance measurement accuracy is slightly degraded, and it is difficult to assemble and adjust, resulting in high cost. In addition, Fig. 10, Fig. 11, Fig. 1
Although Fig. 4 shows a type in which the light emitting/receiving lens 2.3 is activated, modifications such as providing a mirror and activating the mirror may be considered depending on the light emitting element 1, the light receiving element 4, or the configuration. .

第15図は別の構成による公知のセミTTL方式の差動
型アクティブ測距装置を備えたカメラの他の従来例を示
し、第10図、第11図で示したような投光系、受光系
の光学要素を撮影レンズ群8から完全に独立させるので
はなく、投光光学系を形成するレンズの一部を撮影レン
ズ系と兼用させた形態とし、第10図、第11図に示し
たものよりも一般にはコンパクト性に優れる形態である
。投光素子1は光学的に撮影レンズ群8の撮影軸上の焦
点面と等価な位置に配置されており、被写体Sに対する
撮影レンズ群8の停止ト位置によって決まる合焦距離上
で、投光スポット像は正しくピントを結ぶと共に、測距
のバララックスもない。投光レンズ2を通過した発光素
子1からの投光光線は、投光光線の波長域の光だけを反
射するグイクロイックミラー9によって撮影光軸と一致
し、焦点距離調節に関与するレンズ群10を含めた撮影
レンズ群8を通過して、被写体Sに発射されるものであ
る。即ち、第14図の従来例では、投光レンズ2は撮影
レンズ群8の動きと連動して移動したが、第15図の従
来例ではその必要はない。なお、第15図でROで示し
た長さは三角測距方式の基線長を示している。
FIG. 15 shows another conventional example of a camera equipped with a known semi-TTL differential active distance measuring device having a different configuration. Rather than making the optical elements of the system completely independent from the photographing lens group 8, a part of the lens forming the projection optical system is used also as the photographing lens system, as shown in Figs. 10 and 11. It is generally more compact than other types. The light emitting element 1 is optically arranged at a position equivalent to the focal plane on the photographing axis of the photographing lens group 8, and emits light at a focusing distance determined by the stopping position of the photographing lens group 8 with respect to the subject S. The spot image is focused correctly and there is no variation in distance measurement. The projected light beam from the light emitting element 1 that has passed through the projected lens 2 is aligned with the photographing optical axis by a gicroic mirror 9 that reflects only the light in the wavelength range of the projected light beam, and the lens group involved in focal length adjustment is aligned. The light passes through the photographing lens group 8 including lens 10 and is emitted to the subject S. That is, in the conventional example shown in FIG. 14, the light projecting lens 2 moves in conjunction with the movement of the photographing lens group 8, but in the conventional example shown in FIG. 15, this is not necessary. Note that the length indicated by RO in FIG. 15 indicates the base line length of the triangulation method.

第16図は更に別の構成によるTTL方式の差動型アク
ティブ測距装置を備えたカメラ用レンズの変形例であり
、この場合には投光素子1と受光素子4は共に撮影レン
ズ群8の撮影光軸上の焦点面と等価な位置にグイクロイ
ックミラー9を介して配置されている。
FIG. 16 shows a modified example of a camera lens equipped with a TTL differential active distance measuring device having yet another configuration. In this case, both the light emitting element 1 and the light receiving element 4 are included in the photographing lens group 8. It is arranged via a guichroic mirror 9 at a position equivalent to the focal plane on the photographing optical axis.

このような第15図、第16図のようなセミTTL、T
TL式の差動型測距装置では、何れも測距位置は画面の
中心となり、測距のバララックスのないものであるが、
第10図、第11図、第14図に示した外部測距方式の
ものに比べて被写体Sに投射されるエネルギの損失が大
きく、測距限界距離の点で不利となる。更に、グイクロ
イックミラー9を有するためにコストが高くなるという
欠点もある。
Semi-TTL, TTL as shown in Figures 15 and 16
In all TL differential distance measuring devices, the distance measuring position is at the center of the screen, and there is no variation in distance measurement.
Compared to the external distance measuring method shown in FIGS. 10, 11, and 14, the loss of energy projected onto the subject S is large, which is disadvantageous in terms of the limit distance for distance measurement. Furthermore, the provision of the guichroic mirror 9 also has the disadvantage of increased cost.

[発明の目的] 本発明の目的は、上述の従来例の欠点を除去し、外部測
距方式でありながら、容易な構成で測距のバララックス
を極小とすることのできるカメラ等の自動焦点調節装置
を提供することにある。
[Object of the Invention] The object of the present invention is to provide an automatic focusing system for cameras, etc., which eliminates the drawbacks of the conventional examples described above, and can minimize the variation in distance measurement with a simple configuration even though it uses an external distance measurement method. The purpose of the present invention is to provide a regulating device.

[発明の概要] 上述の目的を達成するための本発明の要旨は、焦点調節
に関与する撮影レンズ群と、被写体に光線を投射するた
めの投光素子・投光レンズと、被写体からの反射光を受
光するための受光素子拳受光レンズとを有し、前記撮影
レンズ群の移動に連動して、前記投光素子と投光レンズ
との一方と、前記受光素子と受光レンズの一方とを同一
の回転軸を中心に回動するように構成したことを特徴と
する自動焦点調節装置である。
[Summary of the Invention] The gist of the present invention for achieving the above-mentioned object is to provide a photographing lens group involved in focus adjustment, a light projecting element/light projecting lens for projecting light rays onto a subject, and a light beam reflecting from the subject. The light-receiving element has a fist light-receiving lens for receiving light, and one of the light-emitting element and the light-emitting lens and one of the light-receiving element and the light-receiving lens are moved in conjunction with the movement of the photographing lens group. This automatic focus adjustment device is characterized in that it is configured to rotate around the same rotation axis.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。なお
、第10図〜第16図と同一の符号は同一の部材を示し
ている。
[Embodiments of the Invention] The present invention will be described in detail based on illustrated embodiments. Note that the same reference numerals as in FIGS. 10 to 16 indicate the same members.

第1図は撮影レンズ群を正面から見た構成図、第2図は
第1図の入方向から見た断面図である。
FIG. 1 is a configuration diagram of the photographic lens group viewed from the front, and FIG. 2 is a sectional view viewed from the entrance direction of FIG. 1.

この第1の実施例において、8は従来例の場合と同様に
、例えば3枚程度の構成から成る焦点調節のための撮影
レンズ群であり、距離環11に固定されており、この距
離環11はへリコイド12を介して固定鏡筒13に回転
自在に取り付けられている。固定鏡筒13にはフレーム
14が固定されており、このフレーム14には投光素子
l、2つの債域4a、4bに分割された受光素子4が取
り付けられている。投光素子l、受光素子4の前面には
、それぞれ投光レンズ2、受光レンズ3が配置されてい
るが、これらの投・受光レンズ2.3は連結板15に取
り付けられていて、この連結板15は回転軸16を介し
てフレーム14に固定されたモータ地板17に取り付け
られている。そして、投光レンズ2と回転軸16を結ぶ
直線と、受光レンズ3と回転軸16を結ぶ直線は略直角
とされ、投光レンズ2と回転軸16を結ぶ直線の方が長
くされている。更に、連結板15の一部にはカムフォロ
ワ部18が突出されていて、このカムフォロワ部18は
距離環11の一部に設けられたAFカム19に当接され
ている。また、7はAFモータであり、その出力ギア2
0、中間ギア21を介して距離環11のフォーカスギア
22を駆動するようになっている。更に、ズームパー2
3、移動環24によりバリエータレンズ25が駆動され
るようになっており、26は前板、27はAFカバー、
28はAFカバー27の前面に設けられた可視光カット
フィルタを示している。
In this first embodiment, as in the case of the conventional example, 8 is a photographing lens group for focus adjustment consisting of, for example, about three lenses, and is fixed to a distance ring 11. is rotatably attached to a fixed lens barrel 13 via a helicoid 12. A frame 14 is fixed to the fixed lens barrel 13, and a light projecting element 1 and a light receiving element 4 divided into two areas 4a and 4b are attached to this frame 14. A light emitting lens 2 and a light receiving lens 3 are arranged in front of the light emitting element l and the light receiving element 4, respectively.These emitting and receiving lenses 2.3 are attached to a connecting plate 15, and this connecting plate The plate 15 is attached to a motor base plate 17 fixed to the frame 14 via a rotating shaft 16. The straight line connecting the light projecting lens 2 and the rotating shaft 16 and the straight line connecting the light receiving lens 3 and the rotating shaft 16 are approximately at right angles, and the straight line connecting the light projecting lens 2 and the rotating shaft 16 is longer. Furthermore, a cam follower portion 18 is projected from a portion of the connecting plate 15, and this cam follower portion 18 is in contact with an AF cam 19 provided on a portion of the distance ring 11. In addition, 7 is an AF motor, and its output gear 2
0, the focus gear 22 of the distance ring 11 is driven via the intermediate gear 21. Furthermore, zoom par 2
3. A variator lens 25 is driven by a moving ring 24, 26 is a front plate, 27 is an AF cover,
Reference numeral 28 indicates a visible light cut filter provided on the front surface of the AF cover 27.

ここにおいて、投光レンズ2と受光レンズ3は前述した
ように共に連結板15に取り付けられ、AFカム19に
よる撮影レンズ群8の繰り出し、繰り込みに対応して回
転軸16を回転中心として所定の角度だけ回転する。こ
の際に、投光レンズ2の移動は第1図で回転軸16を中
心に投光レンズ2、受光レンズ3が右回転すると、第2
図に示す投光光線の方向がLlからLl’の下方に角度
が変わる。このとき、投光光線Ll’が撮影レンズ群8
の光軸と交叉する距離が撮影レンズ群8の合焦距離とな
り、かつここからの反射光が受光素子4の境界上に像を
結ぶように構成すれば、1つの回転軸16による回転動
作のみで、バララックスの少ない測距光学系が実現でき
ることになる。
Here, the light emitting lens 2 and the light receiving lens 3 are both attached to the connecting plate 15 as described above, and are rotated at a predetermined angle about the rotation axis 16 in response to the extension and retraction of the photographing lens group 8 by the AF cam 19. only rotates. At this time, the movement of the light emitting lens 2 is as shown in FIG.
The direction of the projected light beam shown in the figure changes in angle from Ll to below Ll'. At this time, the projected light beam Ll' is
If the distance intersecting the optical axis is the focusing distance of the photographing lens group 8, and if the configuration is such that the reflected light from this focuses an image on the boundary of the light receiving element 4, then only the rotation operation using one rotation axis 16 is possible. Therefore, it is possible to realize a distance measuring optical system with less variation.

簡単のために第3図の原理図を用いて説明を加えると、
回転軸16を中心に角度θだけ連結板15、即ち投光レ
ンズ2、受光レンズ3が二点鎖線で示すように右回転し
たとする。すると、投光レンズ2はy方向にはJEx、
X方向にはEテに比べて極めて小さいJExだけ移動す
る。また、受光レンズ3は同様にΔFXとΔFKに比べ
極めて小さいΔFyだけ移動する。ここで、JExはバ
ララックス補正のための成分となり、JExはX方向の
測距パララックスのずれの成分であるが、微小でありほ
ぼ無視できる。
To simplify the explanation, using the principle diagram in Figure 3,
Assume that the connecting plate 15, that is, the light projecting lens 2 and the light receiving lens 3, rotate clockwise by an angle θ about the rotation axis 16 as shown by the two-dot chain line. Then, the projection lens 2 has JEx in the y direction,
It moves in the X direction by JEx, which is extremely small compared to Ete. Further, the light receiving lens 3 similarly moves by ΔFy, which is extremely small compared to ΔFX and ΔFK. Here, JEx is a component for correcting the parallax, and JEx is a component of the distance measurement parallax deviation in the X direction, but it is so small that it can be almost ignored.

また、JExは測距のための移動量であり、JEx分を
も考え合わせると、近似的な計算においてはΔFx+Δ
E!が無限遠から至近距離RN(mm)までの測距の移
動量と考えられる。また、ΔF!は受光素子4上のスポ
ット位置のy方向ずれに寄与するため、受光領域の幅を
広げる必要を生ずるが、微小なので問題とはならない。
Also, JEx is the amount of movement for distance measurement, and considering JEx, in approximate calculation, ΔFx + Δ
E! is considered to be the amount of distance measurement movement from infinity to the closest distance RN (mm). Also, ΔF! contributes to a shift in the spot position on the light-receiving element 4 in the y direction, making it necessary to widen the width of the light-receiving area, but this does not pose a problem since it is minute.

ここで、近似式を用いて概略の計算を試みる。Here, a rough calculation will be attempted using an approximate formula.

投・受光レンズ2,3の y方向の間隔をD=13、 X方向の間隔である基線長をL=30.5、受光レンズ
3の焦点距離をfs= 22、投光レンズ2の焦点距離
をFe= 26、至近距離をRN= 1200 の前提を与えると、測距のための走査量はΔFx+−E
x= (22/1200) ・30.5=0.559m
mとなる。
The distance between the projection and reception lenses 2 and 3 in the y direction is D = 13, the base line length that is the distance in the X direction is L = 30.5, the focal length of the reception lens 3 is fs = 22, and the focal length of the projection lens 2. Given the assumptions that Fe = 26 and close range RN = 1200, the scanning amount for distance measurement is ΔFx+-E
x= (22/1200) ・30.5=0.559m
m.

次に、幾何学的に ΔFx= D  o  sinθ 、 ΔEx= L e (1−cosθ)であるので、0.
559=Do   sinθ +L−Lacesθとお
いて計算すると、θ=2 、3510となる。
Next, since ΔFx=D o sin θ and ΔEx= L e (1−cos θ) geometrically, 0.
When calculated as 559=Do sin θ +L−Laces θ, it becomes θ=2, 3510.

これから、  ΔEy=1.25mmとなり、ΔEy=
Loginθからy=58mmとなる。
From this, ΔEy=1.25mm, and ΔEy=
From Loginθ, y=58mm.

従って、近似計算ではあるが、このような位置関係に上
記仕様の投光レンズ2、受光レンズ3を配置すれば、容
易に測距パララックスの少ない自動焦点調節が可能とな
る。
Therefore, although it is an approximate calculation, by arranging the light projecting lens 2 and the light receiving lens 3 having the above specifications in such a positional relationship, automatic focusing with less distance measurement parallax is easily possible.

また撮影レンズ群8が、比較的望遠が長くしかしながら
開放下値は大きいといったような、バララックスには厳
しいが測距精度は粗くてもよいような場合には、カム値
の設計はバララックス取りを優先させてもよい、そして
、低倍で開放下値も大きいような条件では一次のカムで
も近似することができる。
In addition, in cases where the photographing lens group 8 has a relatively long telephoto position but a large aperture value, and the distance measurement accuracy may be poor, although variation is difficult, the cam value should be designed to eliminate variation. Priority may be given, and under conditions where the magnification is low and the lower aperture value is large, a primary cam can also be approximated.

第4図は第1図、第2図で示した投光レンズ2、受光レ
ンズ3と連結板15を合成樹脂により一体成形する場合
の部品、つまりAFレンズ3゜を示し、(a)は正面図
、(b)は平面図である。このAFレンズ30は投光レ
ンズ2、受光レンズ3、カムフォロワ部18、軸受部3
1、ばねかけ部32が一体的に成形されており、特に基
線長が短くてもよいような場合には有効となる。
FIG. 4 shows parts when the light emitting lens 2, the light receiving lens 3, and the connecting plate 15 shown in FIGS. 1 and 2 are integrally molded from synthetic resin, that is, the AF lens 3°, and (a) shows the front view. The figure, (b) is a plan view. This AF lens 30 includes a light emitting lens 2, a light receiving lens 3, a cam follower part 18, and a bearing part 3.
1. The spring hanging portion 32 is integrally molded, which is particularly effective in cases where the base line length may be short.

第5図〜第7図は第2の実施例を示し、第6図は第5図
をA方向から見た断面図、第7図(a)は連結板の正面
図、(b)は側面図である。前述の第1の実施例が投光
レンズ2と受光レンズ3を同一の回転中心で回動させた
のに対し、この実施例では投光レンズ2と受光レンズ3
は共に固定されており、投光素子lと受光素子と4を同
一の回転軸で回動するものである。従って、第1図の実
施例では無限遠から至近距離で、投光素子1と受光素子
4は右回転したのに対し本実施例では左回転となる。
5 to 7 show the second embodiment, FIG. 6 is a sectional view of FIG. 5 viewed from direction A, FIG. 7(a) is a front view of the connecting plate, and FIG. 7(b) is a side view. It is a diagram. Whereas in the first embodiment described above, the light emitting lens 2 and the light receiving lens 3 are rotated around the same rotation center, in this embodiment, the light emitting lens 2 and the light receiving lens 3 are rotated around the same rotation center.
Both are fixed, and the light emitting element 1 and the light receiving element 4 are rotated about the same rotation axis. Therefore, in the embodiment shown in FIG. 1, the light projecting element 1 and the light receiving element 4 rotated clockwise from infinity to close range, whereas in this embodiment they rotate counterclockwise.

ここで、40は受光素子4が取り付いている基板、41
は投光素子lが取り付いている基板である。また、42
はこれらの基板40.41の取付板であり、回転軸43
とカムフォロワ部44は第7図に示すように連結板42
にかしめられており、モータ地板45には回転軸43が
挿入される軸受46が取り付けられている。一方、投光
レンズ2と受光レンズ3は、固定鏡筒13に取り付けら
れたフレーム47の前側で、スリット部48.49によ
り挟み込まれて固定されている。取付板42には、基板
40を取り付けるためのタップ穴50.51、基板41
を取り付けるためのタップ穴52.53が穿孔されてい
る。このように構成することによって、先の第1の実施
例と同様に1つの回転軸43による回動によりパララッ
クスの少ない測距系が構成できる。
Here, 40 is a substrate to which the light receiving element 4 is attached, 41
is a substrate to which the light projecting element l is attached. Also, 42
are the mounting plates for these boards 40 and 41, and the rotating shaft 43
The cam follower section 44 is connected to the connecting plate 42 as shown in FIG.
A bearing 46 into which the rotating shaft 43 is inserted is attached to the motor base plate 45. On the other hand, the light projecting lens 2 and the light receiving lens 3 are fixed at the front side of a frame 47 attached to the fixed lens barrel 13 by being sandwiched between slit parts 48 and 49. The mounting plate 42 has tapped holes 50 and 51 for mounting the board 40, and the board 41.
Tapped holes 52, 53 are drilled for mounting. With this configuration, a distance measuring system with less parallax can be constructed by rotating around the single rotating shaft 43, as in the first embodiment.

第8図、第9図は第3の実施例を示し、第9図は第8図
をA方向から見た断面図である。第1の実施例では投光
レンズ2、受光レンズ3を1つの回転軸16で、また第
2の実施例では投光素子l、受光素子4を1つの回転軸
43で回動していた。これに対し、この第3の実施例で
は、投光レンズ2と受光素子4とを1つの軸で回動する
構成としている。投光レンズ2と受光素子4は連結板6
1に取り付けられている。この実施例では、AFモモ−
7は第9図に示すように、先の2つの実施例に比べて後
方に配置されている。62はAFモモ−7のギアボック
ス部であり、図示しない出力段を有している。この出力
段はギア63に噛合して同軸のギア21に伝達する。受
光レンズ3と投光素子1が取り付けられた基板64は図
示しないフレームに固定されている。連結板61には回
転軸65がかしめられており、軸受部66がこの回転軸
65に嵌合されている。このような構成を採ると、第1
、第2の実施例と異なり、受光レンズ3.受光素子4が
回転軸位置よりも撮影レンズ群18に近い方に配置でき
るため、全体にコンパクト性に富んでいると云える。ま
た、この考え方で回動する要素を投光素子1と受光レン
ズ3にすることも可能である。
8 and 9 show a third embodiment, and FIG. 9 is a sectional view of FIG. 8 viewed from direction A. In the first embodiment, the light projecting lens 2 and the light receiving lens 3 are rotated around one rotating shaft 16, and in the second embodiment, the light projecting element 1 and the light receiving element 4 are rotated around one rotating shaft 43. In contrast, in this third embodiment, the light projecting lens 2 and the light receiving element 4 are configured to rotate about one axis. The light emitting lens 2 and the light receiving element 4 are connected to a connecting plate 6
It is attached to 1. In this example, the AF momo
7, as shown in FIG. 9, is located at the rear compared to the previous two embodiments. Reference numeral 62 denotes a gearbox section of the AF momo-7, which has an output stage (not shown). This output stage meshes with the gear 63 and transmits the signal to the coaxial gear 21. A substrate 64 to which the light receiving lens 3 and the light projecting element 1 are attached is fixed to a frame (not shown). A rotating shaft 65 is caulked to the connecting plate 61, and a bearing portion 66 is fitted onto the rotating shaft 65. If such a configuration is adopted, the first
, unlike the second embodiment, the light receiving lens 3. Since the light receiving element 4 can be arranged closer to the photographing lens group 18 than the rotation axis position, it can be said that the overall structure is highly compact. Further, it is also possible to use the light projecting element 1 and the light receiving lens 3 as rotating elements based on this idea.

[発明の効果] 以上説明したように本発明に係る自動焦点調節装置は、
1つの回転軸を中心にして「投光レンズと受光レンズ」
、「投光素子と受光素子」、「投光レンズと受光素子」
、「投光素子と受光レンズ」を撮影レンズ群の移動に連
動して所定の角度だけ回動させることによって、容易な
構成で測距パララックスを少なくすることが可能となる
[Effects of the Invention] As explained above, the automatic focus adjustment device according to the present invention has the following effects:
"Emitter lens and light receiver lens" centered around one rotation axis
, "Light emitter and light receiver", "Light emitter and light receiver"
By rotating the "light emitting element and light receiving lens" by a predetermined angle in conjunction with the movement of the photographic lens group, it becomes possible to reduce distance measurement parallax with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図〜第9図は本発明に係る自動焦点調節装置の
実施例を示すものであり、第1図は第1の実施例の正面
図、第2図は第1図のA方向から見た断面図、第3図は
本発明の原理図、第4図(a)は投光レンズと受光レン
ズを一体にしたレンズの正面図、(b)は平面図、第5
図は第2の実施例の正面図、第6図は第5図のA方向か
ら見た断面図、第7図(a)は連結板の正面図、(b)
は側面図、第8図は第3の実施例の正面図、第9図は第
8図のA方向から見た断面図であり、第1O図、第11
図は従来の外部測距方式の差動型自動焦点調節装置の構
成図、第12図は測距視野ずれが生ずる時の投光レンズ
、受光レンズの配置図、第13図は従来例での画面内の
測距視野位置の説明図、第14図は従来のパララックス
のない外部測距方式の差動型自動焦点y1節装置の構成
図、第15図は従来のセミTTL差動型自動焦点[1装
置の構成図、第16図は従来のTTL差動型自動焦点調
節装置の構成図である。 符号1は投光素子、2は投光レンズ、3は受光レンズ、
4は受光素子、7はAFモータ、8は撮影レンズ群、1
1は距離環、13は固定鏡筒、14.47はフレーム、
15.42.61は連結板、16.43.65は回転軸
、18.44はカムフォロワ部、19はAFカム、3o
はAFレンズである。
Drawings 1 to 9 show an embodiment of an automatic focus adjustment device according to the present invention, and FIG. 1 is a front view of the first embodiment, and FIG. 2 is a view taken from direction A in FIG. 1. 3 is a diagram showing the principle of the present invention, FIG. 4(a) is a front view of a lens that integrates a light emitting lens and a light receiving lens, and FIG. 5(b) is a plan view.
The figure is a front view of the second embodiment, FIG. 6 is a sectional view taken from direction A in FIG. 5, FIG. 7 (a) is a front view of the connecting plate, and (b)
is a side view, FIG. 8 is a front view of the third embodiment, FIG. 9 is a sectional view taken from direction A in FIG. 8, and FIGS.
The figure shows the configuration of a conventional external distance measuring differential automatic focusing device. Figure 12 shows the arrangement of the light emitting lens and light receiving lens when distance measurement field of view shifts, and Figure 13 shows the arrangement of the conventional example. An explanatory diagram of the distance measurement field position within the screen. Figure 14 is a configuration diagram of a conventional parallax-free external distance measurement type differential autofocus Y1 node device. Figure 15 is a conventional semi-TTL differential type automatic FIG. 16 is a block diagram of a conventional TTL differential automatic focus adjustment device. 1 is a light emitting element, 2 is a light emitting lens, 3 is a light receiving lens,
4 is a light receiving element, 7 is an AF motor, 8 is a photographing lens group, 1
1 is the distance ring, 13 is the fixed lens barrel, 14.47 is the frame,
15.42.61 is the connecting plate, 16.43.65 is the rotating shaft, 18.44 is the cam follower part, 19 is the AF cam, 3o
is an AF lens.

Claims (1)

【特許請求の範囲】 1、焦点調節に関与する撮影レンズ群と、被写体に光線
を投射するための投光素子・投光レンズと、被写体から
の反射光を受光するための受光素子、受光レンズとを有
し、前記撮影レンズ群の移動に連動して、前記投光素子
と投光レンズとの一方と、前記受光素子と受光レンズの
一方とを同一の回転軸を中心に回動するように構成した
ことを特徴とする自動焦点調節装置。 2、前記回転軸と前記投光素子と投光レンズの一方を結
ぶ直線と、前記回転軸と前記受光素子と受光レンズの一
方を結ぶ直線とは略直角となるように配置した特許請求
の範囲第1項に記載の自動焦点調節装置。
[Claims] 1. A group of photographic lenses involved in focus adjustment, a light projecting element/light projecting lens for projecting light rays onto a subject, and a light receiving element/light receiving lens for receiving reflected light from the subject. and one of the light emitting element and the light emitting lens and one of the light receiving element and the light receiving lens are rotated about the same rotation axis in conjunction with the movement of the photographing lens group. An automatic focus adjustment device characterized by comprising: 2. A straight line connecting the rotating shaft and one of the light projecting element and the light projecting lens and a straight line connecting the rotating shaft and one of the light receiving element and the light receiving lens are arranged so as to be substantially perpendicular to each other. The automatic focus adjustment device according to item 1.
JP8091486A 1986-04-08 1986-04-08 Automatic focusing device Pending JPS62237412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8091486A JPS62237412A (en) 1986-04-08 1986-04-08 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8091486A JPS62237412A (en) 1986-04-08 1986-04-08 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPS62237412A true JPS62237412A (en) 1987-10-17

Family

ID=13731660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8091486A Pending JPS62237412A (en) 1986-04-08 1986-04-08 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPS62237412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151824A (en) * 1988-12-05 1990-06-11 Chinon Ind Inc Automatic focusing camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151824A (en) * 1988-12-05 1990-06-11 Chinon Ind Inc Automatic focusing camera

Similar Documents

Publication Publication Date Title
JPS61251809A (en) Automatic focus adjusting device
US20010050763A1 (en) Surveying instrument having a phase-difference detection type focus detecting device and a beam-splitting optical system
JPS6233564B2 (en)
JPH03235906A (en) Focus detecting device
JPS62237412A (en) Automatic focusing device
US4533226A (en) Still or motion picture camera
JPH0210514Y2 (en)
US4723142A (en) Focus detecting device
JPS6226729Y2 (en)
US3923396A (en) Variable base rangefinder
JP2632178B2 (en) Automatic focus detection device for camera
JPH03293306A (en) Automatic focusing device
JPS60125812A (en) Focusing detector
JPS6234113A (en) Automatic focus adjusting device
JP3126027B2 (en) Camera structure
JP3063240B2 (en) Converter device and camera system using the same
JP2971889B2 (en) Focus detection optical system
JPS62253130A (en) Automatic focus adjustor
JP3272636B2 (en) Camera viewfinder device
JPS6232427A (en) Auto-focusing device
JPS63169607A (en) Focus detector for camera
JPH0522220B2 (en)
JPH07325248A (en) Parallax correcting mechanism of passive af distance measuring system
JPH0456933A (en) Camera with zooming photometric optical system
JPS6240410A (en) Optical system having focus detecting device