JPS62235925A - Optical modulation element - Google Patents

Optical modulation element

Info

Publication number
JPS62235925A
JPS62235925A JP61080608A JP8060886A JPS62235925A JP S62235925 A JPS62235925 A JP S62235925A JP 61080608 A JP61080608 A JP 61080608A JP 8060886 A JP8060886 A JP 8060886A JP S62235925 A JPS62235925 A JP S62235925A
Authority
JP
Japan
Prior art keywords
refractive index
liquid crystal
diffraction grating
modulation element
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61080608A
Other languages
Japanese (ja)
Other versions
JPH0776815B2 (en
Inventor
Masato Yamanobe
山野辺 正人
Yasuyuki Watabe
渡部 泰之
Yukitoshi Okubo
大久保 幸俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61080608A priority Critical patent/JPH0776815B2/en
Priority to US07/033,192 priority patent/US4822146A/en
Publication of JPS62235925A publication Critical patent/JPS62235925A/en
Publication of JPH0776815B2 publication Critical patent/JPH0776815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To attain full transmission state independently of the wavelength of light beams to be used by setting up a prescribed composite refractive index of a refractive index variable substance almost equally to the refractive index of a substance forming a diffraction grating. CONSTITUTION:Transparent electrodes 3, 3' are formed on respective opposed surfaces of two transparent bases 3, 3' and diffraction grating 2, 2' consisting of a transparent substance are formed on respective one surfaces of the electrodes 3, 3' so that respective array directions intersect with each other at right angles. The grooves parts of the gratings 2, 2' are filled with the refractive index variable substance 1 such as liquid crystal. The prescribed composite refractive index between the maximum refractive index and the minimum refractive index of the substance 1 is made almost equal to the refractive index of the substance forming the gratings 2, 2' over the whole wavelength area of incident light. Consequently, full transmission state can be obtained independently of the wave-length of the used light beams and multiplex driving with high contrast can be attained.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、光変調素子、特に回折格子と屈折率可変物質
とを組合せて屈折率可変物質の屈折率を制御することに
より入射光に所望の回折現象を生じせしめる光変調素子
に関する。
Detailed Description of the Invention [Technical Field] The present invention provides a method for producing a desired diffraction phenomenon in incident light by controlling the refractive index of the variable refractive index material by combining a light modulating element, particularly a diffraction grating, and a variable refractive index material. The present invention relates to a light modulation element that generates.

〈従来技術〉 従来から良く知られている光変調素子としては、互いに
偏光方向が直交する様に配した一対の偏光板と、この一
対の偏光板間に配され一対の透明基板の相対する基板面
に生い直交する配向処理を施して液晶を封入した素子と
から成り、この液晶の配向状態をねじれた状態と基板面
に垂直に向いた状態との間でスイッチングを行ない入射
光の変調をする所謂TN(ツウイストネマチック)型の
液晶表示素子がある。この種の表示素子は構成が簡便で
、駆動が容易なことから多岐に亘り利用されているが、
2枚の偏光板を利用して光束の透過及び遮断を行なう為
に消色時、即ち光透過時の透過率が悪く光束利用効率の
面からは好ましい光変?JR素子とは言えなかった。
<Prior art> A conventionally well-known light modulation element consists of a pair of polarizing plates arranged so that the polarization directions are perpendicular to each other, and a pair of transparent substrates arranged between the pair of polarizing plates. It consists of an element in which a liquid crystal is encapsulated with an orientation treatment perpendicular to the surface of the substrate, and the orientation state of this liquid crystal is switched between a twisted state and a state perpendicular to the substrate surface to modulate the incident light. There is a so-called TN (twisted nematic) type liquid crystal display element. This type of display element has a simple structure and is easy to drive, so it is used in a wide variety of applications.
Since two polarizing plates are used to transmit and block the luminous flux, the transmittance is poor during decolorization, that is, when the light is transmitted, but is the light change favorable from the viewpoint of luminous flux utilization efficiency? I couldn't say it was JR Motoko.

又、液晶を利用した同種の表示素子として、液晶分子に
色素を混入させて用いる所謂ゲスト−ホストモードの液
晶表示素子があるが、この表示素子に於ても色素が介在
する為に消色時の透過率は良くても75%程度であった
In addition, as a similar type of display element using liquid crystal, there is a so-called guest-host mode liquid crystal display element that uses a dye mixed into liquid crystal molecules, but since the dye is present in this display element as well, there is a problem when the color is erased. The transmittance was about 75% at best.

一方、特公昭53−3928号公報やUSP4.251
,137等に於て反射型や透過型の位相回折格子と液晶
とを組合せた表示素子や可変減色フィルター素子が開示
されている。これらで開示されている素子は確かに光束
利用効率は優れているが、特公昭53−3928号公報
に開示されている素子は単なる装飾効果を示すのみであ
り、文字や画像を表示する表示素子や光束のa過、遮断
を行なう光変調素子としては満足出来るものではなかっ
た。又、USP4.251,137に開示されている可
変減色フィルター素子は一対の対向する基板面に互いに
配列方向が直交する様に回折格子を形成し、この基板間
に液晶を充填して液晶分子の配向状!8を制御すること
により屈折率を変え1回折格子を成す物質と液晶との屈
折率差を変えることで分光透過率特性を可変にする等の
機能を有するものであり、光束利用効率に優れ且つ可変
色フィルターとして高性能を有する。しかしながら、こ
の可変減色フィルターは、主として所望の3原色R,G
、B、もしくはその補色C1M、Y等を透過させ表示す
るものであるが、例えば、消色時即ち入射光を全透過さ
せる際、液晶の屈折率の波長依存性や回折格子を成す物
質の波掻依存性が全く考慮されていない為に消色、即ち
全透過状態が不可能〒、コントラストを低下させる原因
となっていた。
On the other hand, Japanese Patent Publication No. 53-3928 and USP 4.251
, 137, etc., disclose a display element and a variable subtractive color filter element in which a reflective or transmissive phase diffraction grating is combined with a liquid crystal. The elements disclosed in these documents are certainly excellent in luminous flux utilization efficiency, but the element disclosed in Japanese Patent Publication No. 53-3928 merely exhibits a decorative effect, and is not a display element for displaying characters or images. However, it was not satisfactory as an optical modulation element for passing or blocking light beams. In addition, the variable subtractive color filter element disclosed in US Pat. Oriented! It has functions such as changing the refractive index by controlling 8 and changing the refractive index difference between the substance forming the diffraction grating and the liquid crystal, making the spectral transmittance characteristics variable.It has excellent luminous flux utilization efficiency and It has high performance as a variable color filter. However, this variable color reduction filter mainly uses the three desired primary colors R and G.
, B, or their complementary colors C1M, Y, etc., are transmitted and displayed. For example, when decoloring, that is, when completely transmitting the incident light, the wavelength dependence of the refractive index of the liquid crystal and the wave of the material forming the diffraction grating are Since scratch dependence was not taken into consideration at all, it was impossible to achieve color erasure, that is, a completely transparent state, which caused a decrease in contrast.

又、この種の回折格子と屈折率可変物質との組合せから
成る素子構成では、屈折率可変物質の屈折率を制御する
際、屈折率変化に於る明確なしきい値が存在せず非常に
変化が緩慢である為、やはり入射光を全透過させ消色す
るのは困難で、且つ、この種の素子を複数個用いて表示
装置とする際にマルチプレックス駆動は行ない得なかっ
た。
In addition, in an element configuration consisting of a combination of this type of diffraction grating and a variable refractive index material, when controlling the refractive index of the variable refractive index material, there is no clear threshold value for changing the refractive index, and the refractive index varies greatly. Because of the slow rate of change, it is difficult to completely transmit the incident light and erase the color, and multiplex driving cannot be performed when a display device is constructed using a plurality of elements of this type.

〈発明の概要〉 本発明の目的は、上記従来の欠点に鑑み、使用光束の全
透過状態を可能にし、表示素子として用いる際に高コン
トラストを有して且つマルチプレックス駆動が可能とな
る光変調素子を提供することにある。
<Summary of the Invention> In view of the above-mentioned drawbacks of the conventional art, an object of the present invention is to provide an optical modulation device that enables total transmission of the used luminous flux, has high contrast when used as a display element, and enables multiplex driving. The purpose is to provide devices.

上記目的を達成する為に、本発明に係る光変調素子は、
複数の透明基板と隣接する透明基板の相対する少くとも
一方の面に存する回折格子と該複数の透明基板間に配さ
れた屈折率可変物質と該屈折率可変物質の屈折率を制御
する手段とを有する素子であって、前記屈折率可変物質
の最大屈折率nmaxと最小屈折率をnm1nとの間に
存する所定の屈折率をnθ、前記回折格子を成す物質の
屈折率をngとする時、入射光全波長領域に於て前記屈
折率noと屈折率ngとが大略等しいことを特徴として
いる。
In order to achieve the above object, the light modulation element according to the present invention includes:
a plurality of transparent substrates, a diffraction grating existing on at least one opposing surface of an adjacent transparent substrate, a refractive index variable material disposed between the plurality of transparent substrates, and means for controlling the refractive index of the refractive index variable material; where nθ is a predetermined refractive index existing between the maximum refractive index nmax and the minimum refractive index nm1n of the variable refractive index material, and ng is the refractive index of the material forming the diffraction grating, It is characterized in that the refractive index no and the refractive index ng are approximately equal in the entire wavelength range of incident light.

尚、本発明の更なる特徴は以下に示す実施例より明らか
になるであろう。
Further features of the present invention will become clear from the Examples shown below.

尚、前記屈折率可変物質としては、例えば、液晶、 P
 L Z T 、 L i N b O3、L i T
 a O3。
In addition, as the refractive index variable substance, for example, liquid crystal, P
L Z T , L i N b O3, L i T
a O3.

TiO2、PMMA、CCl4.KDP、ADP、Zn
O,BaTiO2,B112Si020゜Ba2NaN
b5015.MnB1 、EuO。
TiO2, PMMA, CCl4. KDP, ADP, Zn
O, BaTiO2, B112Si020゜Ba2NaN
b5015. MnB1, EuO.

C32,Gd2(MOO4) 3.Bi4Ti3O12
、CuC1,CaAs、ZnTe、As2Se3.Se
、AsGe5eS、DKDP。
C32, Gd2 (MOO4) 3. Bi4Ti3O12
, CuC1, CaAs, ZnTe, As2Se3. Se
, AsGe5eS, DKDP.

MNA 、mNA 、UREA 、7オトレジスト等が
挙げられる。特に、正及び負のネマチック液晶や強誘電
性液晶等の液晶は安価で屈折率Δn(異常屈折率と常屈
折率の差)が大きく、制御方法が簡便である為に好適で
ある。又、前記グレーティングの作成方法には、フォト
リソグラフィーとドライエツチングを組み合わせた方法
、熱硬化性樹脂あるいは紫外線硬化性樹脂等を用いたレ
プリカ法、ルーリングエンジンを用いた切削法あるいは
エンボス法等の各種方法が挙げられる。
Examples include MNA, mNA, UREA, and 7 otoresist. In particular, liquid crystals such as positive and negative nematic liquid crystals and ferroelectric liquid crystals are suitable because they are inexpensive, have a large refractive index Δn (the difference between the extraordinary refractive index and the ordinary refractive index), and are easy to control. In addition, the method for producing the grating includes various methods such as a method combining photolithography and dry etching, a replica method using a thermosetting resin or an ultraviolet curable resin, a cutting method using a ruling engine, an embossing method, etc. can be mentioned.

〈実施例〉 第1図は本発明に係る光変調素子の基本構成図を示し、
本光変調素子の機能説明図を兼ねている0図中、lは液
晶に代表される屈折率可変物質、2は使用波長に対して
透明な物質から成る回折格子、3は透明電極、4は透明
光学部材から成る透明基板、5は任意の偏光特性を有す
る入射光、6及び6′は入射光5の互いに直交する偏光
成分で、6は紙面垂直方向、6′は紙面に平行な方向を
示している。
<Example> FIG. 1 shows a basic configuration diagram of a light modulation element according to the present invention,
In Figure 0, which also serves as a functional explanatory diagram of this light modulation element, l is a variable refractive index material represented by liquid crystal, 2 is a diffraction grating made of a material that is transparent to the wavelength used, 3 is a transparent electrode, and 4 is a A transparent substrate made of a transparent optical member, 5 is incident light having arbitrary polarization characteristics, 6 and 6' are mutually orthogonal polarization components of the incident light 5, 6 is a direction perpendicular to the plane of the paper, and 6' is a direction parallel to the plane of the paper. It shows.

本光変調素子は一対の透明基板4の対向する面上に透明
電極3を形成して、一対の透明基板4の一方の透明型゛
極3上に透明物質から成る矩形状の回折格子2を設けて
おり、屈折率可変物質lが回折格子2の溝部(凹部)に
配され、透明電極3を介して電界を印加されることによ
りその屈折率が可変となっている。
This light modulation element has transparent electrodes 3 formed on opposing surfaces of a pair of transparent substrates 4, and a rectangular diffraction grating 2 made of a transparent material on one transparent pole 3 of the pair of transparent substrates 4. A refractive index variable material 1 is disposed in the groove (recess) of the diffraction grating 2, and its refractive index is made variable by applying an electric field through the transparent electrode 3.

以下、第1図を用いて本光変調素子の変調原理を説明す
るが、説明を容易にする為に屈折率可変物If!ilを
以後液晶lとし、電界印加により液晶lの配向状態を制
御することで所定の回折作用を生じせしめるものとする
Hereinafter, the modulation principle of the present optical modulation element will be explained using FIG. 1, but for ease of explanation, the refractive index variable object If! Hereinafter, il will be referred to as liquid crystal 1, and a predetermined diffraction effect will be produced by controlling the alignment state of liquid crystal 1 by applying an electric field.

第1図に示す如く電界が印加されていない静的状態に於
て、液晶lは回折格子2の溝方向即ち紙面垂直方向に配
向され、ホモジニアス配向の状態を維持しているとする
。従って、この静的状態の本光変調素子に入射する入射
光5の偏光成分6.6′の内、液晶1の配向方向と直交
する成分である偏光成分6′は液晶1の常屈折率noを
感じ、又、液晶lの配向方向と平行な成分である偏光成
分6は液晶lの異常屈折率neを感じる。ここで1回折
格子2を成す物質の屈折率をng、入射光5の波長を入
、回折格子2の厚さをTとすれば、矩形状の回折格子の
場合、入射光5の偏光成分6.6′の夫々に対する零次
透過回折光の回折効率η0は、近似的に次の(1)式で
表わせる。
As shown in FIG. 1, in a static state where no electric field is applied, the liquid crystal 1 is oriented in the direction of the grooves of the diffraction grating 2, that is, in the direction perpendicular to the plane of the paper, and maintains a homogeneous orientation state. Therefore, among the polarized light components 6.6' of the incident light 5 that enters the optical modulator in this static state, the polarized light component 6', which is a component orthogonal to the alignment direction of the liquid crystal 1, has the ordinary refractive index no. The polarized light component 6, which is a component parallel to the alignment direction of the liquid crystal I, senses the extraordinary refractive index ne of the liquid crystal I. Here, if the refractive index of the material forming the diffraction grating 2 is ng, the wavelength of the incident light 5 is input, and the thickness of the diffraction grating 2 is T, then in the case of a rectangular diffraction grating, the polarization component 6 of the incident light 5 The diffraction efficiency η0 of the zero-order transmitted diffracted light for each of .6′ can be approximately expressed by the following equation (1).

ηO〜7 (1+ t;、 65 (2wxQユ))・
、(1)〜1 ん 但し、Δnは回折格子2の屈折−Kngと液晶lの屈折
率neもしくはnoとの屈折率差を示しており、入射光
5の偏光成分6に対してはΔn= I ne−ng I
、偏光成分6′に対してはΔn=lng−nolとなる
ηO~7 (1+t;, 65 (2wxQyu))・
, (1) ~ 1 However, Δn indicates the refractive index difference between the refraction −Kng of the diffraction grating 2 and the refractive index ne or no of the liquid crystal 1, and for the polarization component 6 of the incident light 5, Δn= I ne-ng I
, for the polarization component 6', Δn=lng-nol.

従って、(1)式からΔn=o即ちne−ng又はno
=r1gの時に零次透過回折光の回折効率η0はηQ=
1となり、又、 、ΔnT= (m十壺)入 (m=0.1.2.3.−−−) の時に回折効率η0はη0=Qとなる。
Therefore, from equation (1), Δn=o, that is, ne-ng or no
= r1g, the diffraction efficiency η0 of the zero-order transmitted diffracted light is ηQ=
1, and when ΔnT= (m=0.1.2.3.---), the diffraction efficiency η0 becomes η0=Q.

次に、透明電極3を介して液晶lに電界を印加する場合
、液晶lの配向方向(光学軸方向)が徐々に変化し、入
射光5に於る偏光成分6′は電界印加に無関係に常時液
晶lの常屈折率n。
Next, when an electric field is applied to the liquid crystal l through the transparent electrode 3, the alignment direction (optical axis direction) of the liquid crystal l gradually changes, and the polarization component 6' of the incident light 5 is independent of the applied electric field. Normal refractive index n of liquid crystal l.

を感じ、偏光成分6は電界印加量に従って液晶lの異常
屈折率neと常屈折率noとが所定の比率で合成された
合成屈折率noを感じる。
The polarized light component 6 senses a composite refractive index no, which is a combination of the extraordinary refractive index ne and the ordinary refractive index no of the liquid crystal 1 at a predetermined ratio, according to the amount of applied electric field.

言うまでもなく、液晶lの配向方向の変化に伴なって合
成屈折率nQは変化する。更に電界印加量を強めると、
液晶lは基板4(透明電極3)に垂直に配向され、ホメ
オトロピック配向状態となる為に入射光5の偏光成分6
,6′は共に液晶の常屈折率noを感じ飽和する。
Needless to say, the composite refractive index nQ changes as the alignment direction of the liquid crystal l changes. If the applied electric field is further strengthened,
The liquid crystal 1 is aligned perpendicularly to the substrate 4 (transparent electrode 3), and in order to be in a homeotropic alignment state, the polarized light component 6 of the incident light 5 is
, 6' both sense the ordinary refractive index no of the liquid crystal and become saturated.

尚、この状態に於ても入射光5は前記(1)式に従、い
変調される。
Incidentally, even in this state, the incident light 5 is modulated according to the above equation (1).

第2図は第1図に示す如き構成を基本構成とし、回折格
子2により液晶lを配向させている光変調素子に於て、
ng=n、の場合での前記(1)式で示される回折効率
ηOの電圧依存性を示す図である。但し、ng=noと
する場合、入射光5の偏光成分6′は電界に依存せず常
に液晶lの常屈折率noを感じる為、常時全透過状態と
なっており、第2図で示される回折効率ηOは入射光5
の偏光成分6に対するものである。尚、第2図のグラフ
は横軸に屈折率制御電圧(■)、縦軸に回折効率(ηO
)をとって描いてあり、γ1及びγ2はV−10曲線の
主たる傾きを表わす。
FIG. 2 shows a light modulation element having the basic configuration as shown in FIG. 1, in which liquid crystal l is aligned by a diffraction grating 2.
FIG. 3 is a diagram showing the voltage dependence of the diffraction efficiency ηO expressed by the above equation (1) in the case of ng=n. However, when ng=no, the polarized light component 6' of the incident light 5 does not depend on the electric field and always feels the ordinary refractive index no of the liquid crystal l, so it is always in a completely transparent state, as shown in Figure 2. The diffraction efficiency ηO is the incident light 5
This is for polarization component 6 of . The graph in Figure 2 shows the refractive index control voltage (■) on the horizontal axis and the diffraction efficiency (ηO) on the vertical axis.
), and γ1 and γ2 represent the main slopes of the V-10 curve.

第2図から解る様にV−10曲線が成す傾きは2つ以上
の傾き成分子1.γ2を有しており、曲線の変化が緩慢
であって、通常マルチプレックス駆動を行なう為に必要
な勾配がV−10曲線に存在せず、この駆動法を用いる
のは困難である。又、低電圧で偏光成分6を全透過状態
にするのも容易ではない。
As can be seen from FIG. 2, the slope formed by the V-10 curve has two or more slope components 1. γ2, the curve changes slowly, and the V-10 curve does not have the slope required for normal multiplex driving, making it difficult to use this driving method. Furthermore, it is not easy to make the polarized light component 6 completely transparent at low voltage.

更に、前記(1)式から解る様に、回折効率η0は回折
格子2を成す物質の屈折率ngと液晶1(7)屈折in
e 、no 、(no)との屈折率差Δn及び屈折率n
g、no、ne、(no)の波長分散特性に大きく影響
を受ける。従って、特に波長分散特性が悪い素子構成で
は全透過状態を得ることはできない。
Furthermore, as can be seen from equation (1) above, the diffraction efficiency η0 is determined by the refractive index ng of the material forming the diffraction grating 2 and the refraction in the liquid crystal 1 (7).
refractive index difference Δn with e, no, (no) and refractive index n
It is greatly influenced by the wavelength dispersion characteristics of g, no, ne, and (no). Therefore, it is not possible to obtain a completely transparent state especially with an element configuration having poor wavelength dispersion characteristics.

しかしながら1本発明に係る光変調素子は、第1図に示
す如き構成に於て、第1に液晶lの常屈折率noと回折
格子2を成す物質の屈折率ngの波長分散特性を入射光
全波長領域に於て大略一致ぎせ、第2に液晶lの屈折率
nθ(no<no=ng)と回折格子2を成す物質の屈
折率ngを一致させている。この様に素子を構成するこ
とにより、素子を構成する各要素(回折格子や屈折率可
変物質)の屈折率の波長分散特性に起因する透過率の低
下を阻11二して全透過状態を可能にすると共に、第2
図に示す如き■−η0曲線の傾きを急峻にして実質的に
マルチプレックス駆動を可能ならしめる。即ち、液晶1
の異常屈折率neと常屈折率noとの間に存する所定の
合成屈折率nOは、第1図の構成を用いて説明すると、
液晶1が電界印加により完全に基板4に対して垂直に配
向する以前の状態に於るもので、液晶分子が所定の角度
類いている状態に於る屈折率である。従って、この状I
Eでの屈折率nQと回折格子2を成す物質の屈折率ng
とを等しくしておけば、低電界印加で液晶1と回折格子
2との屈折率をマツチングすることが出来、低電圧で全
透過状態を得ることが可能となり、■−η0曲線の傾き
も急峻になる。
However, in the light modulation element according to the present invention, in the configuration as shown in FIG. Second, the refractive index nθ (no<no=ng) of the liquid crystal 1 and the refractive index ng of the substance forming the diffraction grating 2 are made to match. By configuring the element in this way, it is possible to prevent the decrease in transmittance caused by the wavelength dispersion characteristics of the refractive index of each element that makes up the element (diffraction grating and variable refractive index material), and to achieve a completely transparent state. along with the second
By making the slope of the -η0 curve as shown in the figure steep, multiplex driving is essentially possible. That is, liquid crystal 1
A predetermined composite refractive index nO existing between the extraordinary refractive index ne and the ordinary refractive index no is explained using the configuration of FIG. 1 as follows.
This is the state before the liquid crystal 1 is completely aligned perpendicular to the substrate 4 due to the application of an electric field, and is the refractive index when the liquid crystal molecules are oriented at a predetermined angle. Therefore, this state I
The refractive index nQ at E and the refractive index ng of the material forming the diffraction grating 2
If they are made equal, it is possible to match the refractive index of the liquid crystal 1 and the diffraction grating 2 by applying a low electric field, and it is possible to obtain a completely transparent state with a low voltage, and the slope of the -η0 curve is also steep. become.

以下、本光変調素子の具体的構成例を述べて説明する0
通常の一対のガラス基板を用い。
Hereinafter, a specific example of the configuration of the present optical modulation element will be described and explained.
Using a pair of regular glass substrates.

夫々のガラス基板の一方の面にITO等の透明電極を形
成し、一方のガラス基板の透明電極上に更に5EL−N
 (ソーマル工業製、屈折率ng=1.57)で回折格
子を形成して両基板を透明電極が相対する様に貼り合わ
せ、両店板間にRO−TN403 (ロシュ製ネマチッ
ク液晶、ne=1.79、no=1.53)を充填し、
第1図に示す如き光変調素子を作成した。
A transparent electrode such as ITO is formed on one surface of each glass substrate, and 5EL-N is further formed on the transparent electrode of one glass substrate.
(manufactured by Somar Industries, refractive index ng = 1.57) to form a diffraction grating, and bonded both substrates so that the transparent electrodes faced each other. .79, no=1.53),
A light modulation element as shown in FIG. 1 was prepared.

第3図は常温での白色光に対するSEL−N(ng)及
びRO−TN403 (ne 、no)の屈折率の波長
分散特性を示す図であり、横軸に入射光の波技入(用m
)、縦軸に5EL−L及びRO−TN403の屈折率を
とって描いたグラフである。第3図から解る様に、入射
光全波長領域で(ne−no)が大略等しく且つ、ng
とnoの波長分散特性は絶対値は異なるものの類似した
曲線に従っており、全透過状態を得ることが可ず赴であ
る。
Figure 3 is a diagram showing the wavelength dispersion characteristics of the refractive index of SEL-N (ng) and RO-TN403 (ne, no) with respect to white light at room temperature.
), and is a graph plotting the refractive index of 5EL-L and RO-TN403 on the vertical axis. As can be seen from Fig. 3, (ne-no) is approximately equal in the entire wavelength range of the incident light, and ng
Although the absolute values of the wavelength dispersion characteristics of and no are different, they follow similar curves, and it is impossible to obtain a completely transparent state.

又、第4図は本実施例に於る光変調素子の零次透過回折
光の回折効率η0の電圧依存性V−η0曲線を示す図で
ある。図から解る様に本実施例に於るV−10曲線は急
峻な立上りを示し、傾き成分も主としてγ1のみから成
っており、第2図のV−10曲線と比較して低電圧で全
透過状態を得ることが出来る。更に、マルチプレックス
駆動も実現可能な特性を示した。
Further, FIG. 4 is a diagram showing the voltage dependence V-η0 curve of the diffraction efficiency η0 of the zero-order transmitted diffracted light of the light modulation element in this embodiment. As can be seen from the figure, the V-10 curve in this example shows a steep rise, and the slope component mainly consists of γ1, and compared to the V-10 curve in Figure 2, total transmission is achieved at a lower voltage. You can get the status. Furthermore, it showed characteristics that make multiplex drive possible.

尚、本実施例に於ては透過型の光変調素子を示している
が、例えば一方の基板に光反射膜を施して反射型の素子
とすることも可能である。
Although this embodiment shows a transmissive light modulation element, it is also possible to form a reflective element by applying a light reflecting film to one of the substrates, for example.

但し、反射型の場合、素子内に於る回折光の挙動が複雑
となる為、設計や実際の表示素子等の応用面を考慮すれ
ば、本発明では透過型の光変調素子とするのが望ましい
、このノ易合は、当然の本ながら、回折格子、屈折率可
変物質及び基板等は使用波長に対して透過性を有する部
材を用いる。
However, in the case of a reflective type, the behavior of diffracted light within the element becomes complicated, so in consideration of the design and application of actual display elements, it is preferable to use a transmissive type light modulation element in the present invention. It is desirable that the diffraction grating, the refractive index variable material, the substrate, etc. be made of members that are transparent to the wavelength used.

第5図〜第7図は本発明に係る光変3I素子の他の実施
例を示す模式図で、図中、第1図と同部材には同符号を
符しである。又、7及び7′は液晶の如き屈折率可変物
質1の光学軸の方向を示しており、7は紙面垂直方向、
7′は紙面と平行で方向7に直交する方向を示す。更に
、2′は回折格子(不図示)、3′は透明電極、4′は
透明基板を示している。
5 to 7 are schematic diagrams showing other embodiments of the photovariable 3I element according to the present invention, in which the same members as in FIG. 1 are denoted by the same reference numerals. Further, 7 and 7' indicate the direction of the optical axis of the refractive index variable material 1 such as liquid crystal, and 7 indicates the direction perpendicular to the plane of the paper;
7' indicates a direction parallel to the plane of the paper and orthogonal to direction 7. Furthermore, 2' is a diffraction grating (not shown), 3' is a transparent electrode, and 4' is a transparent substrate.

第5図は回折格子2.2′を配列方向が直交する様に重
畳して構成した素子を示し、第1図の光変調素子を一対
用いて形成したものである。
FIG. 5 shows an element constructed by superimposing diffraction gratings 2 and 2' so that their arrangement directions are perpendicular to each other, and is formed using a pair of the light modulation elements shown in FIG. 1.

この様な構成にすることで第1図で示した入射光5の偏
光成分6.6′を同時に変調することが可能である。
With such a configuration, it is possible to simultaneously modulate the polarization components 6 and 6' of the incident light 5 shown in FIG.

第6図及び第7図は第1図に示した光変調素子に於て回
折格子2の形態を変えた素子を示し、第6図は三角波状
、第7図は正弦波状の回折格子を具備する光変調素子で
ある。この様に来光変調素子の回折格子の形状は矩形状
に限らず種々の形状を用いることが出来る。但し、前記
(1)式で示した様゛な回折効率の式は回折格子の形状
により異なる。
6 and 7 show an element in which the form of the diffraction grating 2 is changed in the light modulation element shown in FIG. 1, with FIG. 6 having a triangular wave-like diffraction grating and FIG. 7 having a sine wave-like diffraction grating. It is a light modulation element that In this way, the shape of the diffraction grating of the light modulation element is not limited to a rectangular shape, and various shapes can be used. However, the equation for diffraction efficiency as shown in equation (1) above differs depending on the shape of the diffraction grating.

尚、以北の説明では屈折率可変物質として液晶を採りあ
げているが、他の屈折率可変物質であっても本発明は適
用可能であることは言うまでもない、但し、液晶とりわ
けネマチック液晶は容易に入手出来ると共に制御が簡便
で、且つ回折格子により配向規制が可能である為に。
In the following explanation, liquid crystal is used as the refractive index variable material, but it goes without saying that the present invention is applicable to other refractive index variable materials.However, liquid crystal, especially nematic liquid crystal, can be easily used. This is because it is readily available, easy to control, and allows orientation regulation using a diffraction grating.

本発明に好適な物質と言える。又、制御方法も電界制御
方式を用いるのが、応答特性や表示素子として駆動する
際の容易性を鑑みると好ましい、更に屈折率可変物質と
しては、異常屈折率neと常屈折率noとの屈折率差が
大きいものが好ましく、素子構成や変調機能の自由度を
高めることになる。従って、この意味に於ても液晶は好
ましい物質と言え、望ましくは屈折率差(ne−no)
が0.2以上の物質が良い。
It can be said that this material is suitable for the present invention. In addition, it is preferable to use an electric field control method as a control method in view of response characteristics and ease of driving as a display element.Furthermore, as a refractive index variable material, a refractive index between an extraordinary refractive index ne and an ordinary refractive index no is used. It is preferable to have a large rate difference, which increases the degree of freedom in element configuration and modulation function. Therefore, in this sense as well, liquid crystal is a preferable material, and desirably has a refractive index difference (ne-no).
A substance with a value of 0.2 or more is preferable.

〈発明の効果〉 以上、本発明に係る光変調素子は、使用光束の波長に係
わりなく全透過状態を得る事が出来、マルチプレックス
駆動も成し得る為に可変減色フィルターや表示素子等と
して十分な性能を持つ光変調素子である。
<Effects of the Invention> As described above, the light modulation element according to the present invention can obtain a completely transparent state regardless of the wavelength of the used luminous flux, and can also achieve multiplex drive, so it is suitable for use as a variable subtractive color filter, a display element, etc. This is a light modulation element with excellent performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光変調素子の基本構成を示す図。 第2図は従来の光変調素子の電圧(V)と回折効率(η
0)の関係を示す図。 第3図は本発明に係る光変調素子の回折格子と液晶の屈
折率の波長分散特性を示す図。 第4図は本発明に係る光す調素子の電圧(V)と回折効
率(η0)の関係を示す図。 第5図〜:57図は本発明に係る光変調素子の他の実施
例を示す図。 1 −−−−一 屈折率可変物質(液晶)2 、2’ 
−−−−一 回折格子 3 、3’ −−−−一 透明電極 4 、4’ −−一−−透明基板 5 −−−−一 入射光
FIG. 1 is a diagram showing the basic configuration of a light modulation element according to the present invention. Figure 2 shows the voltage (V) and diffraction efficiency (η
0) is a diagram showing the relationship. FIG. 3 is a diagram showing the wavelength dispersion characteristics of the refractive index of the diffraction grating and liquid crystal of the light modulation element according to the present invention. FIG. 4 is a diagram showing the relationship between the voltage (V) and the diffraction efficiency (η0) of the optical modulator according to the present invention. Figures 5 to 57 are diagrams showing other embodiments of the optical modulation element according to the present invention. 1 ----1 refractive index variable material (liquid crystal) 2, 2'
-----1 Diffraction grating 3, 3' -----1 Transparent electrode 4, 4' -1 - Transparent substrate 5 -----1 Incident light

Claims (4)

【特許請求の範囲】[Claims] (1)複数の基板と隣接する基板の相対する少なくとも
一方の面に存する回折格子と該複数の基板間に配された
屈折率可変物質と該屈折率可変物質の屈折率を制御する
手段とを有する素子であって、前記屈折率可変物質の最
大屈折率n_m_a_xと最小屈折率n_m_i_nと
の間に存する所定の屈折率をn_θ、前記回折格子を成
す物質の屈折率をn_gとする時、入射光全波長領域に
於て前記屈折率n_θと屈折率n_gとが大略等しい光
変調素子。
(1) A diffraction grating existing on at least one opposing surface of a plurality of substrates and an adjacent substrate, a refractive index variable material disposed between the plurality of substrates, and a means for controlling the refractive index of the refractive index variable material. When a predetermined refractive index existing between the maximum refractive index n_m_a_x and the minimum refractive index n_m_i_n of the variable refractive index material is n_θ, and the refractive index of the material forming the diffraction grating is n_g, the incident light A light modulation element in which the refractive index n_θ and the refractive index n_g are approximately equal in all wavelength regions.
(2)前記屈折率可変物質が液晶である特許請求の範囲
第(1)項記載の光変調素子。
(2) The light modulation element according to claim (1), wherein the refractive index variable material is a liquid crystal.
(3)前記基板と前記屈折率可変物質が使用波長に対し
て透明である特許請求の範囲第(1)項記載の光変調素
子。
(3) The light modulation element according to claim (1), wherein the substrate and the refractive index variable material are transparent to the wavelength used.
(4)前記液晶の配向方向を電界により変化せしめる特
許請求の範囲第(1)項記載の光変調素子。
(4) The light modulation element according to claim (1), wherein the orientation direction of the liquid crystal is changed by an electric field.
JP61080608A 1986-04-07 1986-04-07 Light modulator Expired - Fee Related JPH0776815B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61080608A JPH0776815B2 (en) 1986-04-07 1986-04-07 Light modulator
US07/033,192 US4822146A (en) 1986-04-07 1987-04-02 Optical modulation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61080608A JPH0776815B2 (en) 1986-04-07 1986-04-07 Light modulator

Publications (2)

Publication Number Publication Date
JPS62235925A true JPS62235925A (en) 1987-10-16
JPH0776815B2 JPH0776815B2 (en) 1995-08-16

Family

ID=13723041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61080608A Expired - Fee Related JPH0776815B2 (en) 1986-04-07 1986-04-07 Light modulator

Country Status (1)

Country Link
JP (1) JPH0776815B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137544A (en) * 2007-01-22 2013-07-11 Pixeloptics Inc Cholesteric liquid crystalline material
JP2014215518A (en) * 2013-04-26 2014-11-17 日本電信電話株式会社 Performance-variable diffraction grating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137544A (en) * 2007-01-22 2013-07-11 Pixeloptics Inc Cholesteric liquid crystalline material
EP2111563B1 (en) * 2007-01-22 2017-12-20 Mitsui Chemicals, Inc. Cholesteric liquid crystalline material
JP2014215518A (en) * 2013-04-26 2014-11-17 日本電信電話株式会社 Performance-variable diffraction grating

Also Published As

Publication number Publication date
JPH0776815B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US5748275A (en) Liquid crystal display device and liquid crystal display apparatus
US4822146A (en) Optical modulation element
JPH10133224A (en) Display device
KR100584085B1 (en) Dynamically controllable light modulator using phase diffraction grating and its application to display device
JPS62235925A (en) Optical modulation element
JPS62235926A (en) Optical modulation element
JPH0458610B2 (en)
JPH083584B2 (en) Liquid crystal optical shutter
JPH10104654A (en) Reflection type black-and-white liquid crystal display device
JPS62237424A (en) Light modulating element
JPS62237423A (en) Light modulating element
JPH0652351B2 (en) Light modulator
JP2517589B2 (en) Light modulation element
JP3144011B2 (en) Liquid crystal phase grating
JPS63250621A (en) Optical modulation element
JPS62237425A (en) Light modulating element
JPS62238529A (en) Optical modulation element
JPS62238520A (en) Optical modulator
JPH0279018A (en) Liquid crystal display element
JPH0652348B2 (en) Light modulator
JPS61193122A (en) Optical modulating equipment
JPH0527091B2 (en)
JPH01922A (en) light modulator
JP2673533B2 (en) Liquid crystal display device
JPS61193123A (en) Optical modulating equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees