JPS62235714A - Formation of magnetic alloy thin film and device therefor - Google Patents

Formation of magnetic alloy thin film and device therefor

Info

Publication number
JPS62235714A
JPS62235714A JP7820486A JP7820486A JPS62235714A JP S62235714 A JPS62235714 A JP S62235714A JP 7820486 A JP7820486 A JP 7820486A JP 7820486 A JP7820486 A JP 7820486A JP S62235714 A JPS62235714 A JP S62235714A
Authority
JP
Japan
Prior art keywords
substrate
plating
thin film
plating solution
magnetic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7820486A
Other languages
Japanese (ja)
Inventor
Toshihiro Yoshida
吉田 敏博
Tetsuo Kobayashi
哲夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7820486A priority Critical patent/JPS62235714A/en
Publication of JPS62235714A publication Critical patent/JPS62235714A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a magnetic alloy thin film, having uniform compositional distribution, on a stepped substrate by a method wherein the circulation of a plating solution, the agitation of the plating solution in the vicinity of the substrate surface, and a pulse superposition DC power source are properly combined. CONSTITUTION:When a magnetic alloy thin film is going to be electroplated on a substrate, a horizontal current circuit, having the crosssectional area oorresponding to the shape of the substrate, is formed between an anode plate 24 and a cathode plate 14 droopingly provided facing each other in a plating cell 25 in which a plating solution is circulated. The plating solution is fed into an inflow chamber 18 from an inflow pipe 17 with a circulating pump 28, it is sent to a cathode chamber 12 passing through an inflow hole 19, the plating solution in the cathode chamber 12 is agitated by an agitating spatula 20, and sent to an anode chamber 10 passing through an aperture part 15. A pulse superposition DC plating power source 36, with which a current wherein a rectangular pulse is DC-superposed is supplied through the intermediary of a lead, is connected to the point located between the anode plate 24 and the cathode plate 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁性合金薄膜の形成方法及びその装置に係り、
特に誘導型薄膜磁気ヘッド用等の電導性を付与した段差
のある基板上に均一な合金組成を有する磁性合金薄膜を
再現性よく容易にめっきすることのできる磁性合金薄膜
の形成方法及びその装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for forming a magnetic alloy thin film,
In particular, it relates to a method and apparatus for forming a magnetic alloy thin film that can easily plate a magnetic alloy thin film having a uniform alloy composition with good reproducibility on a stepped substrate imparted with electrical conductivity, such as for an inductive thin film magnetic head. .

〔従来の技術〕[Conventional technology]

従来より磁性合金薄膜とくに約8]Ni−19Feの合
金組成を有するパーマロイ薄膜は、低い保磁力と高周波
領域での高い透磁率を示すので薄膜磁気ヘッドなどの高
速スイッチング素子用磁性材料として広く使用されてい
る。たとえば第3図に示すような断面の構造を有する誘
導型薄膜磁気ヘッドにおいては、基板1上に形成された
パーマロイ薄膜よりなる磁気コア2,3の先端部の組成
および斜面をなす段差部近傍7の組成分布が記録磁界の
強さと再生分解能に大きく左右するので、NiとFeの
組成比を組成公差約±0.5wt%以下となるようにパ
ーマロイ薄膜を形成する必要がある。したがって電気め
っき法でこのような要求を満たすパーマロイ薄膜を形成
する場合には、基板内の組成の分布を均一にすることと
基板間の組成変動を極力少なくする方法が必要である。
Conventionally, magnetic alloy thin films, particularly permalloy thin films having an alloy composition of about 8]Ni-19Fe, have been widely used as magnetic materials for high-speed switching elements such as thin-film magnetic heads because they exhibit low coercive force and high magnetic permeability in the high frequency range. ing. For example, in an inductive thin film magnetic head having a cross-sectional structure as shown in FIG. Since the composition distribution of the permalloy thin film greatly affects the strength of the recording magnetic field and the reproducing resolution, it is necessary to form the permalloy thin film so that the composition ratio of Ni and Fe is within a composition tolerance of approximately ±0.5 wt%. Therefore, in order to form a permalloy thin film that satisfies these requirements by electroplating, it is necessary to make the composition distribution uniform within the substrate and to minimize compositional variations between substrates.

従来の電気めっき法において、たとえば特開昭57−9
894号および特開昭57−5890号公報に記載の部
分めっきを行なうために筒体を用いる方法、特開昭55
−152200号公報に記載の電極と被めっき体を縦向
けに配置する方法、特公昭57−9636号公報に記載
の攪拌機構をもつめっき装置などが公知である。従来の
電気めっき法による上記の誘導型薄膜磁気ヘッド用の磁
性合金薄膜の形成方法などでは、めっき液の循環や陰極
近傍での攪拌などを行なうなどしてDCめっきする方法
が採用されている。
In the conventional electroplating method, for example, Japanese Patent Application Laid-Open No. 57-9
894 and Japanese Unexamined Patent Publication No. 57-5890, a method using a cylinder for partial plating;
A method of arranging an electrode and an object to be plated vertically as described in Japanese Patent Publication No. 152200, and a plating apparatus having a stirring mechanism as described in Japanese Patent Publication No. 57-9636 are well known. In the conventional electroplating method for forming the magnetic alloy thin film for the above-mentioned induction type thin film magnetic head, a DC plating method is adopted in which the plating solution is circulated or stirred near the cathode.

しかし近年での薄膜磁気ヘッドの高密度化により、Ni
とFeの組成比の組成公差約±0.1程度の低減が必要
となって、従来のめっき法では実現困難であった。
However, with the recent increase in the density of thin-film magnetic heads, Ni
It is necessary to reduce the composition tolerance of about ±0.1 in the composition ratio of Fe and Fe, which is difficult to achieve with conventional plating methods.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術の電気めっき法による磁性合金薄膜の形成
方法では、誘導型薄膜磁気ヘッド用等の段差のある基板
上に組成分布の十分均一な磁性合金薄膜を形成するのが
実現困難となる問題点があった。
The problem with the conventional method of forming a magnetic alloy thin film using electroplating described above is that it is difficult to form a magnetic alloy thin film with a sufficiently uniform composition distribution on a substrate with a step such as for an inductive thin film magnetic head. was there.

本発明の目的は、上記従来技術の問題点を改善し、誘導
型薄膜磁気ヘッド用等の電導性を付与した段差のある基
板上により均一な合金組成を有する磁性合金薄膜を再現
性よく、かつ容易に電気めっきにより形成する磁性合金
薄膜の形成方法及びその装置を提供するにある。
An object of the present invention is to improve the problems of the prior art described above, and to produce a magnetic alloy thin film having a more uniform alloy composition on a stepped substrate with electrical conductivity, such as for an inductive thin film magnetic head, with good reproducibility. It is an object of the present invention to provide a method for forming a magnetic alloy thin film that can be easily formed by electroplating, and an apparatus therefor.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、磁性合金薄膜を基板上に電気めっきするに
さいし、めっき液を循環させためっきセル内に対向垂設
した陽極板と陰極板間に基板の形=3− 状に応じた断面積を有する水平電流路を集束形成せしめ
るとともに、上記陰極板付近のめっき液を攪拌して、上
記陽極板と陰極板間に矩形波パルス電流を直流電流に重
畳させた電流を供給するめっき電源を使用することによ
り達成される。
The above purpose is to electroplate a magnetic alloy thin film onto a substrate by circulating a plating solution between an anode plate and a cathode plate, which are vertically opposed to each other in a plating cell. A plating power source is used that supplies a current in which a rectangular pulse current is superimposed on a direct current between the anode plate and the cathode plate by agitating the plating solution near the cathode plate and forming a focused horizontal current path having This is achieved by

〔作用〕[Effect]

上記の電気めっき法による磁性合金薄膜の形成において
は、水平電流路の集束形成ならびに陰極付近の攪拌によ
り基板の平坦面に均一な合金組成膜を形成するとともに
、これらに矩形波パルス電流を直流電流に重畳させため
っき電源を併用することにより基板の段差のある部分に
電流が集中することなく段差部分を均一な合金組成膜に
形成できる。
In forming a magnetic alloy thin film by the above-mentioned electroplating method, a uniform alloy composition film is formed on the flat surface of the substrate by focusing horizontal current paths and stirring near the cathode, and at the same time, a rectangular pulsed current is applied to the film with a direct current. By using a plating power source superimposed on the substrate, it is possible to form a film with a uniform alloy composition on the stepped portions without concentrating current on the stepped portions of the substrate.

〔実施例〕〔Example〕

以下に本発明の一実施例を第1図ないし第6図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

第1図は本発明による磁性合金薄膜の形成方法及びその
装置の一実施例を示すめっき装置の全体構成図である。
FIG. 1 is an overall configuration diagram of a plating apparatus showing an embodiment of the method and apparatus for forming a magnetic alloy thin film according to the present invention.

第1図において、8,9は遮へい一4= 板、 10は陽極室、 11は中間室、12は陰極室、
 13は基板押え板、14は陰極板、15は開口部、 
16は電流分布制御用筒体、 17は流入パイプ、 1
8は流入室。
In Figure 1, 8 and 9 are shielding plates, 10 is an anode chamber, 11 is an intermediate chamber, 12 is a cathode chamber,
13 is a substrate holding plate, 14 is a cathode plate, 15 is an opening,
16 is a cylinder for controlling current distribution; 17 is an inflow pipe; 1
8 is the inflow chamber.

19は流入口、20は攪拌へら、21はオーバーフロー
室、22は流出パイプ、24は陽極板、25はめっきセ
ルである。また26は流量計、27はフィルタ、28は
循環ポンプ、29は貯槽、30は温度センサ、 31は
温度制御回路、32は電気ヒータ、33は攪拌機、34
はPH計、35は滴定器、36はパルス重畳直流めっき
電源である。
19 is an inlet, 20 is a stirring spatula, 21 is an overflow chamber, 22 is an outflow pipe, 24 is an anode plate, and 25 is a plating cell. Further, 26 is a flow meter, 27 is a filter, 28 is a circulation pump, 29 is a storage tank, 30 is a temperature sensor, 31 is a temperature control circuit, 32 is an electric heater, 33 is a stirrer, 34
35 is a PH meter, 35 is a titrator, and 36 is a pulse superimposed DC plating power source.

第1図のめっきセル25は流量計26.フィルタ27゜
循環ポンプ28を介して貯槽29に配管接続される。
The plating cell 25 in FIG. 1 has a flowmeter 26. The filter 27 is connected via piping to a storage tank 29 via a circulation pump 28.

液温は貯槽29内において白金抵抗体からなる温度セン
サ30によって測定され、その温度信号を入力して温度
制御装置31が電気ヒータ32を動作させることにより
一定温度に保たれる。めっき液は貯槽29内で攪拌機3
3により絶えず攪拌される。めっき液のPHはPH計3
4により測定され、その信号を入力して滴定器35が塩
酸の希溶液を貯槽29中に滴下することにより一定値に
保持される。陽極板24と陰極板14間には図示してい
ない端子からリード線を介して矩形波パルスを直流に重
畳させた電流を供給するパルス重畳直流めっき電源36
が接続される。
The liquid temperature is measured in the storage tank 29 by a temperature sensor 30 made of a platinum resistor, and a temperature control device 31 receives the temperature signal and operates an electric heater 32 to maintain the temperature at a constant temperature. The plating solution is passed through the stirrer 3 in the storage tank 29.
3. Stir constantly. The pH of the plating solution is 3
4, and by inputting the signal, the titrator 35 drips a dilute solution of hydrochloric acid into the storage tank 29, thereby maintaining a constant value. Between the anode plate 24 and the cathode plate 14 is a pulse superimposed DC plating power supply 36 that supplies a current in which rectangular wave pulses are superimposed on DC from a terminal (not shown) via a lead wire.
is connected.

第2図は第1図のめっきセル25の部分破断斜視図であ
る。第2図において、第1図と同一符号は相当部分を示
し、23はガイド溝である。第2図のPVC(ポリ塩化
ビニール)よりなるめっきセル25は垂直に対設された
同じ<pvcなどの絶縁体からなる遮へい板8,9によ
り、陽極室10.中間室11.陰極室14の3室に仕切
られる。遮へい板8゜9には基板押え板13により陰極
板14の基板接触部に押圧支持されている基板の形状に
応じて少なくとも1対の開口部15(本実施例では円形
)が開かれていて、陽極室10と陰極室12はこれらの
開口部間をつなぐように遮へい板8,9に溶接されたP
vCよりなる電流分布制御用筒体16により連通される
。めっき液は循環ポンプ28により流入パイプ17から
流入室18に入り、流入口19を通って陰極室12に送
られ、陰極室12に入っためっき液は攪拌へら20によ
り上下に攪拌され、開口部15を通って陽極室10に送
られるとともに、遮へい板9をオーバーフローしためっ
き液は中間室に入り、さらに遮へい板8.陽極室10壁
をオーバーフローした液はオーバーフロー室に入って、
流出パイプ22から第3図の貯槽29へ循環して戻る。
FIG. 2 is a partially cutaway perspective view of the plating cell 25 of FIG. 1. In FIG. 2, the same reference numerals as in FIG. 1 indicate corresponding parts, and 23 is a guide groove. The plating cell 25 made of PVC (polyvinyl chloride) shown in FIG. Intermediate chamber 11. The cathode chamber 14 is partitioned into three chambers. At least one pair of openings 15 (circular in this embodiment) are formed in the shielding plate 8.9 according to the shape of the substrate which is pressed and supported by the substrate holding plate 13 against the substrate contacting portion of the cathode plate 14. , the anode chamber 10 and the cathode chamber 12 are connected by P welded to the shielding plates 8 and 9 so as to connect these openings.
They are communicated through a current distribution control cylinder 16 made of vC. The plating solution enters the inflow chamber 18 from the inflow pipe 17 by the circulation pump 28, and is sent to the cathode chamber 12 through the inlet 19. The plating solution entering the cathode chamber 12 is stirred up and down by the stirring spatula 20, and 15 to the anode chamber 10, the plating solution that overflows the shielding plate 9 enters the intermediate chamber and further passes through the shielding plate 8. The liquid that overflowed the anode chamber 10 wall enters the overflow chamber,
Outflow pipe 22 circulates back to storage tank 29 in FIG.

陽極室lOには遮へい板8に近接させて溶解性ニッケル
あるいは81Ni−19Feパーマロイよりなる陽極板
24が垂設される。
An anode plate 24 made of soluble nickel or 81Ni-19Fe permalloy is vertically disposed in the anode chamber IO in close proximity to the shield plate 8.

なお、基板押え板13に支持される基板の形状に応じて
断面積の定められる遮へい板8,9の開口部15は、基
板の大きさ、各種形状、遮へい板9と陰極14間の間隔
、電流分布制御用筒体16の長さ、陰極板14と基板の
導電性などを勘案して定める。
Note that the openings 15 of the shielding plates 8 and 9, whose cross-sectional areas are determined according to the shape of the substrate supported by the substrate holding plate 13, are determined depending on the size of the substrate, various shapes, the distance between the shielding plate 9 and the cathode 14, It is determined by taking into account the length of the current distribution control cylinder 16, the conductivity of the cathode plate 14 and the substrate, etc.

攪拌へら20と陰極板14との間隔は、陰極板14を陰
極室12の側壁に形成されたガイド溝23を通して出し
入れすることにより常に一定に保たれる。陰極板14は
所定の位置に挿入したときに基板の中心の位置にくるよ
うに製作される。また基板に通電できるように陰極板1
4には導電材料たとえばステンレス鋼が使用され、その
表面にはめつき膜が形成されないように基板接触部を除
いて例えば幅5 +nm 。
The distance between the stirring spatula 20 and the cathode plate 14 is always kept constant by moving the cathode plate 14 in and out through a guide groove 23 formed in the side wall of the cathode chamber 12. The cathode plate 14 is manufactured so that it is located at the center of the substrate when inserted into a predetermined position. Also, in order to conduct electricity to the board, the cathode plate 1
4 is made of a conductive material such as stainless steel, and has a width of, for example, 5 + nm, excluding the substrate contacting portion, to prevent a plating film from being formed on its surface.

厚さ0.3mm程度のPTFE (テフロン)等の絶縁
性樹脂膜が被覆されている。なお図示していない磁石に
より、めっき中は基板に平行でかつ水平方向に50工ル
ステツド程度の磁場が発生できる。
It is covered with an insulating resin film such as PTFE (Teflon) with a thickness of about 0.3 mm. A magnetic field (not shown) can generate a magnetic field of about 50 degrees parallel to the substrate and in the horizontal direction during plating.

第3図は誘導型薄膜磁気ヘッド例の断面図である。第3
図において、■は基板、2,3は磁気コア、4は絶縁膜
、5は導体コイル、6は保護膜。
FIG. 3 is a sectional view of an example of an inductive thin film magnetic head. Third
In the figure, ■ is a substrate, 2 and 3 are magnetic cores, 4 is an insulating film, 5 is a conductor coil, and 6 is a protective film.

7は段差部近傍である。第3図において、上記したよう
に基板1上に形成されたパーマロイ薄膜よりなる磁気コ
ア2,3の先端部の組成および斜面をなす段差部近傍の
NiとFeの組成比を組成公差約±0,5vt%以下と
りわけ高密度の薄膜磁気ヘッドでは組成公差約±0.1
wt%程度が望まれている。
7 is near the stepped portion. In FIG. 3, the composition of the tips of the magnetic cores 2 and 3 made of permalloy thin films formed on the substrate 1 as described above and the composition ratio of Ni and Fe near the step portion forming the slope are determined with a composition tolerance of approximately ±0. , 5vt% or less, especially for high-density thin-film magnetic heads, the composition tolerance is about ±0.1
About wt% is desired.

第4図は第3図の実験用の段差をもつ磁気コア3の形成
基板の部分断面図である。第4図において、直径3イン
チのガラス等の絶縁性セラミック基板1上に形成した高
さ約lOμm、テーパ角約40゜の段差をもつ絶縁膜4
を形成し、絶縁膜4上にさらにスパッタリング法で膜厚
0.1μmのパーマロイ下地膜を形成した基板上に、電
流分布制御用筒体16の内径を最適化して膜厚約2μm
のパーマロイ膜の磁気コア3をめっきし、磁気コア3に
おける段差部近傍7での組成分布を測定する。なお実験
用には第3図の段差のない磁気コア2は形成していない
FIG. 4 is a partial cross-sectional view of the substrate on which the magnetic core 3 with the experimental step shown in FIG. 3 is formed. In FIG. 4, an insulating film 4 having a step with a height of about 10 μm and a taper angle of about 40° is formed on an insulating ceramic substrate 1 such as glass with a diameter of 3 inches.
was formed, and a permalloy base film with a thickness of 0.1 μm was further formed on the insulating film 4 by a sputtering method, and the inner diameter of the current distribution control cylinder 16 was optimized to form a film with a thickness of about 2 μm.
The magnetic core 3 of the permalloy film is plated, and the composition distribution near the stepped portion 7 of the magnetic core 3 is measured. Note that the magnetic core 2 without steps shown in FIG. 3 was not formed for the experiment.

第5図(a) l (b)は従来方法による通常のDC
電源を用いて第4図の段差のある基板上にメッキした場
合の組成分布を示す線図と、電流モード図である。第6
図(a)、(b)は本発明の方法によるDC電源に矩形
波パルスを重畳させて第4図の段差のある基板上にメッ
キした場合の組成分布を示す線図と、電流モード図であ
る。第1図(第2図)によるこの実験では、電流分布制
御用筒体16の長さを65ma、遮へい板9と陰極板1
4の間隔を20mn、液の流速を5 Q / m 、攪
拌速度を6Orpmに固定した。
Figures 5(a) and 5(b) show normal DC using the conventional method.
4 is a diagram showing a composition distribution when plating is performed on a substrate with steps shown in FIG. 4 using a power source, and a current mode diagram. FIG. 6th
Figures (a) and (b) are a diagram showing the composition distribution and a current mode diagram when plating is performed on the stepped substrate shown in Figure 4 by superimposing a rectangular wave pulse on a DC power supply using the method of the present invention. be. In this experiment shown in FIG. 1 (FIG. 2), the length of the current distribution control cylinder 16 was 65 ma, the shielding plate 9 and the cathode plate 1 were
The interval of 4 was fixed at 20 m, the flow rate of the liquid was fixed at 5 Q/m, and the stirring speed was fixed at 6 Orpm.

まためっき液は塩化ニッケル35 g / ILm硫酸
ニッケル15g/i、硫酸第1鉄1.3g/象、はう酸
25g/Q。
The plating solution was nickel chloride 35 g/ILm nickel sulfate 15 g/i, ferrous sulfate 1.3 g/i, and ferrous acid 25 g/Q.

サッカリン酸ナトリウム1 g/mlの低濃度ワット浴
系のものを使用し、めっき条件はPH3,液温度20℃
とした。
A low-concentration Watt bath containing 1 g/ml of sodium saccharinate was used, and the plating conditions were PH3 and liquid temperature 20°C.
And so.

この条件により、第5図(b)のI)Cモードで、通常
のDC電源を使用して電流密度8 m A /■の通電
を行ないめっきした場合の段差部近傍7のNiの組成分
布の測定結果が第5図(a)に示される。
Under these conditions, the composition distribution of Ni in the vicinity of the stepped portion 7 is determined when plating is performed in the I)C mode shown in FIG. The measurement results are shown in FIG. 5(a).

同じく第6図(b)のパルス重畳直流モードで、通常の
DC電源で電流密度8nlA/■を通電して該DC電源
に電流密度25mA/alYでオン時間/ m see
 。
Similarly, in the pulse superimposed DC mode shown in Fig. 6(b), a current density of 8 nlA/■ was applied to the DC power supply using a normal DC power supply, and the on-time/m was set at a current density of 25 mA/alY.
.

オフ時間3m5ecの矩形波パルス電流を重畳させた場
合の同じく段差部分近傍7のNi組成分布の測定結果が
第6図(b)に示される。
FIG. 6(b) shows the measurement results of the Ni composition distribution in the vicinity of the stepped portion 7 when a rectangular pulse current with an off time of 3 m5 ec is superimposed.

これらの実験結果により第5図(a)の従来方法による
DC電源を使用した場合の段差部近傍7でのNi組成む
ら±0 、5wt%より、第6図(a)の本発明方法に
よるオン/オフ時間比率がたとえば1対3の矩形波パル
スteDc電源に重畳させた場合の段差部近傍7でのN
i組成むら±0.1wt%まで低減可能であることが判
明した。
From these experimental results, the Ni composition unevenness in the vicinity of the stepped portion 7 is ±0, 5wt% when using the DC power source according to the conventional method shown in FIG. / N near the step portion 7 when superimposed on a rectangular pulse teDc power supply with an off time ratio of 1:3, for example.
It has been found that it is possible to reduce the i-composition unevenness to ±0.1 wt%.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明によれば、めっき液の循環
、基板表面近傍での液の攪拌、パルス重畳直流電源を組
み合わせることによって、通常のDCめっきでは不可能
な段差のある基板上に段差部近傍でも組成むら±0.1
wt%程度に低減した均一な組成分布の磁性合金簿膜を
形成可能となる。
As explained above, according to the present invention, by combining the circulation of the plating solution, the stirring of the solution near the substrate surface, and the pulse superimposed DC power supply, it is possible to form a substrate with steps, which is impossible with normal DC plating. Compositional unevenness even near the area ±0.1
It becomes possible to form a magnetic alloy film with a uniform composition distribution reduced to about wt%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による磁性合金薄膜の形成方法及びその
装置の一実施例を示すめっき装置の全体構成図、第2図
は第1図のめっきセルの部分破断斜視図、第3図は誘導
型薄膜磁気ヘッド例の断面図、第4図は第3図の実験用
の段差をもつ基板の断面図、第5図(a) 、(b)は
第4図の従来方法による実験結果の組成分布図と、電流
モード図、第6図(a)、(b)は第4図の本発明の方
法による実験結果の組成分布図と、電流モード図である
。 1・・・基板、2,3・・・磁気コア、4・・・絶縁膜
、5・・・導体コイル、6・・・保護膜、7・・・段差
部近傍、8゜9・・・遮へい板、10・・・陽極室、1
1・・・中間室、12・・・陰極室、13・・・基板押
え板、14・・・陰極板、15・・・開口部、16・・
・電流分布制御用筒体、17・・・流入室、19−・流
入口、20・・・攪拌へら、21・・・オーバーフロー
室、22・・・流出パイプ、23・・ガイド溝、24・
陽極板、25・・・めっきセル、26・・流量計、27
・フィルタ、28・・・循環ポンプ、29・・・貯槽、
30・・・温度センサ、31・・・温度制御装置、32
・・ヒータ、33・・・攪拌機、34・・・PH計、3
5・・・滴定器、36・・パルス重畳直流めっき電源。
Fig. 1 is an overall configuration diagram of a plating apparatus showing an embodiment of the method and apparatus for forming a magnetic alloy thin film according to the present invention, Fig. 2 is a partially cutaway perspective view of the plating cell shown in Fig. 1, and Fig. 3 is an induction 4 is a sectional view of a substrate with steps for the experiment shown in FIG. Distribution diagram and current mode diagram. FIGS. 6(a) and 6(b) are a composition distribution diagram and current mode diagram of the experimental results according to the method of the present invention shown in FIG. DESCRIPTION OF SYMBOLS 1... Substrate, 2, 3... Magnetic core, 4... Insulating film, 5... Conductor coil, 6... Protective film, 7... Near step part, 8°9... Shielding plate, 10...Anode chamber, 1
DESCRIPTION OF SYMBOLS 1... Intermediate chamber, 12... Cathode chamber, 13... Substrate holding plate, 14... Cathode plate, 15... Opening, 16...
- Cylinder for current distribution control, 17 - Inflow chamber, 19 - Inflow port, 20 - Stirring spatula, 21 - Overflow chamber, 22 - Outflow pipe, 23 - Guide groove, 24 -
Anode plate, 25... Plating cell, 26... Flowmeter, 27
・Filter, 28...Circulation pump, 29...Storage tank,
30... Temperature sensor, 31... Temperature control device, 32
... Heater, 33 ... Stirrer, 34 ... PH meter, 3
5...Titrator, 36...Pulse superimposed DC plating power supply.

Claims (1)

【特許請求の範囲】 1、磁性合金薄膜を基板上に電気めっきするめっきセル
内にめっき液を循環させ、該めっきセル内に対向垂設し
た陽極板と陰極板間に該陰極板にセットした基板の形状
に応じた断面積を有する水平電流路を集束形成せしめる
とともに、陰極板付近でめっき液を攪拌し、かつ陽極板
と陰極板間にパルス電流を直流電流に重畳させた電流を
供給して電気メッキにより磁性合金薄膜を基板上に形成
する磁性合金薄膜の形成方法。 2、磁性合金薄膜を基板上に電気めっきするめっきセル
と、該めっきセル内にめっき液を循環させる手段と、上
記めっきセル内に対向垂設した陽極板と陰極板の該陰極
板に基板をセットする手段と、上記陽極板と陰極板間に
基板の形状に応じた断面積を有する水平電流路を集束形
成せしめる手段と、上記陰極板付近でめっき液を攪拌す
る手段と、上記陽極板と陰極板間にパルス電流を直流電
流に重畳させた電流を供給して電気めっきにより磁性合
金薄膜を基板上に形成するめっき電源とを備えた磁性合
金薄膜の形成装置。
[Claims] 1. A plating solution is circulated in a plating cell for electroplating a magnetic alloy thin film onto a substrate, and the cathode plate is set between an anode plate and a cathode plate that are vertically disposed opposite each other in the plating cell. A horizontal current path having a cross-sectional area corresponding to the shape of the substrate is focused and formed, the plating solution is stirred near the cathode plate, and a current in which a pulsed current is superimposed on a direct current is supplied between the anode plate and the cathode plate. A method for forming a magnetic alloy thin film on a substrate by electroplating. 2. A plating cell for electroplating a magnetic alloy thin film onto a substrate, a means for circulating a plating solution in the plating cell, and an anode plate and a cathode plate that are vertically disposed opposite each other in the plating cell, and a substrate is placed on the cathode plate. means for converging and forming a horizontal current path having a cross-sectional area according to the shape of the substrate between the anode plate and the cathode plate; means for stirring a plating solution near the cathode plate; A magnetic alloy thin film forming apparatus comprising a plating power source that supplies a current in which a pulsed current is superimposed on a direct current between cathode plates to form a magnetic alloy thin film on a substrate by electroplating.
JP7820486A 1986-04-07 1986-04-07 Formation of magnetic alloy thin film and device therefor Pending JPS62235714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7820486A JPS62235714A (en) 1986-04-07 1986-04-07 Formation of magnetic alloy thin film and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7820486A JPS62235714A (en) 1986-04-07 1986-04-07 Formation of magnetic alloy thin film and device therefor

Publications (1)

Publication Number Publication Date
JPS62235714A true JPS62235714A (en) 1987-10-15

Family

ID=13655494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7820486A Pending JPS62235714A (en) 1986-04-07 1986-04-07 Formation of magnetic alloy thin film and device therefor

Country Status (1)

Country Link
JP (1) JPS62235714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG94828A1 (en) * 2000-05-25 2003-03-18 Japan Techno Co Ltd Electroplating method using combination of vibrational flow in plating bath and plating current of pulse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG94828A1 (en) * 2000-05-25 2003-03-18 Japan Techno Co Ltd Electroplating method using combination of vibrational flow in plating bath and plating current of pulse

Similar Documents

Publication Publication Date Title
US4102756A (en) Nickel-iron (80:20) alloy thin film electroplating method and electrochemical treatment and plating apparatus
US5883762A (en) Electroplating apparatus and process for reducing oxidation of oxidizable plating anions and cations
US3652442A (en) Electroplating cell including means to agitate the electrolyte in laminar flow
US7569131B2 (en) Method for producing multiple magnetic layers of materials with known thickness and composition using a one-step electrodeposition process
US3141837A (en) Method for electrodepositing nickel-iron alloys
JPS62207895A (en) Electroplating cell
US4279707A (en) Electroplating of nickel-iron alloys for uniformity of nickel/iron ratio using a low density plating current
US3317410A (en) Agitation system for electrodeposition of magnetic alloys
KR101879080B1 (en) Apparatus for preparing fe-ni alloy foil
JP2007308783A (en) Apparatus and method for electroplating
JPS62235714A (en) Formation of magnetic alloy thin film and device therefor
JPH0754189A (en) Electroplating device
US2730491A (en) Method of electroplating cobalt-nickel composition
JPH0443990B2 (en)
JPS61190091A (en) Method and device for magnetic alloy plating
US3869355A (en) Method for making a magnetic wire of iron and nickel on a copper base
EP0012326A2 (en) A method of electroplating nickel-iron alloys
US3616290A (en) Method of making plated memory film
US3463708A (en) Electrolytic bath for magnetic deposition
JPS61177392A (en) Plating method
JPH0270099A (en) Method and apparatus for electroplating
CA1159792A (en) Permalloy thin film electroplating system
JP3639105B2 (en) Wafer plating method
US6183881B1 (en) Magnetic thin film and method for forming the same
JPH051608B2 (en)