JPS6223562A - Exhaust purifying system for internal-combustion engine - Google Patents

Exhaust purifying system for internal-combustion engine

Info

Publication number
JPS6223562A
JPS6223562A JP11893986A JP11893986A JPS6223562A JP S6223562 A JPS6223562 A JP S6223562A JP 11893986 A JP11893986 A JP 11893986A JP 11893986 A JP11893986 A JP 11893986A JP S6223562 A JPS6223562 A JP S6223562A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
negative pressure
switch
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11893986A
Other languages
Japanese (ja)
Inventor
Yasuo Nakajima
中島 泰夫
Kunihiko Sugihara
杉原 邦彦
Toshifumi Nishimura
西村 利文
Shinichi Nanun
南雲 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11893986A priority Critical patent/JPS6223562A/en
Publication of JPS6223562A publication Critical patent/JPS6223562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Abstract

PURPOSE:To aim at enhancing the quality of exhaust emission in the initial stage of a steady state operation, by enriching the air-fuel ratio of mixture upon detection of an acceleration and for a predetermined time after extinction of a detection signal therefor. CONSTITUTION:Solenoid valves 6 disposed in auxiliary air-bleeds 4, 5 in a carburettor B, are opened and closed by means of a vacuum-operated type switch 55. When a clutch e0is disengaged during acceleration, a detection switch 31 is turned on to open a solenoid valve 50 for a duration means K. The, intake vacuum is fed into a vacuum tank 51 through a vacuum passage 54 and therefore is accumulated in the tank 45, and therefore, the switch 55 is turned off to deenergize the solenoid valves 6 so that the auxiliary air-bleeds 4, 5 are closed, Accordingly the amount of fuel flowing out from a slow system port 10 is increased, resulting in increasing the air-fuel ratio of mixture. At this time, even if the clutch 30 is engaged to turn off the switch 31 so that the solenoid valve 50 is closes, the vacuum in the vacuum tank 51 is gradually decreased by means of an orifice 52, and therefore, the air-fuel ratio of mixture is enriched.

Description

【発明の詳細な説明】 本発明は内燃機関の排気浄化システムに関する。[Detailed description of the invention] The present invention relates to an exhaust gas purification system for an internal combustion engine.

一般に、内燃機関にあっては、排気ガス中に含気成分の
除去対策として、機関排気系にリアクタ(リアクタ機能
を有する排気マニホルドも含む)や触媒装置等の再燃焼
装置を付設し、これらIC,C0を再燃焼除去するよう
にしている。この再燃焼装置によれば、再燃焼装置に流
入する排気中の燃焼成分がおおいほどHC,Goの再燃
焼効率が良い。従ってHC,Coの浄化の面からは機関
に供給される混合気を濃化して排気中のIC9Coを多
くすればよいが、反面このようにすると燃費が悪化する
ため、燃費の面からは機関の燃料供給装置で比較的薄い
空燃比の混合気を供給するのが好ましい。
Generally speaking, in internal combustion engines, re-combustion devices such as a reactor (including an exhaust manifold with a reactor function) and a catalyst device are attached to the engine exhaust system as a measure to remove air-containing components from the exhaust gas. , C0 is re-burned and removed. According to this reburning device, the more combustion components in the exhaust gas flowing into the reburning device, the better the reburning efficiency of HC and Go. Therefore, from the perspective of purifying HC and Co, it is possible to enrich the air-fuel mixture supplied to the engine and increase the amount of IC9Co in the exhaust gas, but on the other hand, this will worsen fuel efficiency, so from the perspective of fuel efficiency, the engine Preferably, the fuel supply device supplies a relatively lean air-fuel mixture.

ところで、機関の運転状態を一定に保って運転する所謂
定常運転時には、前記供給混合気の空燃比を比較的薄く
設定しても燃焼の安定性がよいので燃焼室から排出され
る排気エミッションが比較的良好にされることと、加え
て該再燃焼装置内の温度が比較的高温に確保されること
から、再燃焼装置を通過した後の排気中のHC,Coを
可及的に低減できる。ところが、機関の加速運転時と、
加速運段階では、定常運転時に比して機関の燃焼の安定
性が悪くなり機関から排出される燃焼成分である11c
、 C0fiがある程度増大する一方、かかる運転時は
定常運転時に較べて再燃焼装置内の温度が低下する傾向
にあり、しかも排気ガスの容量は多くなるので第1図に
示すようにかかる運転時では定常運転時に比し、再燃焼
装置で除去し切れないで大気に放出されるIC,Coが
増大してしまう不具合がある。特に、内燃機関でも自動
車用機関では、前述の運転は専ら市街地走行時に行われ
るため、大気汚染防止の上からかかる点の改善が強く要
望されている。また、定常運転が行なわれる郊外走行時
には燃費の向上を計ることが大切である。
By the way, during so-called steady operation in which the engine is operated while maintaining a constant operating state, combustion stability is good even if the air-fuel ratio of the supplied air-fuel mixture is set relatively lean, so the exhaust emissions from the combustion chamber are comparatively low. In addition, since the temperature within the afterburner is maintained at a relatively high temperature, HC and Co in the exhaust gas after passing through the afterburner can be reduced as much as possible. However, when the engine is accelerating,
During the acceleration stage, the combustion stability of the engine becomes worse than during steady operation, and 11c, a combustion component, is emitted from the engine.
, C0fi increases to some extent, but during such operation, the temperature inside the afterburner tends to decrease compared to during steady operation, and the volume of exhaust gas increases, so as shown in Figure 1, during such operation, There is a problem in that the amount of IC and Co released into the atmosphere increases without being completely removed by the reburning device compared to during steady operation. In particular, in the case of internal combustion engines as well as automobile engines, since the above-mentioned operation is carried out exclusively when driving in urban areas, there is a strong demand for improvements in this respect from the viewpoint of preventing air pollution. Furthermore, it is important to improve fuel efficiency when driving in the suburbs, where steady driving is performed.

本発明はかかる事情に鑑み、機関の加速運転時と、加速
運転から定常運転に移行した場合の定常運転の初期段階
に定常運転時よりも濃い混合気を供給することにより、
機関から排出される燃焼成分であるHC,C0ff1を
積極的に増大させ、再燃焼装置でこれらHC,Coの燃
焼を著しく促進させて前記運転時にあっても再燃焼装置
内の温度を確保し、該再燃焼装置を有効に機能させ機関
の全運転範囲にわたってIIC,Coの排出を可及的に
小とすると共に機関の長時間の定常運転時には薄い混合
気を供給することにより機関の燃費の向上を計り両者の
調和を計った排気浄化システムを提供するらのである。
In view of such circumstances, the present invention supplies a richer air-fuel mixture than during steady operation during acceleration operation of the engine and during the initial stage of steady operation when transitioning from acceleration operation to steady operation.
Actively increases HC and COff1, which are combustion components discharged from the engine, and significantly promotes the combustion of these HC and Co in the afterburner to ensure the temperature in the afterburner even during the operation, The afterburning device functions effectively to minimize IIC and Co emissions over the entire operating range of the engine, and improves the fuel efficiency of the engine by supplying a lean air-fuel mixture during long-term steady operation of the engine. We provide an exhaust purification system that balances the two.

ここで本発明で特に狙いとする機関の加速運転時と、加
速運転から定常運転に移行した場合の定常運転の初期段
階のことを以下“加速運転時と、加速直後の定常運転時
”と称す。以下本発明の実施例を図面と共に詳述する。
Hereinafter, the acceleration operation of the engine and the initial stage of steady operation when the engine shifts from acceleration to steady operation, which are the particular targets of the present invention, are hereinafter referred to as "acceleration operation and steady operation immediately after acceleration." . Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図において、Aはエアクリーナ、Bは気化器、Cは
吸気マニホルド、Dは機関本体、Eは変速機、Fは再燃
焼装置としてのりアクタを示し、該リアクタFの前流に
は通路Gを介して機関運転状態に合わせて所定量の二次
空気が供給され、この二次空気の供給の下で機関りから
排出されるHC。
In Fig. 2, A is an air cleaner, B is a carburetor, C is an intake manifold, D is an engine body, E is a transmission, F is a fuel actor as a re-combustion device, and a passage G is provided upstream of the reactor F. A predetermined amount of secondary air is supplied according to the engine operating condition through the HC, and the HC is discharged from the engine under the supply of this secondary air.

COを効率よく酸化反応し得るように構成されている。It is configured to efficiently oxidize CO.

ここで、本発明にあっては、機関の加速運転時と、加速
直後の定常運転時に供給混合気の空燃比を定常運転時に
おける空燃比よりも濃くする空燃比制御装置Hを設けで
ある。この空燃比制御装置Hは、機関の加速運転状態に
なる直前の運転状態および又は加速運転状態を検出する
検出手段Iと、気化器Bの補助空気量を、前記検出手段
Iの検出信号に基いて制御する制御手段Jと、前記検出
信号の消失後も制御手段Jの制御作動を所定時間持続さ
せる持続手段にとから構成されている。
Here, in the present invention, an air-fuel ratio control device H is provided which makes the air-fuel ratio of the supplied air-fuel mixture richer than the air-fuel ratio during steady operation during acceleration operation of the engine and during steady operation immediately after acceleration. This air-fuel ratio control device H includes a detection means I that detects the operating state immediately before the engine becomes accelerated and/or an accelerated operating state, and detects the auxiliary air amount of the carburetor B based on the detection signal of the detection means I. and a sustaining means for continuing the control operation of the control means J for a predetermined period of time even after the detection signal disappears.

これを、第3図により具体的に説明すると、気化器Bの
メイン、スロー両エアブリード2.3にはそれぞれ補助
エアブリード4.5が設けられそして、これら両補助エ
アブリード4.5に制御手段Jとして燃料流出量を間接
的に制御する開閉弁、例えば機関の定常運転時に補助エ
アブリード4゜5を開放し、加速運転時と、加速直後の
定常運転時に該補助エアブリード4,5を閉塞するよう
に作動される電磁弁6.6を介装しである。
To explain this in detail with reference to FIG. 3, each of the main and slow air bleeds 2.3 of the carburetor B is provided with an auxiliary air bleed 4.5, and these auxiliary air bleeds 4.5 are controlled. Means J is an on-off valve that indirectly controls the amount of fuel flowing out, for example, the auxiliary air bleeds 4 and 5 are opened during steady operation of the engine, and the auxiliary air bleeds 4 and 5 are opened during acceleration operation and during steady operation immediately after acceleration. A solenoid valve 6.6 which is operated to close is interposed.

つまり、この気化器Bは、メイン、スロー燃料ジェット
7a、 8a、メインスローエアブリードジェッ等の径
の設定により、電磁弁6.6が全開となる定常運転時に
は、燃費性能および排気エミッション等の良化を目的と
して、メインノズル9あるいはスロー系ボート10(ア
イドルボート10a、スローボートlObを含む)から
流出する燃料量を、比較的薄い空燃比の混合気例えば空
燃比が14〜17程度の混合気が得られるように設定さ
れ、また電磁弁6゜6が全開となる加速運転時と、加速
直後の定常運転時には空燃比が11〜13程度の比較的
濃い混合気が得られ、かかる運転時に機関から排出され
る燃焼成分である)Ic、 CO量を積極的に増大し得
るように設定しである。11は吸気通路、12はベンチ
ュリ、13はスロットルバルブ、14はスロットルバル
ブ】3下流の吸気通路11に開口した負圧取出口15か
ら取出される吸入負圧の変化により開閉作動するパワー
装置、16はフロート室、7はメイン燃料通路、8はス
ロー燃料通路である。
In other words, by setting the diameters of the main, slow fuel jets 7a, 8a, main slow air bleed jet, etc., this carburetor B has good fuel efficiency and exhaust emissions during steady operation when the solenoid valve 6.6 is fully open. For the purpose of reducing the amount of fuel flowing out from the main nozzle 9 or the slow boat 10 (including the idle boat 10a and the slow boat 1Ob), the amount of fuel flowing out from the main nozzle 9 or the slow boat 10 (including the idle boat 10a and the slow boat 1Ob) is reduced to a mixture with a relatively thin air-fuel ratio, for example, a mixture with an air-fuel ratio of about 14 to 17. In addition, during acceleration operation when the solenoid valve 6°6 is fully opened, and during steady operation immediately after acceleration, a relatively rich air-fuel mixture with an air-fuel ratio of about 11 to 13 is obtained, and during such operation the engine The setting is such that the amount of Ic, CO, which is a combustion component emitted from the engine, can be actively increased. 11 is an intake passage, 12 is a venturi, 13 is a throttle valve, and 14 is a throttle valve] 3 A power device that opens and closes according to changes in intake negative pressure taken out from a negative pressure take-out port 15 opened in the intake passage 11 downstream; 16 is a float chamber, 7 is a main fuel passage, and 8 is a slow fuel passage.

次に、検出手段Iとして、本実施例にあってはクラッチ
30(本図ではクラッチペダルを示す)の作動通常機関
の加速時は、速度レンジに見合って変速機Eのギヤ位置
を選択するものであり、またこのようなギヤ位置の選択
操作にはクラッチの断・接操作を伴うものであるから、
このクラッチの作動状態を検出することにより容易に機
関の加速運転状態になる直前の状態および加速運転中の
状態を判定できる。この検出スイッチ31はクラッチ3
0を切離した時、つまりクラッチペダルを踏込んだ時に
オン作動して、バッテリLの電圧を後記する持続手段に
の電磁弁50に印加してコイル50aを励磁し、弁体5
0bを開弁作動させる。また、クラッチ30が接続され
るとスイッチ31はオフ作動し、電磁弁50のコイル5
Qaを消磁して弁体50bを閉弁作動させる。
Next, in this embodiment, the detection means I selects the gear position of the transmission E in accordance with the speed range when the clutch 30 (the clutch pedal is shown in the figure) is activated and the engine is accelerated. , and since such a gear position selection operation involves clutch disengagement and engagement operations,
By detecting the operating state of this clutch, it is possible to easily determine the state immediately before the engine is in the acceleration operation state and the state during the acceleration operation. This detection switch 31 is connected to the clutch 3
0 is disconnected, that is, when the clutch pedal is depressed, it is turned on and the voltage of the battery L is applied to the solenoid valve 50, which is a sustaining means described later, to excite the coil 50a, and the valve body 5
Operate 0b to open the valve. Further, when the clutch 30 is connected, the switch 31 is turned off, and the coil 5 of the solenoid valve 50 is turned off.
Qa is demagnetized and the valve body 50b is operated to close.

持続手段には、負圧源例えば機関吸気系から取出される
吸入負圧が蓄圧され、かつ該負圧が徐々に稀釈されるよ
うに大気開放口52にオリフィス53を設けた負圧タン
ク51と、該負圧タンク51と前記負圧取出口15とを
連通する負圧通路54に介装され、検出スイッチ31に
より開閉される電磁弁50と、負圧タンク51内の負圧
変化に応動してオン、オフ作動し、前述の補助エアブリ
ード4.5に介装した電磁弁6,6を開閉作動させる負
圧作動型のスイッチ55とから構成されている。前記ス
イッチS5は、負圧室55aに作用する負圧タンク51
内の負圧が、例えばO〜−50m111gでオン作動し
、負圧値(絶対値)がこれ以上に増大するとダイヤフラ
ム55bを介して作動ロッド55cを牽引してオフ作動
するよう7こなっている。56は負圧タンク51と電磁
弁50との間の負圧通路54に介装したチェック弁、M
はイグニションスイッチを示す。ここで、前記持続手段
には、市街地走行状態に相当する運転パターンを基本と
して、通常使用される加速運転パターンを想定して時定
数が設定される。
The sustaining means includes a negative pressure tank 51 in which an orifice 53 is provided at the atmosphere opening port 52 so that suction negative pressure taken from a negative pressure source, for example, an engine intake system, is accumulated and the negative pressure is gradually diluted. , a solenoid valve 50 that is interposed in a negative pressure passage 54 that communicates the negative pressure tank 51 and the negative pressure outlet 15 and that is opened and closed by the detection switch 31; The auxiliary air bleed 4.5 is operated by a negative pressure operated switch 55 which is turned on and off to open and close the electromagnetic valves 6, 6 installed in the auxiliary air bleed 4.5. The switch S5 is a negative pressure tank 51 that acts on the negative pressure chamber 55a.
For example, when the negative pressure inside is O~-50m111g, the ON operation is performed, and when the negative pressure value (absolute value) increases beyond this value, the operating rod 55c is pulled through the diaphragm 55b and the OFF operation is performed. . 56 is a check valve installed in the negative pressure passage 54 between the negative pressure tank 51 and the solenoid valve 50;
indicates the ignition switch. Here, a time constant is set in the sustaining means assuming a normally used acceleration driving pattern based on a driving pattern corresponding to an urban driving state.

かかる構成により、機関の加速時に速度レンジに見合っ
て変速機Eのギヤ位置を切換えるために、クラッチ30
を切離すと(クラッチ30を切離す時は図外のアクセル
ペダルの踏込みが解除され、スロットルバルブ13は全
閉状態となってスロットルバルブ13下流に負圧値の高
い機関吸入負圧が発生する。)、検出スイッチ31がオ
ン作動して持続手段にの電磁弁50が開弁作動する。こ
の結果、負圧タンク51には負圧通路54を介して負圧
値の高い機関吸入負圧が蓄圧され、スイッチ55をオフ
作動させる。
With this configuration, in order to change the gear position of the transmission E according to the speed range when the engine accelerates, the clutch 30
When the clutch 30 is disengaged, the accelerator pedal (not shown) is released, the throttle valve 13 is fully closed, and engine suction negative pressure with a high negative pressure value is generated downstream of the throttle valve 13. ), the detection switch 31 is turned on and the solenoid valve 50 serving as the sustaining means is opened. As a result, engine suction negative pressure with a high negative pressure value is accumulated in the negative pressure tank 51 via the negative pressure passage 54, and the switch 55 is turned off.

このスイッチ55のオフ作動により電磁弁6,6のコイ
ル6a、 6aが消磁され、弁体6b、 6bが補助エ
アブリード4.5を閉塞してエアブリード量、即ち、補
助空気1を減らして間接的にメインノズル9もしくはス
ロー系ポー)10から流出する燃料量を増大して混合気
を所定の濃い空燃比(A/F=11〜13)に制御する
。ここで変速機Eのギヤ位置切換え操作が完了してクラ
ッチ30が接続され、検出スイッチ31がオフ作動して
持続手段にの電磁弁50が閉弁作動しても、負圧タンク
51内の負圧はオリフィス53により徐々に稀釈される
ため、ある所定時間前記スイッチ55のオフ作動が持続
され、従って電磁弁6,6の閉弁状態が保持されて前述
の燃料制御作用が持続される。のって、加速時にクラッ
チ30の断・接操作が連続的に行われた場合でも電なる
ことがなく、また、特に機関の加速運転に続く定常運転
の初期段階までこの燃料増量作用が持続することになり
、かかる加速運転時と、加速直後の定常運転時に空燃比
が濃化されて、機関りの燃焼室から排出される燃焼成分
であるHC,Co量を積極的に増大してリアクタFでこ
れらIIC,Coの酸化反応を適量な二次空気の導入の
もとで促進させる結果、この酸化発熱反応により該リア
クタF内の温度を高温に確保できIIc、 Coの浄化
効率を高く維持できるのである。また、特に検出手段■
としてクラッチ30の作動状態を検出するスイッチ31
を用いることにより、加速運転以前で既にクラッチ30
が切離されるため、該加速運転以前がら空燃比かあらか
じめ濃化されることになり、リアクタF内の温度上昇を
速かに行なうことができる。
By turning off the switch 55, the coils 6a, 6a of the solenoid valves 6, 6 are demagnetized, and the valve bodies 6b, 6b close the auxiliary air bleed 4.5, reducing the air bleed amount, that is, the auxiliary air 1, and Specifically, the amount of fuel flowing out from the main nozzle 9 or slow system port 10 is increased to control the air-fuel mixture to a predetermined rich air-fuel ratio (A/F=11 to 13). Even if the gear position switching operation of the transmission E is completed and the clutch 30 is connected, the detection switch 31 is turned off, and the solenoid valve 50 serving as the sustaining means is closed, the negative pressure inside the negative pressure tank 51 is Since the pressure is gradually diluted by the orifice 53, the off-operation of the switch 55 is maintained for a certain predetermined period of time, so that the electromagnetic valves 6, 6 are kept closed, and the aforementioned fuel control action is maintained. Therefore, even if the clutch 30 is continuously engaged and disconnected during acceleration, no electricity is generated, and this fuel increase effect continues especially until the initial stage of steady operation following engine acceleration. Therefore, during such acceleration operation and during steady operation immediately after acceleration, the air-fuel ratio is enriched, and the amount of HC and Co, which are combustion components discharged from the combustion chamber of the engine, is actively increased to increase the reactor F. As a result of promoting the oxidation reaction of IIC and Co by introducing an appropriate amount of secondary air, the temperature inside the reactor F can be maintained at a high temperature due to this oxidation exothermic reaction, and the purification efficiency of IIc and Co can be maintained at a high level. It is. In addition, especially the detection means ■
A switch 31 that detects the operating state of the clutch 30 as
By using this, the clutch 30 is already activated before acceleration operation.
Since the reactor F is separated, the air-fuel ratio is enriched in advance before the acceleration operation, and the temperature inside the reactor F can be quickly raised.

なお、前述において、メイン、スロー両エアブリード2
.3に補助エアブリード4.5を接続して、これら両補
助エアブリード4,5に制御手段Jとし、ての電磁弁6
.6を介装しているが、この補助T7ブII −K )
−常譜#はメイン スローエアプリ−ド2,3の何れか
一方に設けるだけでもよい。
In addition, in the above, both main and slow air bleed 2
.. 3 is connected to an auxiliary air bleed 4.5, and a solenoid valve 6 is connected to both auxiliary air bleeds 4, 5 as a control means J.
.. 6 is installed, but this auxiliary T7 block II-K)
- Regular score # may be provided only on either main slow air lead 2 or 3.

第4.5図は検出手段■の他の実施例を夫々示すもので
ある。第4図は該検出手段■として変速機Eのトップギ
ヤ位置より低速の速度レンジに変速機Eが切換えられた
ときに検出信号を発するギヤスイッチ32を用いた例で
ある。これは、一般の自動車等においてトップギヤ以上
の高速レンジを使用する走行状態のうち最初の短時間を
除く走行状態は定常運転時であり、トップギヤより低速
レンジを使用する走行状態は加速運転時を代表する走行
状態であるからである。例えば変速機が前進4速の場合
には、変速機が4速(トップ)位置に操作されたときに
同図に示すように、コントロールロッド33の433a
にギヤスイッチ32のロッド34がばね35の弾発力に
より落ち込んで、導体36による端子37と37との導
通が遮断されており、トップ以外のギヤ位置(1,2,
3速)ではロッド34先端がコントロールロッド33の
周面に衝接し、ロッド34がばね35の弾発力に抗して
下動され、端子37と37とが導体36を介して導通さ
れ、前述の如き検出信号を発するのである。
Figures 4.5 show other embodiments of the detection means (2). FIG. 4 shows an example in which a gear switch 32 which issues a detection signal when the transmission E is switched to a speed range lower than the top gear position of the transmission E is used as the detection means (2). This means that in general automobiles, etc., the driving conditions that use the top gear or higher speed range, except for the first short period of time, are steady driving, and the driving conditions that use the lower speed range than the top gear are during acceleration driving. This is because it is a typical driving condition. For example, when the transmission is in 4 forward speeds, when the transmission is operated to the 4th speed (top) position, the control rod 33 at 433a
, the rod 34 of the gear switch 32 falls down due to the elastic force of the spring 35, and the conduction between the terminals 37 and 37 through the conductor 36 is cut off.
In 3rd speed), the tip of the rod 34 collides with the circumferential surface of the control rod 33, the rod 34 is moved down against the elastic force of the spring 35, and the terminals 37 and 37 are electrically connected via the conductor 36. It emits a detection signal such as .

変速機が前進3速の場合には、第3速かトップギヤとな
り第1速、第2速か低速レンジとなる。
When the transmission has three forward speeds, the third speed or top gear is the first speed, the second speed or the low speed range.

また、変速機がオーバドライブ付の前進5速の場合には
、第4速をトップギヤとし、第5速はトップギヤ以上の
高速レンジ、第3速乃至第1速を低速レンジとするので
ある。
In addition, if the transmission has 5 forward speeds with overdrive, the 4th gear is the top gear, the 5th gear is a high speed range that is higher than the top gear, and the 3rd to 1st gears are the low speed range. .

同様の趣旨により、自動変速機を使用する内燃機関にあ
っては、第5図に示すように、トップギヤに制御された
状態のときに油圧が上昇する自動変速機E′内のコント
ロールバルブ(図示せず)の油圧系統38に圧力スイッ
チ39を設けている。この圧力スイッチ39は油圧室3
9aが所定圧(トップギヤ時の圧力)のときに大気及び
ばね39b力に打勝ってダイヤフラム39cを上方へ変
位して接点39dをオフとし、トップギヤより低速レン
ジに切換えられたときの該油圧系統38の降圧によりダ
イヤフラム39cが下方へ変位して接点39dをオンし
、検出信号を発するのである。
For a similar purpose, in an internal combustion engine using an automatic transmission, as shown in FIG. 5, a control valve ( A pressure switch 39 is provided in the hydraulic system 38 (not shown). This pressure switch 39 is connected to the hydraulic chamber 3
When 9a is at a predetermined pressure (pressure when in top gear), the diaphragm 39c is displaced upward by overcoming the force of the atmosphere and the spring 39b, turning off the contact 39d, and the hydraulic pressure is changed to a lower speed range than the top gear. The voltage drop in the system 38 causes the diaphragm 39c to move downward, turning on the contact 39d and emitting a detection signal.

なお、検出手段としてはスロットル開度センサやアクセ
ルペダル回動位置センサあるいは機関吸入負圧センサを
利用することも可能である。
Note that it is also possible to use a throttle opening sensor, an accelerator pedal rotation position sensor, or an engine suction negative pressure sensor as the detection means.

前記実施例では制御手段Jとして、電磁弁を用いて気化
器Bの補助空気量を制御するようにした場合を示したが
、この他負圧作動弁を用いることもできる。第6図に示
す実施例はかかる負圧作動弁を用いて補助空気量を制御
するようにしたもので、気化器Bのエアブリード(メイ
ンエアブリード2のみの場合を示す)に設けた補助エア
ブリード4に、加速運転時と、加速直後の定常運転時に
負圧室25aに所定値の機関吸入負圧が導入されること
によりダイヤプラム25bを介して弁体25cを進出さ
せ、該補助エアブリード4を閉塞する負圧作動弁25を
介装しである。この実施例の場合、第3図に示す持続手
段にのスイッチ55が不要となり、負圧タンク51と負
圧作動弁25の負圧室25aを連通ずればよい。なお、
この実施例の場合負圧タンク51の大気開放口52に設
けたオリフィス53の替りに、焼結合金を以ってオリフ
ィスと等価の機能をさせる二2が−Flx−またm=の
ようにオリフィスとして焼結合金を利用すればオリフィ
スに比して有効通気面積を可及的に小とでき、従って、
負圧タンク51の容量を小さくして所定の持続作用を得
ることができる。第7図に示す実施例にあっては、第6
図に示した実施例において、持続手段にとして負圧取出
口15と負圧作動弁25の負圧室25aとを連通する負
圧通路54に、チェック弁57aと焼結合金からなるオ
リフィス57bとを内蔵した弁装置57と、検出手段I
により作動される大気開口ポート58aを有する三方電
磁弁58とを介装して構成したちのである。
In the above embodiment, a solenoid valve was used as the control means J to control the amount of auxiliary air in the carburetor B, but a negative pressure operated valve may also be used. The embodiment shown in FIG. 6 uses such a negative pressure operated valve to control the amount of auxiliary air. When a predetermined value of engine suction negative pressure is introduced into the negative pressure chamber 25a during acceleration operation and during steady operation immediately after acceleration, the valve body 25c is advanced through the diaphragm 25b to the bleed 4, and the auxiliary air bleed is A negative pressure operated valve 25 that closes the valve 4 is interposed. In the case of this embodiment, the switch 55 of the sustaining means shown in FIG. 3 is not required, and it is sufficient to communicate the negative pressure tank 51 and the negative pressure chamber 25a of the negative pressure operating valve 25. In addition,
In this embodiment, instead of the orifice 53 provided at the atmosphere opening port 52 of the negative pressure tank 51, an orifice 53 made of sintered metal is used to perform the same function as an orifice. If a sintered alloy is used as a sintered alloy, the effective ventilation area can be made as small as possible compared to the orifice, and therefore,
A predetermined sustained action can be obtained by reducing the capacity of the negative pressure tank 51. In the embodiment shown in FIG.
In the embodiment shown in the figure, a check valve 57a and an orifice 57b made of a sintered metal are provided in the negative pressure passage 54 communicating the negative pressure outlet 15 and the negative pressure chamber 25a of the negative pressure operating valve 25 as sustaining means. and a detection means I.
A three-way solenoid valve 58 having an atmosphere opening port 58a operated by the three-way solenoid valve 58 is interposed therebetween.

前記弁装置57は機関吸入負圧が導入されると、チェッ
ク弁57aを開いてこの吸入負圧を速かに負圧作動弁2
5の負圧室25aに導入するが、大気が導入された場合
にはチェック弁57aが密閉し、焼結合金からなるオリ
フィス57bにより大気による前記負圧室25a内の負
圧の稀釈時間を長引かせ、該負圧作動弁25の閉動作用
を所定時間持続させるものである。
When engine suction negative pressure is introduced, the valve device 57 opens a check valve 57a to quickly transfer this suction negative pressure to the negative pressure operating valve 2.
However, when the atmosphere is introduced into the negative pressure chamber 25a, the check valve 57a is sealed, and the orifice 57b made of sintered metal prolongs the dilution time of the negative pressure in the negative pressure chamber 25a by the atmosphere. The closing operation of the negative pressure operated valve 25 is maintained for a predetermined period of time.

つまり、この実施例の場合機関の加速運転時に、検出手
段■が検出作用すると、三方電磁弁58は大気開口ボー
ト58aを閉塞する一方、負圧通路54を開放し、この
結果、機関吸入負圧は弁装置57のチェック弁57aを
経て負圧作動弁25の負圧室25aに導入され、弁体2
5cにより補助エアブリード4を閉塞して流出燃料里を
増大させる。そして、検出手段■の検出作用が停止する
と、三方電磁弁58は負圧通路54を遮断する一方、大
気開口ポート58aと弁装置57側の通路とを連通して
大気を導入するようになるが、焼結合金57bによりこ
の大気の流通が著しく制約を受け、っまり負圧作動弁2
5の負圧室25a内の負圧の稀釈時間が長引き、該負圧
作動弁25の閉弁作動を所定時間持続させるのである。
In other words, in this embodiment, when the detection means (2) operates during accelerating operation of the engine, the three-way solenoid valve 58 closes the atmospheric opening boat 58a, while opening the negative pressure passage 54, and as a result, the engine suction negative pressure is introduced into the negative pressure chamber 25a of the negative pressure operated valve 25 through the check valve 57a of the valve device 57, and the valve body 2
5c closes the auxiliary air bleed 4 to increase the amount of fuel flowing out. Then, when the detection action of the detection means (2) stops, the three-way solenoid valve 58 blocks the negative pressure passage 54, while communicating the atmosphere opening port 58a with the passage on the valve device 57 side to introduce the atmosphere. , the circulation of this atmosphere is significantly restricted by the sintered metal 57b, and the negative pressure operated valve 2 is completely restricted.
The dilution time of the negative pressure in the negative pressure chamber 25a of No. 5 is prolonged, and the closing operation of the negative pressure operated valve 25 is maintained for a predetermined period of time.

一方、制御手段に電磁弁を用いる場合に採用できる持続
手段の他の実施例としては、第8図に示す電気的タイマ
ー回路または第9図に示す機械−電気的タイマー回路が
ある。
On the other hand, other embodiments of the sustaining means that can be adopted when a solenoid valve is used as the control means include an electric timer circuit shown in FIG. 8 or a mechanical-electric timer circuit shown in FIG.

第8図に示す電気的タイマー回路は、バッテリL、イグ
ニッションスイッチ開1電磁弁6及び検出スイッチIを
含む回路内に、抵抗59とコンデンサ60とからなる時
定数回路6I及びスイッチングトランジスタ62を組合
わせたもので、検出スイッチIがオンからオフに切換っ
た後も、時定数回路61で定められた所定時間の間はス
イッチングトランジスタ62がオン状態を維持し、電磁
弁6の通電を持続するのである。
The electrical timer circuit shown in FIG. 8 combines a time constant circuit 6I consisting of a resistor 59 and a capacitor 60 and a switching transistor 62 in a circuit including a battery L, an ignition switch open 1 solenoid valve 6, and a detection switch I. Even after the detection switch I is switched from on to off, the switching transistor 62 remains on for a predetermined time determined by the time constant circuit 61, and the solenoid valve 6 continues to be energized. be.

第9図に示す機械−電気タイマー回路は、前記時定数回
路61とスイッチングトランジスタ62の代りに、自己
保持型リレースイッチ63、ヒータバイメタルスイッチ
64等の機械的スイッチを組合わせたものである。検出
スイッチ■のオンにより電磁弁6に通電を行い、該検出
スイッチ■のオフ後も継続して通電を行なう自己保持型
リレー63の作用と、通電により発熱するヒータ64a
により加熱されて所定時間後に変形して接点64bをオ
フするバイメタル64cの作用とにより、検出スイッチ
Iのオフ後も所定時間の間電磁弁6をオン状態に持続す
るのである。
The mechanical-electric timer circuit shown in FIG. 9 is a combination of mechanical switches such as a self-holding relay switch 63 and a heater bimetal switch 64 in place of the time constant circuit 61 and switching transistor 62. The action of a self-holding relay 63 that energizes the solenoid valve 6 when the detection switch ■ is turned on and continues to energize it even after the detection switch ■ is turned off, and the heater 64a that generates heat when energized
Due to the action of the bimetal 64c, which is heated and deforms after a predetermined time to turn off the contact 64b, the electromagnetic valve 6 is maintained in the ON state for a predetermined time even after the detection switch I is turned off.

尚、これらの場合にあっては、回路に直接電磁弁を接続
する代りに、リレースイッチ等を回路内に介装し、この
リレースイッチを介して電磁弁を作動するようにしても
よいことは勿論である。
In these cases, instead of connecting the solenoid valve directly to the circuit, a relay switch or the like may be inserted in the circuit, and the solenoid valve may be operated via this relay switch. Of course.

なお、前述において、機関の定常運転時を基準として気
化器から供給される吸入混合気を所定の薄い空燃比に設
定し、加速運転時と、加速直後の定常運転時に補助空気
量の制御により燃料流出量を間接的に増大して濃い空燃
比が得られるようにしたが、加速運転時と、加速直後の
定常運転時を基準にして所定の濃い空燃比の混合気が供
給されるように設定し、定常運転時に補助空気を供給し
て空燃比を薄くするようにしてもよい。
In addition, in the above, the intake air-fuel mixture supplied from the carburetor is set to a predetermined lean air-fuel ratio based on the steady operation of the engine, and the amount of fuel is increased by controlling the amount of auxiliary air during acceleration operation and during steady operation immediately after acceleration. Although the outflow amount was increased indirectly to obtain a rich air-fuel ratio, the air-fuel mixture was set to be supplied at a predetermined rich air-fuel ratio based on acceleration operation and steady operation immediately after acceleration. However, during steady operation, auxiliary air may be supplied to reduce the air-fuel ratio.

更に前記各実施例では気化器の補助エアブリードからの
補助空気量の制御により、加速運転時と、加速直後の定
常運転時に空燃比を濃化するようにしているが、気化器
の吸気マニホルド近傍、即ち、スロットルバルブ下流に
補助空気を供給するようにして、その供給制御を行わる
ようにしてもよく、この場合でも補助空気の流量制御は
検出手段と持続手段の協働作用によって行わせる。
Furthermore, in each of the above embodiments, the air-fuel ratio is enriched during acceleration operation and during steady operation immediately after acceleration by controlling the amount of auxiliary air from the auxiliary air bleed of the carburetor. That is, the supply of auxiliary air may be controlled by supplying the auxiliary air downstream of the throttle valve. In this case as well, the flow rate of the auxiliary air is controlled by the cooperative action of the detection means and the sustaining means.

し11−非才るに大発明によれば、機関の加速運転状態
になる直前の状態および又は加速運転状態を検出手段に
より検出し、そして、この検出信号の消失後も持続手段
により該検出信号を持続させて制御手段を作動し、気化
器の補助空気量を制御して空燃比を濃化するため、専ら
市街地走行時の運転状態である機関の加速運転時は勿論
定常運転の初期段階に、定常運転よりも吸入混合気の空
燃比を農<シて、機関から排出される燃焼成分であるH
C,C0jkを積極的に増大させ、再燃焼装置での酸化
発熱反応を活発に行わせるので、かかる運転時にあって
も再燃焼装置内の温度を十分に高めIC。
11-According to the unprecedentedly great invention, the detection means detects the state immediately before the engine accelerates and/or the accelerated operation state, and the sustaining means maintains the detection signal even after the detection signal disappears. In order to maintain this and operate the control means to control the amount of auxiliary air in the carburetor and enrich the air-fuel ratio, it can be used not only when the engine is accelerating, which is the operating state used exclusively in city driving, but also during the initial stage of steady operation. , by adjusting the air-fuel ratio of the intake mixture rather than during steady operation, H
Since C and C0jk are actively increased and the oxidation exothermic reaction in the afterburner is actively carried out, the temperature inside the afterburner is sufficiently raised even during such operation.

COを効率よく除去できるものであり、そして、専ら郊
外走行時の運転状態である定常運転時には燃費並びに排
気エミッションの良化を図れる所定の薄い空燃比の混合
気を供給することができ、従って、再燃焼装置の機能向
上と機関燃費特性の向上とを実現できる利点がある。
It is capable of efficiently removing CO, and is capable of supplying a mixture with a predetermined lean air-fuel ratio that improves fuel efficiency and exhaust emissions during steady driving, which is the driving state used exclusively in suburban driving. This has the advantage of improving the functionality of the reburning device and improving engine fuel efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は機関のIIc、 Co排出最を示す特性図、第
2図は本発明システムの系統図、第3図は本発明の第1
実施例の説明図、第4.5図はそれぞれ各界なる検出手
段の説明図、第6図、第7図はそれぞれ各界なる制御手
段の説明図、第8図、第9図はそれぞれ各界なる持続手
段の説明図である。 B・・・気化器、D・・・機関本体、E・・・変速機、
F・・・再燃焼装置、H・・空燃比制御装置、■・・検
出手段、J・・・制御手段、K・・持続手段。 第1図 時同− 第2図 第6図
Fig. 1 is a characteristic diagram showing IIc and Co emission maximum of the engine, Fig. 2 is a system diagram of the system of the present invention, and Fig. 3 is a diagram of the system of the present invention.
4.5 is an explanatory diagram of the detection means of each field, FIGS. 6 and 7 are explanatory diagrams of the control means of each field, and FIGS. 8 and 9 are diagrams of the continuation of each field, respectively. It is an explanatory diagram of means. B... Carburetor, D... Engine body, E... Transmission,
F... Reburning device, H... Air-fuel ratio control device, ■... Detection means, J... Control means, K... Continuation means. Simultaneously with Figure 1 - Figure 2 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)排気系に再燃焼装置を備えた自動車用内燃機関に
おいて、加速運転時と、加速直後の定常運転時における
供給混合気の空燃比を定常運転時の空燃比よりも濃くす
るような空燃比制御装置を設けてなり、該空燃比制御装
置は加速運転状態になる直前の状態および又は加速運転
状態を検出して検出信号を発生する検出手段と、前記検
出信号の消失後も該検出信号を持続させる持続手段と、
この持続手段からの信号を受けて開閉作動し、気化器の
補助空気量を制御して空燃比を濃化する弁装置である制
御手段とを有していることを特徴とする内燃機関の排気
浄化システム。
(1) In an automobile internal combustion engine equipped with a reburning device in the exhaust system, the air-fuel ratio of the supplied air-fuel mixture during acceleration operation and during steady operation immediately after acceleration is richer than that during steady operation. A fuel ratio control device is provided, and the air-fuel ratio control device includes a detection means for detecting a state immediately before an acceleration operation state and/or an acceleration operation state to generate a detection signal, and a detection means that generates a detection signal even after the detection signal disappears. a means of sustaining the
and a control means which is a valve device that opens and closes in response to a signal from the sustaining means and controls the amount of auxiliary air in the carburetor to enrich the air-fuel ratio. purification system.
JP11893986A 1986-05-23 1986-05-23 Exhaust purifying system for internal-combustion engine Pending JPS6223562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11893986A JPS6223562A (en) 1986-05-23 1986-05-23 Exhaust purifying system for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11893986A JPS6223562A (en) 1986-05-23 1986-05-23 Exhaust purifying system for internal-combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51064407A Division JPS6041219B2 (en) 1976-06-01 1976-06-01 Internal combustion engine exhaust purification system

Publications (1)

Publication Number Publication Date
JPS6223562A true JPS6223562A (en) 1987-01-31

Family

ID=14748968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11893986A Pending JPS6223562A (en) 1986-05-23 1986-05-23 Exhaust purifying system for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6223562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101912A (en) * 1987-10-15 1989-04-19 Matsushita Electric Works Ltd Hair curler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968125A (en) * 1972-11-08 1974-07-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968125A (en) * 1972-11-08 1974-07-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101912A (en) * 1987-10-15 1989-04-19 Matsushita Electric Works Ltd Hair curler

Similar Documents

Publication Publication Date Title
JPH0586984A (en) Fuel control device
JPH03145557A (en) Re-combustion control device for alcohol engine
JPS6223562A (en) Exhaust purifying system for internal-combustion engine
GB2096487A (en) Supplying secondary air to ic engine exhaust
GB2083251A (en) Automatic control air-fuel ratio in i c engines
JPS6014894B2 (en) Secondary air supply control device for exhaust gas purification of internal combustion engines
JPS6041219B2 (en) Internal combustion engine exhaust purification system
JPS58577B2 (en) Internal combustion engine exhaust purification system
KR940002069B1 (en) Carburetor structure for engine
JPS5820376B2 (en) Internal combustion engine exhaust purification system
JPS6146198Y2 (en)
GB2168178A (en) Air-fuel ratio control system
JPS581265B2 (en) Engine exhaust gas recirculation control device
JPS6120275Y2 (en)
JPS5819331Y2 (en) Air fuel ratio control device
JPS5840284Y2 (en) Carburetor with air-fuel ratio control device
JPS6142094B2 (en)
JPS6017946B2 (en) Automotive engine control device
JPS63176649A (en) Accelerating pump device for carburetor
JP2596999B2 (en) Air-fuel ratio control device for vaporizer
JPS5823974Y2 (en) Exhaust gas recirculation control device for internal combustion engines
JPS6313410Y2 (en)
JPS5852351Y2 (en) Internal combustion engine exhaust gas recirculation control device
JPS6341563Y2 (en)
JPS585078Y2 (en) Carburetor mixture control device