JPS62235566A - Glucose-6-phosphoric acid dehydrogenated enzyme labelled composite and enzyme immunological measurement of erythropoietin - Google Patents

Glucose-6-phosphoric acid dehydrogenated enzyme labelled composite and enzyme immunological measurement of erythropoietin

Info

Publication number
JPS62235566A
JPS62235566A JP61079615A JP7961586A JPS62235566A JP S62235566 A JPS62235566 A JP S62235566A JP 61079615 A JP61079615 A JP 61079615A JP 7961586 A JP7961586 A JP 7961586A JP S62235566 A JPS62235566 A JP S62235566A
Authority
JP
Japan
Prior art keywords
erythropoietin
enzyme
antibody
glucose
epo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61079615A
Other languages
Japanese (ja)
Inventor
Hiroji Matsumoto
博治 松本
Keiko Tamabuchi
玉渕 敬子
Masaji Ueda
正次 上田
Masahiko Murakami
村上 晶彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Toyobo Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd, Toyobo Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP61079615A priority Critical patent/JPS62235566A/en
Publication of JPS62235566A publication Critical patent/JPS62235566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To enable highly sensitive measurement of erythropoietin (EPO) by coupling an immunochemically active substance having a thiol group in a molecule to a specified enzyme using a compound given by a specified formula to obtain a stable specified enzyme-labelled composite. CONSTITUTION:An immunocheimcally active substance having a thiol group in a molecule or bonded to a thiol group is coupled to a glucose-6-phosphoric dehydrogenated enzyme as label substance through a compound as given by the formula, wherein m represents an integer of 0-5, R, bivalent 6-member cyclic hydrogen carbon residual group and n, an integer of 0-1. Thus, an enzyme immunological measurement is done using a labelled composite in which erythropoietin or an antibody tended to react specifically with erythropoietin is coupled to a glucose-6-phosphoric acid dehydrogenated enzyme as label substance by a compound as given by the formula.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、免疫化学的分析法殊に酵素免疫測定法(以下
、EIAと略称する)に用いる試薬及びその試薬を用い
たエリスロポエチン(以下、EPOと略称することもあ
る)のEIAに関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to reagents used in immunochemical analysis, particularly enzyme immunoassay (hereinafter referred to as EIA), and erythropoietin (hereinafter referred to as EIA) using the reagents. This is related to EIA (sometimes abbreviated as EPO).

[従来の技術] EIAは放射免疫測定法(以下、RIAと略称する)と
共に、極めて微量の物質を定量することのできる臨床検
査法として、疾病の診断や病態の把握等に利用されてい
る。しかしRIAは放射性同位元素を利用する為、特殊
設備を要することや廃棄物の問題があること等の理由に
より、その普及が制限されている。一方、EIAは標識
に酵素を利用するので特殊設備を必要とせず、どこでも
・手軽に実施できる検査法として近年急速に発展してき
た。
[Prior Art] EIA, along with radioimmunoassay (hereinafter abbreviated as RIA), is used as a clinical testing method that can quantify extremely small amounts of substances, such as in diagnosing diseases and understanding pathological conditions. However, since RIA uses radioactive isotopes, its widespread use is limited because it requires special equipment and there are problems with waste. On the other hand, since EIA uses enzymes for labeling, it does not require special equipment and has rapidly developed in recent years as a test method that can be easily performed anywhere.

EIAの手法は競合法及び非競合法に大別され、前者で
は酵素を標識した標識抗原、後者では抗体に酵素を標識
した標識抗体が用いられる。そして標識に用いる酵素と
しては、ペルオキシダーゼ、β−ガラクトシダーゼ、ア
ルカリフオスファダーゼ等が知られているが、特にペル
オキシダーゼと抗体とをマレイミド化合物により結合さ
せたペルオキシダーゼ標識抗体は非特異的吸着が少なく
、EIAの非競合法、取り分はサンドイツチ法に用いる
と極めて高感度の測定が可能と言われている(特開昭5
8−149700号公報)。
EIA techniques are broadly classified into competitive methods and non-competitive methods; the former uses a labeled antigen labeled with an enzyme, and the latter uses a labeled antibody labeled with an enzyme. As enzymes used for labeling, peroxidase, β-galactosidase, alkaline phosphadase, etc. are known, but peroxidase-labeled antibodies, in which peroxidase and antibodies are bonded with a maleimide compound, have less nonspecific adsorption and can be used for EIA. It is said that extremely sensitive measurements can be made using a non-competitive method and the Sanderuch method (Japanese Unexamined Patent Publication No.
8-149700).

しかしながら、前記ペルオキシダーゼ標識抗体を用いる
サンドインチ法においても、ペルオキシダーゼの基質で
ある色原体として最も高感度と考えられているO−フェ
ニレンジアミンを用いると、原因は不明であるが時とし
て測定パックグランドが上昇し、測定感度が低下するこ
とが知られている。
However, even in the sandwich method using peroxidase-labeled antibodies, if O-phenylenediamine, which is considered to be the most sensitive chromogen and is the substrate for peroxidase, is used, the measurement pack ground may sometimes be detected for unknown reasons. is known to increase, and measurement sensitivity decreases.

またペルオキシダーゼ標識抗体は、通常濃縮した溶液で
数カ月から1年程度保存可能であるが、サンドイツチ法
の測定に使用する際には、該標識抗体を適当な安定化剤
を含むi衝液で数百倍から数千倍に希釈して使用され、
希釈して希薄な状態の該標識抗体は、前記安定化剤を含
む状態でも室温では1週間、低温でも1力月程度しか活
性が保持されず、極めて不安定であり、実用化に際して
は数多くの問題を有していた。
Additionally, peroxidase-labeled antibodies can usually be stored in a concentrated solution for several months to a year, but when used for Sanderchsch method measurements, the labeled antibodies can be stored several hundred times in i-buffer containing an appropriate stabilizing agent. It is used after being diluted several thousand times from
The labeled antibody in a diluted state retains its activity for only one week at room temperature and about one month at low temperature even in the state containing the stabilizer, and is extremely unstable, and there are many problems in practical use. I had a problem.

一方、EPOは主として腎臓で産生され、赤血球の分化
をコントロールしている分子量約4万のホルモンであり
、種々の貧血症や赤血球増過症では体液中EPO量が増
加又は減少していることが知られており、体液中のEP
O量を正確に測定することはこれら血液疾患の診断に極
めて重要である。そしてEPOの正常血中(又は体液中
)濃度は0.1〜O,jng/mlと考えられており、
感度の高い測定法、が必要であるが、バイオアッセイ法
(臨床検査、 Vol、22.No、2.197t1年
)やマウス骨髄細胞への!19F、の取り込みで測定す
るイン・ビトロ・バイオアッセイ法(J、Lab、C1
1n、Med、、Vol、97゜No、2 、158〜
169頁、 1981年)では検出感度が低く、操作が
煩雑で測定経費が高いという欠点を有している。そこで
簡便であり且つ高精度にEPO量が検出できるEPO測
定法の実現が望まれている。
On the other hand, EPO is a hormone with a molecular weight of approximately 40,000 that is mainly produced in the kidneys and controls the differentiation of red blood cells, and the amount of EPO in body fluids may increase or decrease in various anemias and polycythemias. EP is known and found in body fluids.
Accurately measuring the amount of O is extremely important for diagnosing these blood diseases. The normal blood (or body fluid) concentration of EPO is thought to be 0.1 to O,jng/ml.
Highly sensitive measurement methods are required, such as bioassay methods (Clinical Testing, Vol. 22. No. 2.197t1) and mouse bone marrow cells! In vitro bioassay method measuring the uptake of 19F (J, Lab, C1
1n, Med,, Vol, 97°No, 2, 158~
169, 1981) has the drawbacks of low detection sensitivity, complicated operations, and high measurement costs. Therefore, it is desired to realize an EPO measurement method that is simple and can detect the amount of EPO with high accuracy.

[発明が解決しようとする問題点] 上述した様な情況のもとで、本発明者らは、EPOと特
異的に反応する抗体を不溶性支持体に結合させた抗体結
合不溶性支持体、EPOを含む被検液、及びEPOと特
異的に反応する抗体を酵素で標識した標識抗体を反応せ
しめて、抗体結合不溶液支持体上に生成した抗体−EP
O−標識抗体用合体を測定することによりなるEPOの
酵素免疫測定法を完成し、既に特許出願した(特願昭6
O−39687)。
[Problems to be Solved by the Invention] Under the circumstances described above, the present inventors have developed an antibody-bound insoluble support, EPO, in which an antibody that specifically reacts with EPO is bound to an insoluble support. Antibody-EP produced on an antibody-bound insoluble support by reacting a sample solution containing EPO with a labeled antibody that is labeled with an enzyme and an antibody that specifically reacts with EPO.
We have completed an enzyme immunoassay method for EPO by measuring O-labeled antibody conjugates, and have already applied for a patent (patent application filed in 1983).
O-39687).

しかしながらこの技術においてもEPOと特異的に反応
する抗体の力価が低い為、ペルオキシダーゼやβ−ガラ
クトシダーゼを標識した標識抗体をもってしても、必ず
しも満足な感度を得られなかった。EPOと特異的に反
応する抗体の力価が低い理由としては、EPOをヒト以
外の動物に免疫した場合にEPOの代謝が悪いこと、投
与したEPOに対して動物自身が生理的に反応して極度
の貧血症状に陥ること等が考えられている。
However, even in this technique, since the titer of antibodies that specifically react with EPO is low, satisfactory sensitivity cannot always be obtained even with labeled antibodies labeled with peroxidase or β-galactosidase. The reason for the low titer of antibodies that specifically react with EPO is that EPO is poorly metabolized when non-human animals are immunized with EPO, and that the animal itself physiologically reacts to the administered EPO. It is thought that this can lead to symptoms of extreme anemia.

本発明者らは、このような現状に鑑み、常に高感度測定
が可能な測定法及びその為の試薬を鋭意研究した結果、
標識酵素としてグルコース−6−燐酸脱水素酵素(以下
G6PDHと略称することもある)を用い、下記一般式
(I) ・−(I) [式中、mは0〜5の整数を、Rは2価の6員環状炭化
水素残基を、nは0〜1の整数を夫々示す]で表わされ
る化合物を用いて、分子中にチオール基(−SH)を有
する免疫化学的活性物質もしくは分子中にチオール基を
導入した免疫化学的物質と前記酵素とを結合させること
により、極めて安定なG6PDH標識複合標識用られる
こと、また該G6PDH標識複合標識用いてEPOのE
IAを実施し、その酵素活性測定を生物発光反応によっ
て行なうと極めて高感度なEPOの測定が可能であるこ
とを見出し、本発明を完成するに至った。
In view of the current situation, the inventors of the present invention have conducted extensive research into a measurement method that allows high-sensitivity measurement at all times, and reagents for the same.
Using glucose-6-phosphate dehydrogenase (hereinafter sometimes abbreviated as G6PDH) as a labeling enzyme, the following general formula (I) - (I) [where m is an integer of 0 to 5, R is Using a compound represented by a divalent 6-membered cyclic hydrocarbon residue, where n is an integer of 0 to 1, an immunochemically active substance having a thiol group (-SH) or By combining the enzyme with an immunochemical substance into which a thiol group has been introduced, an extremely stable G6PDH-labeled composite label can be used.
The present inventors have discovered that EPO can be measured with extremely high sensitivity by carrying out IA and measuring the enzyme activity using a bioluminescent reaction, and have completed the present invention.

[問題点を解決する為の手段] 即ち本発明は分子中にチオール基を有するか若しくはチ
オール基を結合させた免疫化学的活性物質と、標識物質
としてのグルコース−6−燐酸脱水素酵素とを、下記の
一般式(I) −(T ) [式中、mは0〜5の整数を、Rは2価の6員環状炭化
水素残基を、nはO〜1の整数を夫々示す]で表わされ
る化合物を介して結合させたものである点に要旨を有す
るグルコース−6−燐酸脱水素酵素標識複合体である。
[Means for Solving the Problems] That is, the present invention uses an immunochemically active substance that has a thiol group in its molecule or has a thiol group bonded thereto, and glucose-6-phosphate dehydrogenase as a labeling substance. , the following general formula (I) - (T ) [wherein m represents an integer of 0 to 5, R represents a divalent 6-membered cyclic hydrocarbon residue, and n represents an integer of O to 1] This is a glucose-6-phosphate dehydrogenase labeled complex in that it is bound via a compound represented by:

又本発明法は、エリスロポエチンと特異的に反応する抗
体に、エリスロボエチレンを含む被検液及び酵素標識エ
リスロポエチンと特異的に反応する抗体を固相担体に結
合させた抗体結合固相担体に、エリスロポエチンを含む
被検液及びエリスロポエチンと特異的に反応する酵素標
識抗体を反応させるエリスロポエチンの酵素免疫測定法
において、標識物質としての酵素がグルコース−6−燐
酸脱水素酵素であり、当該酵素に、エリスロポエチン、
若しくはエリスロポエチンと特異的に反応する抗体を、
下記の一般式(I) ・・・(I) [式中、mは0〜5の整数を、Rは2価の6員環状炭化
水素残基を、nは0〜1の整数を夫々示す]で表わされ
る化合物で結合させた標識複合体を用いて行なう点にも
要旨を有するエリスロポエチンの酵素免疫測定法である
In addition, the method of the present invention provides an antibody-bound solid phase carrier in which an antibody that specifically reacts with erythropoietin, a test solution containing erythroboethylene, and an antibody that specifically reacts with enzyme-labeled erythropoietin are bound to a solid phase carrier. In the enzyme immunoassay method for erythropoietin in which a test solution containing erythropoietin and an enzyme-labeled antibody that specifically reacts with erythropoietin are reacted, the enzyme as a labeling substance is glucose-6-phosphate dehydrogenase, and the enzyme contains erythropoietin. ,
Or an antibody that specifically reacts with erythropoietin,
The following general formula (I) ... (I) [wherein m represents an integer of 0 to 5, R represents a divalent 6-membered cyclic hydrocarbon residue, and n represents an integer of 0 to 1, respectively. This is an enzyme-linked immunoassay method for erythropoietin, which is characterized in that it is carried out using a labeled complex bound with a compound represented by the following formula.

[作用] 従来、G6PDHを標識酵素とするEIAの報告は数少
なく、競合法でトリニトロトルエンなどのハブテンに0
6PDHを標識し、06PDH活性の測定にバクテリア
ルシフェラーゼ系による生物発光反応を用いる技術が報
告されている(アナリティカル・バイオケミストリ、 
Vol、122.385頁、 1982年)。しかしな
がらこの技術はハブテンの保有する官能基を利用して0
6PDHを結合させており、本発明とは木質的に異なる
ものである。従って、サンドイツチ法において抗体を標
識する酵素に06PDHを用いた報告は現在までなされ
ていないと言っても過言ではない。
[Effect] Until now, there have been few reports on EIA using G6PDH as a labeling enzyme.
A technique has been reported that uses a bioluminescent reaction using a bacterial luciferase system to label 6PDH and measure 06PDH activity (Analytical Biochemistry,
Vol. 122.385, 1982). However, this technology utilizes the functional groups possessed by Habten to
6PDH is combined, and is different from the present invention in terms of wood quality. Therefore, it is no exaggeration to say that there have been no reports to date of the use of 06PDH as an enzyme for labeling antibodies in the Sand-Deutsch method.

G6PDHとは動・植物界に広く存在する酵素であり、
本発明においても動物臓器、細菌、カビ。
G6PDH is an enzyme that exists widely in the animal and plant kingdoms.
In the present invention, animal organs, bacteria, and molds are also used.

酵母などいずれの起源のG6PDHを用いてもよいが、
特に細菌起源のものを用いる方が入手が容易であること
、安価である等を考慮すると好適である。
G6PDH from any origin such as yeast may be used, but
In particular, it is preferable to use a material of bacterial origin, considering that it is easier to obtain and cheaper.

06PDHは下記(1)式の反応を触媒する酵素であり
、その活性はNAD (P)の還元によって生成するN
AD (P)Hの増加を340nmにおける吸光度で測
定することにより検出される。
06PDH is an enzyme that catalyzes the reaction of formula (1) below, and its activity is based on the N produced by reduction of NAD (P).
The increase in AD (P)H is detected by measuring the absorbance at 340 nm.

p−グルコース−6−燐酸+NAD (P)=ヨD−グ
ルコースーδ−ラクトン−6−燐酸+NAD (P)H
・=−(1) しかしながら極めて微量の物質を定量するEIAでは、
標識剤として用いたG6PDHの活性測定は生物発光法
で行なうのが好ましい。
p-glucose-6-phosphoric acid + NAD (P) = ioD-glucose-δ-lactone-6-phosphoric acid + NAD (P)H
・=-(1) However, in EIA, which quantifies extremely small amounts of substances,
The activity of G6PDH used as a labeling agent is preferably measured by a bioluminescence method.

生物発光法とは、生物界にみられる発光現象を応用した
分析法であり、その極めて高感度な分析特性の為最近の
臨床検査分野への応用が期待されている。例えばホタル
の生物発光反応を応用したATPの測定では、ルシフェ
リン、ルシフェラーゼ u g 2−イオンの存在下で
、下記(2)式の反応によって生成する発光量が測定さ
れる。この反応原理を応用してATPの他AMP、AD
P、ピルビン酸、クレアチンキナーゼ等の測定が可能で
ある。
The bioluminescence method is an analysis method that applies the luminescence phenomenon observed in living organisms, and due to its extremely sensitive analysis characteristics, it is expected to be applied to the recent field of clinical testing. For example, in the measurement of ATP using the firefly bioluminescence reaction, the amount of luminescence generated by the reaction of formula (2) below is measured in the presence of luciferin and luciferase u g 2- ions. Applying this reaction principle, in addition to ATP, AMP, AD
It is possible to measure P, pyruvate, creatine kinase, etc.

オキジルシフェリン+AMP+ビロリン酸十発光バクテ
リアの生物発光反応を応用した例では、G6PD)Iの
活性測定の他、胆汁酸やATP等が測定され、G6Pt
)Hの活性測定の場合には式(1)の反応によって生成
したNAD (P)l(は下記(3) 、 (4)式の
反応により生成する発光量で測定することができる。
In an example in which the bioluminescent reaction of oxyluciferin + AMP + birophosphate decaluminescent bacteria is applied, in addition to measuring the activity of G6PD)I, bile acids, ATP, etc. are measured, and G6Pt
) H activity, NAD (P)l( produced by the reaction of formula (1)) can be measured by the amount of luminescence produced by the reactions of formulas (3) and (4) below.

FMN+NAD (P)H+H” FMNH2+NAD+ (P)ゝ ・・・ (3)ルシ
フェラーゼ F M N Hx + 02 + R−CHOここでF
MNはフラビンそノヌクレオチド。
FMN+NAD (P)H+H" FMNH2+NAD+ (P)... (3) Luciferase F M N Hx + 02 + R-CHO where F
MN is flavin sononucleotide.

FMN)(2は還元型FMN、R−C)10は炭素数7
〜18の直鎖アルデヒドを示す。
FMN) (2 is reduced FMN, R-C) 10 is 7 carbons
~18 linear aldehydes are shown.

本発明で使用され分子中にチオール基 (−SH)を有する免疫化学的活性物質としては、蛋白
質やペプチドが一般に挙げられるが、特に抗体はその分
子中にジスルフィド結合(−S−S−)をいくつか有し
ており、還元により容易にチオール基を露出させること
ができ、かつ抗体としての活性があまり低下しないので
好適である。抗体はペプシン、パパインなどの酵素処理
により分解を受け、ざらにメルカプトエチルアミンなど
の還元剤によって、より低分子のフラグメントとなる。
Immunochemically active substances that are used in the present invention and have a thiol group (-SH) in their molecules generally include proteins and peptides, but antibodies in particular have disulfide bonds (-S-S-) in their molecules. This is preferable because the thiol group can be easily exposed by reduction and the activity as an antibody does not decrease much. Antibodies are degraded by treatment with enzymes such as pepsin and papain, and then converted into lower molecular fragments by reducing agents such as mercaptoethylamine.

これらの低分子化されたフラグメントはF (a b’
 )2 、F a b’ 、 F a bなどと呼ばれ
ており、いずれも抗原との結合部位は保持されていて活
性を有する。一方、分子中にチオール基を有しない免疫
化学的活性物質に対しては、該物質にS−アセチルメル
カプトサクシニックアンヒドライド、2−イミノチオラ
ン、メチル−3−メルカプトプロピオンイミデート等を
反応させて、チオール基を導入することにより本発明に
用いることができる。これらの免疫化学的活性物質とし
ては、インスリン、グルカゴン及びEPO等のペプチド
ホルモン或はα−フェトプロティンやCEA (胎児抗
原)の腫瘍関連抗原等が挙げられる。
These reduced molecular weight fragments are F (a b'
)2, F a b', F a b, etc., and all of them retain their antigen-binding sites and have activity. On the other hand, for immunochemically active substances that do not have a thiol group in the molecule, the substance is reacted with S-acetylmercaptosuccinic anhydride, 2-iminothiolane, methyl-3-mercaptopropionimidate, etc. , can be used in the present invention by introducing a thiol group. These immunochemically active substances include peptide hormones such as insulin, glucagon and EPO, or tumor-associated antigens such as α-fetoprotein and CEA (embryonic antigen).

次にこれらの免疫化学的活性物質とG6PDHとを、一
般式(り −、、(I ) [式中、mは0〜5の整数を、Rは2価の6員環状炭化
水素残基を、nはO〜1の整数を夫々示す]で表わされ
る化合物を用いて結合させる方法について説明する。
Next, these immunochemically active substances and G6PDH are combined with the general formula (RI-, (I) [where m is an integer of 0 to 5 and R is a divalent 6-membered cyclic hydrocarbon residue]. , n is an integer of O to 1] A method for bonding using compounds represented by the following will be described.

上記一般式(1)中、Rで表わされる6員環状炭化水素
残基としては飽和、不飽和のいずれであってもよく、前
者の例としては例えばシクロヘキシレンが挙げられ、後
者としては例えばフェニレンが挙げられる。これらの化
合物はたとえばザ・ジャーナル・オブ・バイオケミスト
リー。
In the above general formula (1), the 6-membered cyclic hydrocarbon residue represented by R may be either saturated or unsaturated; an example of the former is cyclohexylene, and an example of the latter is phenylene. can be mentioned. These compounds, for example, The Journal of Biochemistry.

Vol、79. 233頁(1976年)、ヨーoピア
ン・ジャーナル・オブ・バイオケミストリー。
Vol, 79. 233 pages (1976), European Journal of Biochemistry.

Vol、101,395頁(1979年)などに記載の
方法或はこれらの方法に準じて製造することができるが
、市販の化合物も利用することができる。
Vol. 101, p. 395 (1979), etc., or according to these methods, but commercially available compounds can also be used.

まず一般式(1)で表わされる化合物とG6PDHとを
適当な緩衝液中で0〜50℃にて10分乃至24時間反
応させてマレイミド化したG6PDHを得る。該緩衝液
としては、pH7,0の燐酸緩衝液、pH8,0のトリ
スMi衝液等が良好である。
First, a compound represented by general formula (1) and G6PDH are reacted in an appropriate buffer at 0 to 50°C for 10 minutes to 24 hours to obtain maleimidated G6PDH. As the buffer solution, a phosphate buffer solution with a pH of 7.0, a Tris-Mi buffer solution with a pH of 8.0, etc. are suitable.

次に前記マレイミド化したG6PDHと免疫化学的活性
物質とを、i荷液中で0〜40℃にて1乃至24時間反
応させることにより結合させる。
Next, the maleimidized G6PDH and the immunochemically active substance are combined by reacting in an ionic solution at 0 to 40° C. for 1 to 24 hours.

該緩衝液としては、例えばpH6,5の燐酸緩衝液等が
挙げられる。
Examples of the buffer include a phosphate buffer with a pH of 6.5.

この様にして得られた06PDH標識複合体は、ゲルク
ロマトグラフィー等により精製して用いる。ゲルクロマ
トグラフィーに用いられる°担体としては、例えばウル
トロゲルAcA44(LKB社製)やセファクリルS−
200(ファルマシア・ファインケミカル社製)等が挙
げられる。
The 06PDH-labeled complex thus obtained is used after being purified by gel chromatography or the like. Examples of carriers used in gel chromatography include Ultrogel AcA44 (manufactured by LKB) and Sephacryl S-
200 (manufactured by Pharmacia Fine Chemicals) and the like.

次に、G6PDH6PDH標識複いてEPOを測定する
方法において説明する。
Next, a method for measuring EPO using the G6PDH6PDH label will be explained.

前述したように、EIAは競合法と非競合法に大別され
るが本発明に係るG6PDH6PDH標識複ずれの方法
にも用いることができる。即ち、競合法ではG6PD)
I標識EPOと被検液中のEPOとをEPOに対する特
異抗体に対して競合反応させ、該特異抗体に結合し゛た
G6PDH標識EPOと特異抗体に結合していないG6
PDH標識EPOを分離し、いずれか一方のG6PDH
酵素活性を測定することにより被検液中のEPO量を求
めることができる。
As mentioned above, EIA is broadly divided into competitive methods and non-competitive methods, but it can also be used in the method of G6PDH6PDH labeling according to the present invention. In other words, under competitive law, G6PD)
I-labeled EPO and EPO in the test solution are subjected to a competitive reaction with a specific antibody against EPO, and the G6PDH-labeled EPO that has bound to the specific antibody and the G6 that has not bound to the specific antibody are
Separate PDH-labeled EPO and collect either G6PDH
By measuring the enzyme activity, the amount of EPO in the test solution can be determined.

一方非競合法では、例えばサンドイツチ法を取上げて説
明すると、EPOと特異的に反応する抗体を固相担体に
結合させた抗体結合固相担体に、EPOを含む被検液、
及びEPOと特異的に反応する抗体にG6PDHを結合
させたG6PDH標識抗体を反応させ、前記抗体結合固
相担体上に結合したG6PDH標識抗体の量を測定する
ことにより被検液中のEPO量を求めることができる。
On the other hand, in the non-competitive method, for example, taking the Sand-Deutsch method as an example, a test solution containing EPO is added to an antibody-bound solid phase carrier in which an antibody that specifically reacts with EPO is bound to the solid phase carrier.
The amount of EPO in the test solution is determined by reacting a G6PDH-labeled antibody with G6PDH bound to an antibody that specifically reacts with EPO, and measuring the amount of G6PDH-labeled antibody bound to the antibody-bound solid phase carrier. You can ask for it.

更に、競合法及び非競合法のいずれの方法においても、
G6PDI(の活性測定は前述した様に生物発光法で行
なうことによってEPOの高感度測定が可能となる。
Furthermore, in both competitive and non-competitive methods,
By measuring the activity of G6PDI using the bioluminescence method as described above, it is possible to measure EPO with high sensitivity.

[実施例] 以下、代表的実施例として非競合法特にサンドインチ法
を例示して本発明を説明するが、本発明はこれらの実施
例により限定されるものではなく、G6PDHでEPO
を標識する場合も本発明の技術的範囲に含まれることも
前述した趣旨からすれば明らかである。
[Example] The present invention will be explained below by exemplifying the non-competitive method, particularly the sandwich method, as a typical example. However, the present invention is not limited to these examples, and
It is also clear from the above-mentioned purpose that the case of labeling is also included in the technical scope of the present invention.

実施例I G6PDH標識抗EPO抗体の作成は次の様して行なっ
た。
Example I A G6PDH-labeled anti-EPO antibody was prepared as follows.

抗EPOモノクローナル抗体(特開昭59−15539
5号公報参照)20mgに、ペプシン1mgを加え、3
7℃にて24時間消化した後、セファデックスG−15
0にてゲル濾過を行ない、抗EPoモノクローナル抗体
のF(ab’)2フラグメントを得た0次に該F (a
b’ )、フラグメントを2−メルカプトエチルアミン
にて還元してFab’を得た。一方、06PDH(東洋
紡製)5mgを1ff11のトリス緩衝液(pH7,0
)に溶解し、N−(4−カルボキシシクロヘキシルメチ
ル)マレイミドのN−ヒドロキシサクシイミジルエステ
ル[一般式(I)においてn=1.R−シクロヘキシレ
ンである化合物]2mgを添加し、37℃にて3時間反
応させ、反応液をセファデックスG−25にてゲル濾過
し、マレイミド基を導入したG8PD)Iを得た。該マ
レイミド化06PDHと前記抗EPOモノクローナル抗
体のFab’ とを4℃にて200時間反応せ、反応液
をクルトロゲルAcA44にてゲル濾過し、G6PDH
活性の高い画分を集めてG6PDH標識抗EPOモノク
ローナル抗体を得た。この場合のゲルクロマトグラフィ
ーの溶出パターンを第1図に示す、尚第1図には、波長
280 r+mにおける吸光度(−〇−)と、波長34
0nmにお1する吸光度(−・−)とを併記した。
Anti-EPO monoclonal antibody (JP-A-59-15539
(Refer to Publication No. 5), add 1 mg of pepsin to 20 mg,
After 24 hours of digestion at 7°C, Sephadex G-15
Gel filtration was performed at 0 to obtain the F(ab')2 fragment of anti-EPo monoclonal antibody.
b'), the fragment was reduced with 2-mercaptoethylamine to obtain Fab'. On the other hand, 5 mg of 06PDH (manufactured by Toyobo) was added to 1ff11 Tris buffer (pH 7.0).
) and N-hydroxysucciimidyl ester of N-(4-carboxycyclohexylmethyl)maleimide [in general formula (I), n=1. 2 mg of the compound R-cyclohexylene] was added, and the mixture was reacted at 37° C. for 3 hours, and the reaction solution was gel-filtered through Sephadex G-25 to obtain G8PD)I into which a maleimide group had been introduced. The maleimidated 06PDH and Fab' of the anti-EPO monoclonal antibody were reacted at 4°C for 200 hours, and the reaction solution was gel-filtered through Kultrogel AcA44.
Fractions with high activity were collected to obtain a G6PDH-labeled anti-EPO monoclonal antibody. The elution pattern of gel chromatography in this case is shown in FIG.
The absorbance (-·-) is also shown as 1 at 0 nm.

G6PDH活性の測定は次のようにして行なった。G6PDH activity was measured as follows.

55mM−1リスi衝液(pH7,8、3,3mM塩化
マグネシウムを含む) 2.7 mlに、60mM−N
AD にコチンアミドジヌクレオチド) 0.1 ml
及び0.1mM−グルコース−6−燐酸0.1mlを加
え、前記緩衝液にて適宜希釈したG6PDH溶液を0.
1ml加え、30℃にて反応開始させて1分毎に生成す
るNADH(還元型ニコチンアミドジヌクレオチド)の
340nmにおける吸光度を測定した。活性は1分間当
たりの増加吸光度で考察した。
60mM-N to 2.7 ml of 55mM-1 Lithium chloride solution (pH 7.8, containing 3.3mM magnesium chloride)
AD to cotinamide dinucleotide) 0.1 ml
and 0.1 ml of 0.1 mM glucose-6-phosphate was added, and the G6PDH solution diluted appropriately with the above buffer solution was diluted with 0.1 ml of 0.1 mM glucose-6-phosphate.
1 ml was added, the reaction was started at 30°C, and the absorbance at 340 nm of NADH (reduced nicotinamide dinucleotide) produced every minute was measured. Activity was considered as increased absorbance per minute.

実施例2 EPOの測定は次の様にして行なった。Example 2 Measurement of EPO was carried out as follows.

ポリクローナル抗EPO抗体(官印乳業製)0.3 m
gを0.1 M−NaHCOs  15m1に溶解し、
ポリスチレン球(直径6.4mm) 100個を加えて
、4℃にて一夜放置し、抗EPO抗体結合ポリスチレン
球を得た。ポリスチレンチューブ(12x75m+a)
に該抗EPO抗体結合ポリスチレン球1個を採り、EP
Oを含む被検液300μ℃を加え、37℃にて2時間反
応させて洗浄した0次に実施例1で得たG6PDI(標
識抗EPOモノクローナル抗体を、0.5%牛血清アル
ブミンを含むトリス緩衝液でSOO倍に希釈し、その液
を上記の反応液に300μm加え、37℃で2時間反応
させて洗浄した。さらに55mMトリス緩衝液(pH7
,8、3,3mM塩化マグネシウムを含む)2.7 m
l、 60mM  NAD O,1a+1.0.1 M
−グルコース−6−燐酸0.1a+1から成る基質液を
300μぶ加えて37℃で1時間反応させた。該反応液
Q、l mをルシフェラーゼO,QIU 7m11N 
A D H−FMNオキシドレダクターゼ0.3υ/m
1%FMNl mM、n−デシルアルデヒド0.1%か
ら成る発光基質09mlに速やかに添加して、ルミフォ
トメータTD4000 (ラボサイエンス族)にて発光
量を測定した。その結果を第2図に示す。
Polyclonal anti-EPO antibody (manufactured by Kanin Dairy Products) 0.3 m
g was dissolved in 15 ml of 0.1 M NaHCOs,
100 polystyrene spheres (diameter 6.4 mm) were added and left overnight at 4°C to obtain anti-EPO antibody-bound polystyrene spheres. Polystyrene tube (12x75m+a)
Take one polystyrene sphere bound to the anti-EPO antibody, and
A test solution containing O was added at 300 µC, and the reaction was carried out at 37 C for 2 hours. It was diluted to SOO times with a buffer solution, 300 μm of the solution was added to the above reaction solution, and the mixture was reacted for 2 hours at 37°C and washed.
, 8, 3,3mM magnesium chloride) 2.7 m
l, 60mM NAD O,1a+1.0.1M
300 µ of a substrate solution consisting of 0.1a+1 -glucose-6-phosphoric acid was added and reacted at 37°C for 1 hour. The reaction solution Q, lm was added to luciferase O, QIU 7m11N.
A D H-FMN oxidoreductase 0.3υ/m
It was immediately added to 09 ml of a luminescent substrate consisting of 1% FMNl mM and 0.1% n-decylaldehyde, and the amount of luminescence was measured using a Lumiphotometer TD4000 (Labo Science Group). The results are shown in FIG.

[発明の効果] 以上述べた様に本発明によれば、EIAにおいて高感度
測定が可能ならしめるG6PDH6PDH標識複し得た
ものであり、又該06PDH標識複合体を用いて、EP
Oを高感度に測定できた。
[Effects of the Invention] As described above, according to the present invention, a G6PDH6PDH label complex that enables high-sensitivity measurement in EIA can be obtained, and the 06PDH label complex can be used to perform EP
O was able to be measured with high sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られたG6PDHと抗EPOモノ
クローナル抗体のFab’ フラグメントとの反応生成
物のゲルクロマトグラフィーにおける溶出パターンを示
すグラフ、第2図は実施例2におけるEPO標準曲線で
ある。
Figure 1 is a graph showing the elution pattern in gel chromatography of the reaction product of G6PDH obtained in Example 1 and the Fab' fragment of anti-EPO monoclonal antibody, and Figure 2 is the EPO standard curve in Example 2. .

Claims (4)

【特許請求の範囲】[Claims] (1)分子中にチオール基を有するか若しくはチオール
基を結合させた免疫化学的活性物質と、標識物質として
のグルコース−6−燐酸脱水素酵素とを、下記の一般式
( I ) ▲数式、化学式、表等があります▼・・・( I ) [式中、mは0〜5の整数を、Rは2価の6員環状炭化
水素残基を、nは0〜1の整数を夫々示す] で表わされる化合物を介して結合させたものであること
を特徴とするグルコース−6−燐酸脱水素酵素標識複合
体。
(1) An immunochemically active substance having a thiol group in its molecule or bonded with a thiol group and glucose-6-phosphate dehydrogenase as a labeling substance are combined using the following general formula (I) ▲Math. Chemical formulas, tables, etc. are available▼...(I) [In the formula, m represents an integer of 0 to 5, R represents a divalent 6-membered cyclic hydrocarbon residue, and n represents an integer of 0 to 1. ] A glucose-6-phosphate dehydrogenase labeling complex, characterized in that it is bound via a compound represented by the following.
(2)免疫化学的活性物質がエリスロポエチンと特異的
に反応する抗体である特許請求の範囲第1項に記載の複
合体。
(2) The complex according to claim 1, wherein the immunochemically active substance is an antibody that specifically reacts with erythropoietin.
(3)免疫化学的活性物質がエリロスポエチンである特
許請求の範囲第1項に記載の複合体。
(3) The complex according to claim 1, wherein the immunochemically active substance is eryrospoietin.
(4)エリスロポエチンと特異的に反応する抗体に、エ
リスロポエチレンを含む被検液及び酵素標識エリスロポ
エチンを競合反応させるか、若しくはエリスロポエチン
と特異的に反応する抗体を固相担体に結合させた抗体結
合固相担体に、エリスロポエチンを含む被検液及びエリ
スロポエチンと特異的に反応する酵素標識抗体を反応さ
せるエリスロポエチンの酵素免疫測定法において、標識
物質としての酵素がグルコース−6−燐酸脱水素酵素で
あり、当該酵素に、エリスロポエチン、若しくはエリス
ロポエチンと特異的に反応する抗体を、下記の一般式(
I ) ▲数式、化学式、表等があります▼・・・( I ) [式中、mは0〜5の整数を、Rは2価の6員環状炭化
水素残基を、nは0〜1の整数を夫々示す] で表わされる化合物で結合させた標識複合体を用いて行
なうことを特徴とするエリスロポエチンの酵素免疫測定
法。
(4) Antibody binding in which an antibody that specifically reacts with erythropoietin is subjected to a competitive reaction with a test solution containing erythropoietin and enzyme-labeled erythropoietin, or an antibody that specifically reacts with erythropoietin is bound to a solid phase carrier. In an enzyme immunoassay method for erythropoietin in which a solid phase carrier is reacted with a test solution containing erythropoietin and an enzyme-labeled antibody that specifically reacts with erythropoietin, the enzyme as a labeling substance is glucose-6-phosphate dehydrogenase, Erythropoietin or an antibody that specifically reacts with erythropoietin is added to the enzyme using the following general formula (
I) ▲Mathematical formulas, chemical formulas, tables, etc.▼...(I) [In the formula, m is an integer from 0 to 5, R is a divalent 6-membered cyclic hydrocarbon residue, and n is 0 to 1. An enzyme-linked immunosorbent assay for erythropoietin, characterized in that it is carried out using a labeled complex bound with a compound represented by:
JP61079615A 1986-04-07 1986-04-07 Glucose-6-phosphoric acid dehydrogenated enzyme labelled composite and enzyme immunological measurement of erythropoietin Pending JPS62235566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61079615A JPS62235566A (en) 1986-04-07 1986-04-07 Glucose-6-phosphoric acid dehydrogenated enzyme labelled composite and enzyme immunological measurement of erythropoietin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079615A JPS62235566A (en) 1986-04-07 1986-04-07 Glucose-6-phosphoric acid dehydrogenated enzyme labelled composite and enzyme immunological measurement of erythropoietin

Publications (1)

Publication Number Publication Date
JPS62235566A true JPS62235566A (en) 1987-10-15

Family

ID=13694957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079615A Pending JPS62235566A (en) 1986-04-07 1986-04-07 Glucose-6-phosphoric acid dehydrogenated enzyme labelled composite and enzyme immunological measurement of erythropoietin

Country Status (1)

Country Link
JP (1) JPS62235566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389163A (en) * 1989-08-31 1991-04-15 Meidensha Corp Reagent for measurement of enzyme immunity and preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389163A (en) * 1989-08-31 1991-04-15 Meidensha Corp Reagent for measurement of enzyme immunity and preparation thereof

Similar Documents

Publication Publication Date Title
EP0365685B1 (en) Freeze-dried composition comprising a horseradish peroxidase-labelled Fab' fragment of an anti-human interferon-beta monclonal antibody and trehalose; EIA kit containing the composition
Ishikawa Development and clinical application of sensitive enzyme immunoassay for macromolecular antigens—a review
WO1980000455A1 (en) Colorimetric immunoassay employing a chromoprotein label
EP0149602A1 (en) Immunometric assay using polyclonal and monoclonal antibodies and a kit for use therein
FI95752B (en) Determination kit and method for immunological measurement of whole cells
EP0840895B1 (en) Methods of obtaining receptor:release ligand (reland) complexes and test assays
JP2656776B2 (en) A novel immunochemical assay method for stable glycosylated hemoglobin
Byzova et al. Immunochromatographic technique for express determination of ampicillin in milk and dairy products
TW201802472A (en) Anti-human hemoglobin monoclonal antibody or antibody kit, insoluble carrier particle to which anti-human hemoglobin monoclonal antibody is immobilized, and measurement reagent and measurement method using same
Alpha et al. Sensitive amplified immunoenzymometric assays (IEMA) for human insulin and intact proinsulin
JP2022510731A (en) Calibrator and control to determine glycated hemoglobin percent in a patient's liquid test sample
JPS62235566A (en) Glucose-6-phosphoric acid dehydrogenated enzyme labelled composite and enzyme immunological measurement of erythropoietin
JP3998245B2 (en) Method and kit for measuring oxidized apolipoprotein AI and oxidized lipoprotein containing the same
Hiroyuki et al. An enzyme immunoassay system for measurement of serum insulin
JP2968910B2 (en) Antibodies against 1α, 25 (OH) 2 vitamin D3 and uses thereof
JPS6364746B2 (en)
JP2543630B2 (en) Measuring method of glycation ratio of specific protein
JPH03503566A (en) Immunoassay using monoclonal antibodies against natural binding proteins
JPS6246263A (en) Method for quantifying prostate specific antigen and alpha1-antitrypsin composite
JP3709078B2 (en) Method and kit for measuring diacetylpolyamine
Fujiwara et al. Determination of urinary acetylpolyamines by a monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA)
JP4588053B2 (en) Method and kit for measuring oxidized apolipoprotein AI and oxidized lipoprotein containing the same
JP2866151B2 (en) Method and kit for detecting calpastatin abnormality
JPS61198062A (en) Enzyme immunoassay for erythropoietin
US5169937A (en) Method for producing stable glycosylated hemoglobin