JPS62235393A - Solid lubricant film having high hardness and formation thereof - Google Patents

Solid lubricant film having high hardness and formation thereof

Info

Publication number
JPS62235393A
JPS62235393A JP7822086A JP7822086A JPS62235393A JP S62235393 A JPS62235393 A JP S62235393A JP 7822086 A JP7822086 A JP 7822086A JP 7822086 A JP7822086 A JP 7822086A JP S62235393 A JPS62235393 A JP S62235393A
Authority
JP
Japan
Prior art keywords
gas
lubricant film
solid
solid lubricant
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7822086A
Other languages
Japanese (ja)
Inventor
Shojiro Miyake
正二郎 三宅
Hideo Yoshihara
秀雄 吉原
Takashi Okubo
大久保 高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7822086A priority Critical patent/JPS62235393A/en
Publication of JPS62235393A publication Critical patent/JPS62235393A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N15/00Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To obtain a hard solid lubricant film having high hardness and excellent abrasion resistance and lubricity, by compounding hard carbon forming a lubricant film to a silicone having lower concentration than the carbon. CONSTITUTION:A solid lubrication film composed of hard carbon containing silicon is formed on a solid surface by introducing a silane gas and a hydrocarbon gas or carbon fluoride gas at a flow ratio of 0.2-0.7 and carrying out plasma CVD or vacuum CVD of the gaseous mixture. The flow ratio of the silane gas is maintained at a high level and is gradually lowered simultaneous to the gradual increase of the flow ratio of the hydrocarbon gas or fluorinated carbon gas, thereby increasing the silicon concentration at the surface contacting with the solid and lowering the concentration on the surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高硬度を有し、かつ潤滑性にすぐれた高硬度
固体潤滑膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-hardness solid lubricant film having high hardness and excellent lubricity.

〔従来の技術〕[Conventional technology]

機構部品や工具等の表面処理法として、各種の硬質1漠
が検討されている。例えば、’I”iN、TiC1B、
C,5iiN4.AQ、O,等の硬質膜がスパッタリン
グ、CVD法、イオンブレーティング等によって形成さ
れている。しかし、上記各種硬質膜を機構部品のしゅろ
動部や工具刃面等に適用した場合には、上記硬質膜自体
に潤滑性がないため集中応力が生じ、下地と硬質1漠と
の界面で剥離する等の現象が見られた。また、固体潤滑
剤は比較的軟質で変形しやすく徐々に損耗し、部品の精
度劣化を招き、比較的寿命が短かいという欠点があった
Various hard materials are being studied as surface treatment methods for mechanical parts, tools, and the like. For example, 'I''iN, TiC1B,
C,5iiN4. A hard film such as AQ, O, etc. is formed by sputtering, CVD, ion blasting, or the like. However, when the above-mentioned various hard films are applied to the sliding parts of mechanical parts, tool blade surfaces, etc., concentrated stress occurs because the hard films themselves do not have lubricity, and the interface between the base and the hard surface causes concentrated stress. Phenomena such as peeling were observed. In addition, solid lubricants are relatively soft and easily deformed, causing gradual wear and tear, leading to deterioration in the precision of parts, and having a relatively short lifespan.

また、いわゆるダイヤモンドライクカーボンという硬質
カーボン膜が検討されており、その硬度が大きいところ
からしゅう動用機構部品および工具等の表面処理法とし
て期待されている0例えば、CH4等の炭化水素ガス、
または上記炭化水素ガスに水素ガスを加えたガスを用い
、イオンビーム蒸着法、減圧CVD法等によって形成さ
れた膜は、無定形炭素、立方晶ダイヤモンド、グラフア
イ1−等の硬質カーボン膜からなることが知られている
In addition, a hard carbon film called diamond-like carbon is being studied, and due to its high hardness, it is expected to be used as a surface treatment method for sliding mechanical parts and tools.For example, hydrocarbon gas such as CH4, etc.
Alternatively, a film formed by ion beam evaporation, low pressure CVD, etc. using a gas obtained by adding hydrogen gas to the above-mentioned hydrocarbon gas is made of a hard carbon film such as amorphous carbon, cubic diamond, or Graphi 1-. It is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の硬質カーボン膜は、高い硬度を有するが潤滑性が
ないため、または下地との付着性が小さいため、上記し
たように、しゆう動用機構部品や工具等に利用しようと
しても寿命に問題点があった。本発明の目的は、耐摩耗
性および潤滑性があり、かつ下地との付着性にすぐれた
高硬度の固体)121滑1漠を得ることにある。
Although the above-mentioned hard carbon film has high hardness, it does not have lubricity or has low adhesion to the substrate, so as mentioned above, even if it is used for sliding mechanical parts or tools, there will be problems with the lifespan. was there. An object of the present invention is to obtain a high hardness solid (121) having wear resistance, lubricity, and excellent adhesion to the substrate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、炭化水素ガスまたはふっ化炭素ガスとシラン
ガスを用い、上記ガスの流量比を調整することによって
、潤滑性があり下地との付着性にすぐれ、長寿命であり
、かつ高硬度で耐摩耗性を同時にそなえた高硬度固体潤
滑膜を形成するようにしたものである。
The present invention uses hydrocarbon gas or fluorocarbon gas and silane gas and adjusts the flow rate ratio of the above gases to achieve lubricity, excellent adhesion to the substrate, long life, high hardness and resistance. It is designed to form a highly hard solid lubricant film that also has abrasive properties.

〔作用〕[Effect]

発明者らは、硬質カーボンにシリコンを含有させること
により上記硬質カーボンの接着性が向上することを見出
したが、シリコン濃度が高い硬質カーボンでは、摩擦係
数を増し潤滑性が損なわれることになる。したがって、
硬質カーボンが固体と接触する面ではシリコン濃度を高
くシ、硬質カーボンの表面ではシリコン濃度が低くなる
ようにしなければならない、上記の要求に沿った硬質カ
ーボン膜を形成するために、発明者らはさらに、エチレ
ンガスとシランガスとを用いた減圧CVD法またはプラ
ズマCVD法を利用し、反応過程における上記エチレン
ガスとシランガスのそれぞれの流量を変えろことによっ
てシリコンと炭素の比率が異なる1漠が形成されること
を見出し、固体接触面でシリコン濃度が高く表面でシリ
コン濃度が低い硬質カーボン膜を形成した。
The inventors have found that the adhesion of the hard carbon is improved by incorporating silicon into the hard carbon, but hard carbon with a high silicon concentration increases the coefficient of friction and impairs lubricity. therefore,
In order to form a hard carbon film that meets the above requirements, the silicon concentration must be high on the surface where the hard carbon contacts the solid, and the silicon concentration must be low on the surface of the hard carbon. Furthermore, by using a low pressure CVD method or a plasma CVD method using ethylene gas and silane gas, and changing the respective flow rates of the ethylene gas and silane gas in the reaction process, a range with a different ratio of silicon to carbon is formed. We discovered this and formed a hard carbon film with a high silicon concentration on the solid contact surface and a low silicon concentration on the surface.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による高硬度固体潤滑膜の形成方法の一
実施例を示す構成図、第2図はシランガスとエチレンガ
スの流量比を変えた時の高硬度固体潤滑膜の摩擦特性を
示す図、第3図はシランガスとエチレンガスの流量比を
変えた時の摩擦寿命の変化を示す図、第4図は本発明に
よる高硬度固体潤滑膜の摩擦特性を示す図である。本実
施例では。
Fig. 1 is a block diagram showing an example of the method for forming a high hardness solid lubricant film according to the present invention, and Fig. 2 shows the frictional characteristics of the high hardness solid lubricant film when the flow rate ratio of silane gas and ethylene gas is changed. 3 is a diagram showing the change in friction life when the flow rate ratio of silane gas and ethylene gas is changed, and FIG. 4 is a diagram showing the friction characteristics of the high hardness solid lubricant film according to the present invention. In this example.

第1図に示すように、プラズマの高活性化とともに適度
のエネルギーのイオン衝撃によって、膜形成反応を促進
できるマイクロ波電子サイクロトロン共鳴(r:cR)
励起プラズマを利用したCVD法を用いて高硬度固体潤
滑膜を形成した。、第1図において、マイクロ波を矩形
導波管1を通じプラズマ生成室2に導く。−上記プラズ
マ生成室2は空胴共振器条件を満たしている。プラズマ
生成室2は周囲には磁気コイル3を配置し、上記プラズ
マ生成室2の内部でECR条件を満たす磁界を形成する
とともに、試料室7においてはプラズマを引き出すため
の発散磁界を形成するようにしである。
As shown in Figure 1, microwave electron cyclotron resonance (r:cR) can promote film formation reactions by highly activated plasma and ion bombardment with moderate energy.
A highly hard solid lubricant film was formed using a CVD method using excited plasma. In FIG. 1, microwaves are guided into a plasma generation chamber 2 through a rectangular waveguide 1. In FIG. - The plasma generation chamber 2 satisfies the cavity resonator conditions. A magnetic coil 3 is arranged around the plasma generation chamber 2 to form a magnetic field that satisfies the ECR conditions inside the plasma generation chamber 2, and to form a diverging magnetic field in the sample chamber 7 for drawing out plasma. It is.

付属装置を用い、エチレンガス、シランガス、アルゴン
ガスを導入孔4および4′から導入し、エチレンガスと
シランガスの流量比を変化させて、試料5上に高硬度固
体潤滑膜を形成した1図における6は冷却水の注入孔で
ある。
Using the attached equipment, ethylene gas, silane gas, and argon gas were introduced through the introduction holes 4 and 4', and the flow rate ratio of ethylene gas and silane gas was changed to form a high-hardness solid lubricant film on sample 5. 6 is a cooling water injection hole.

上記方法により形成した高硬度固体潤滑膜について、S
IMS、IR1昇温脱離分析法(TDS; Therm
al Desorption 5pectroscop
y)で検討した。その結果から、エチレンガスとシラン
ガスとの混合比を変えることにより5i−Cの比率が異
なる膜が形成されることを確認したが、膜中には水素が
C−HX、 S i −Ifyとして含まれており、こ
れらの比率もエチレンガスとシランガスの比率に対応す
ることが明らかになった。
Regarding the high hardness solid lubricant film formed by the above method, S
IMS, IR1 Temperature Programmed Desorption Spectrometry (TDS; Therm
al Desorption 5pectroscope
y) was considered. The results confirmed that films with different 5i-C ratios were formed by changing the mixing ratio of ethylene gas and silane gas, but hydrogen was contained in the film as C-HX and Si-Ify. It was revealed that these ratios also correspond to the ratios of ethylene gas and silane gas.

結晶性については、X線回折、ラマンスペクトルで検討
したが、非晶質に近い構造であった。
The crystallinity was examined using X-ray diffraction and Raman spectroscopy, and the structure was close to amorphous.

つぎに摩擦試験を行った。高硬度固体潤滑膜を形成した
試験片を真空容器外部から周揺動させ、それにステンレ
ス鋼球圧子を押付は摩擦させた。、試験片の下地材料に
はメカノケミカルボリジング仕上げしたシリコンウェハ
5i(100)面を使用した。高硬度固体潤滑膜形成後
アルミニウムの台金に接着し、摩擦実験を行った。
Next, a friction test was conducted. A test piece on which a high-hardness solid lubricant film was formed was oscillated from outside the vacuum chamber, and a stainless steel ball indenter was pressed against it to create friction. A silicon wafer 5i (100) surface finished with mechanochemical boriding was used as the base material of the test piece. After forming a high-hardness solid lubricant film, it was adhered to an aluminum base and a friction experiment was conducted.

シランガスとエチレンガスの流量比を変化させて形成し
た高硬度固体潤滑1漠の摩擦特性を第2図に示す、Si
H,/CH,の比率が1.33より大きい場合には摩擦
係数が0.2以上になっている。上記の場合に対しSi
H4/CFI4の比率が0.11〜0.66の場合には
、摩擦係数はO,OS程度と非常に小さな値を示してい
る。上記値はSiH4がOの点、すなわちダイアモンド
ライクカーボンの摩擦係数μ=0.15に較べても小さ
な値を示している。また、焼鈍によって摩擦係数は減少
する傾向を示している。
Figure 2 shows the friction characteristics of a high-hardness solid lubricant formed by changing the flow rate ratio of silane gas and ethylene gas.
When the ratio of H, /CH, is greater than 1.33, the friction coefficient is 0.2 or more. For the above case, Si
When the ratio of H4/CFI4 is 0.11 to 0.66, the coefficient of friction shows a very small value of about O and OS. The above value is smaller than the point where SiH4 is O, that is, the friction coefficient μ=0.15 of diamond-like carbon. Furthermore, the friction coefficient tends to decrease with annealing.

第3図はSiH4とC2H4の流量比に対する摩擦寿命
の変化を示した図である。ここで摩擦寿命は摩擦係数μ
=0.3以上になった時までの摩擦回数で定義した。S
 i H4/ Cz I−14の比率が0.25〜0.
44の範囲内では、摩擦寿命は105回以上になってい
る。これに対しシランガスの流量が小さいSiH4/C
,Il、=0.1以下になると、摩擦寿命の変動が大き
く焼鈍しない場合には比較的小さい回数で高摩擦係数に
なった。また、エチレンだけを流した場合にも摩擦寿命
は小さい値を示す、これに対し。
FIG. 3 is a diagram showing the change in friction life with respect to the flow rate ratio of SiH4 and C2H4. Here, the friction life is the friction coefficient μ
It was defined as the number of frictions until it reached = 0.3 or more. S
i H4/Cz I-14 ratio is 0.25 to 0.
Within the range of 44, the friction life is 105 times or more. On the other hand, SiH4/C has a small flow rate of silane gas.
, Il, = 0.1 or less, the friction life fluctuated greatly and in the case of no annealing, a high friction coefficient was achieved with a relatively small number of cycles. In contrast, the friction life shows a small value even when only ethylene is flowed.

S I H4/ Cz H4が大きい場合にも摩擦寿命
は小さな値を示している。また、焼鈍によって摩擦寿命
は増大する傾向を示している。
Even when S I H4/Cz H4 is large, the friction life shows a small value. Furthermore, the friction life tends to increase with annealing.

第4図は本発明による高硬度固体潤滑膜の摩擦特性を示
す、(a)は大気中における結果であるが、S x )
i 4/ CH4の流量比が2/9の時は、最初摩擦係
数μ=0.25程度であるが徐々に減少し、μ=0.1
2〜0.25程度になり、 10”サイクル以上ではμ
=0.05〜0.08程度の値を示しており、摩擦係数
の値は小さい。さらlOsサイクルを越えるとμは急増
する。焼鈍した場合には、10〜40回で少し低摩擦係
数を示すが、寿命的にはほぼ同じになる。
Figure 4 shows the friction characteristics of the high hardness solid lubricant film according to the present invention, (a) is the result in the atmosphere, S x )
When the flow rate ratio of i4/CH4 is 2/9, the friction coefficient μ = 0.25 at first, but gradually decreases to μ = 0.1.
It becomes about 2 to 0.25, and for more than 10” cycles, μ
= approximately 0.05 to 0.08, and the value of the friction coefficient is small. Beyond 1Os cycles, μ increases rapidly. When annealed, the coefficient of friction is slightly lower after 10 to 40 times, but the lifespan is almost the same.

真空中の摩擦特性は、(b)に示すように、焼鈍した場
合の方が長寿命を示している。摩擦係数は12回目まで
は徐々に減少している。特に11〜300回程度で摩擦
係数μ=0.旧と非常に小さい値を示している。そして
300回目からμ=0.6程度に急増している。ここで
μ=0.01という値は、二硫化タングステン、二硫化
モリブデン膜に較べても低摩擦係数である。これに対し
てS iH4の比率が大きくなってくると、真空中の低
摩擦という現象は見られず、摩擦係数は急増している。
As shown in (b), the friction characteristics in vacuum show that the annealed material has a longer life. The friction coefficient gradually decreases until the 12th time. In particular, the friction coefficient μ = 0 for about 11 to 300 times. Old and showing very small values. Then, from the 300th time onward, the value rapidly increases to about μ=0.6. Here, the value μ=0.01 indicates a low coefficient of friction compared to tungsten disulfide and molybdenum disulfide films. On the other hand, as the ratio of SiH4 increases, the phenomenon of low friction in vacuum is no longer observed, and the friction coefficient rapidly increases.

これらの結果から、適切な混合比を用いると真空中で低
摩擦係数を示すと考えられる。
From these results, it is believed that using an appropriate mixing ratio will exhibit a low coefficient of friction in vacuum.

また、摩擦係数が急増したときの摩擦片の顕微鏡写真に
よると、炭素が多い膜では摩擦係数が増大したときに大
きな損傷を受けている。すなわち、膜に潤滑性があり、
その潤滑性がなくなった時摩擦係数が増大することを示
している。これに対しSLが多い膜では、膜が表面に存
在するのに高摩擦係数を示している。適切な流量比で形
成した膜は耐摩耗性があり、潤滑性がある膜が得られる
Furthermore, micrographs of the friction piece when the coefficient of friction increases rapidly show that the carbon-rich film suffers significant damage when the coefficient of friction increases. In other words, the film has lubricating properties,
This shows that the coefficient of friction increases when the lubricity is lost. On the other hand, a film with a large amount of SL exhibits a high coefficient of friction even though the film is present on the surface. A film formed at an appropriate flow rate has wear resistance and lubricity.

上記の結果から、シランガスと炭化水素ガスとの流量比
を0.2〜0.7にすると所望の高硬度固体潤滑膜が得
られるが、摩擦寿命を重視すば、上記流量比を0.2〜
0.5の範囲とすることが好ましい。また、本発明によ
る硬質カーボン膜の形成方法において、当初シランガス
の流量を大きくし膜中のシリコン濃度を大きくとり、そ
の後、炭化水素ガスの流量を増大させるというように、
シリコンの濃度を適切な条件に分布させれば、非常に下
地の固体表面との接着性がよく、潤滑性にすぐれた膜を
得ろことができる。上記のように潤滑膜の形成工程で条
件を変化させて、目的に応じた高硬度固体潤滑膜が形成
できる。すなわち、シリコンを混入することにより摩擦
係数が低下し、潤滑性を増し、シリコン濃度が高くなる
につれて固体表面との接着性がよい高硬度固体潤滑膜を
得ることができる。
From the above results, the desired high hardness solid lubricant film can be obtained by setting the flow rate ratio of silane gas and hydrocarbon gas to 0.2 to 0.7, but if the friction life is emphasized, the above flow rate ratio should be set to 0.2 to 0.7. ~
It is preferable to set it in the range of 0.5. Further, in the method for forming a hard carbon film according to the present invention, the flow rate of silane gas is initially increased to increase the silicon concentration in the film, and then the flow rate of hydrocarbon gas is increased.
By distributing the silicon concentration under appropriate conditions, it is possible to obtain a film that has excellent adhesion to the underlying solid surface and excellent lubricity. By changing the conditions in the lubricant film forming process as described above, a highly hard solid lubricant film can be formed depending on the purpose. That is, by incorporating silicon, the coefficient of friction is reduced and the lubricity is increased, and as the silicon concentration increases, it is possible to obtain a highly hard solid lubricant film that has better adhesion to the solid surface.

さらに固体潤滑作用を付与するためには、上記条件で形
成した潤滑膜上に、二硫化モリブデン、二硫化タングス
テン、ふっ化黒釦等の固体d′4滑膜を形成すると、そ
の効果はさらに大きくなる。
In order to further impart a solid lubricating effect, the effect will be even greater if a solid d'4 synovial film of molybdenum disulfide, tungsten disulfide, black button fluoride, etc. is formed on the lubricating film formed under the above conditions. Become.

上記実施例ではエチレンガスの場合について記したが、
 C1I4. C,H,、C2II2等のメタン系。
In the above example, the case of ethylene gas was described, but
C1I4. Methanes such as C, H, and C2II2.

エチレン系、アセチレン系の炭化水素、またはCF4.
 C,FG、 C,F、等のふっ化炭素、ふっ化炭化水
素ガスとシランガスおよびアルゴユノガスの混合ガスを
導入し薄膜を形成すれば、同様の効果が得られる。ふっ
化炭素ガスを用いる場合は、プラズマ中に置いて加速電
圧が作用する条件でエツチングが生じやすい。この場合
には極表面だけがふっ素化される。したがって、最初炭
化水素系のガスを主成分に用いて炭素系の膜を形成し、
その後、ふっ化炭素ガスでプラズマ処理することにより
、極表層部だけはう水性を持たせることが可能である。
Ethylene-based, acetylene-based hydrocarbons, or CF4.
A similar effect can be obtained by forming a thin film by introducing a mixed gas of fluorinated carbon such as C, FG, C, F, etc., fluorinated hydrocarbon gas, silane gas, and Argon gas. When using fluorocarbon gas, etching tends to occur under conditions where it is placed in plasma and an accelerating voltage is applied. In this case, only the extreme surface is fluorinated. Therefore, first, a carbon-based film is formed using a hydrocarbon-based gas as the main component.
Thereafter, by plasma treatment with fluorocarbon gas, it is possible to make only the extreme surface layer water-repellent.

さらに上記実施例の装置のように、試料がプラズマ外に
ありイオンの加速エネルギーが小さい場合には、ふっ素
を含有した炭素膜が堆積される。この場合にはふっ素化
された1模が得られ、上記膜ははっ水性を有している。
Furthermore, when the sample is outside the plasma and the acceleration energy of ions is small, as in the apparatus of the above embodiment, a carbon film containing fluorine is deposited. In this case, a fluorinated membrane is obtained, and the membrane has water repellency.

さらに下地固体近くのシリコン濃度を大きくすれば、下
地固体との付着性がよい高硬度固体潤滑1漠を得る、二
とができる。
Furthermore, by increasing the silicon concentration near the underlying solid, it is possible to obtain a high hardness solid lubricant with good adhesion to the underlying solid.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による高硬度固体潤滑膜およびその
形成方法は、固体表面に形成する高硬度で耐摩耗性を有
する高硬度固体潤滑膜およびその形成方法において、シ
ランガスと炭化水素ガスまたはふっ化炭素ガスとを導入
して行うプラズマCvDまたは減圧CVDを用い、上記
シランガスと炭化水素ガスまたはふっ化炭素ガスの流量
比を0.2〜0.7とし、固体表面にシリコンが含まれ
た硬質カーボンの潤滑膜を形成することにより、硬質カ
ーボン中に適当な濃度のシリコンを含まれるため摩擦係
数が低く、かつ潤滑性を有し、さらにシリコン濃度が高
い固体との接触面では上記固体との接着力が大きい、ま
た、潤滑性を有するので摩擦寿命が大きく長期的に安定
した摩擦特性が得られる。したがって、軸受、モータ、
シール、バルブ、ねじ、しゅう勧業内面、ジヨイント、
ベーン。
As described above, the high hardness solid lubricant film and the method for forming the same according to the present invention are characterized in that the high hardness solid lubricant film having high hardness and wear resistance is formed on a solid surface and the method for forming the same includes silane gas and hydrocarbon gas or fluoride gas. Using plasma CVD or low pressure CVD performed by introducing carbon gas, the flow rate ratio of the silane gas and hydrocarbon gas or fluorocarbon gas is set to 0.2 to 0.7, and hard carbon containing silicon on the solid surface is produced. By forming a lubricating film, the hard carbon contains an appropriate concentration of silicon, so it has a low coefficient of friction and lubricity, and furthermore, on the contact surface with solids with a high silicon concentration, it will not adhere to the solids mentioned above. It has a large force and has lubricating properties, so it has a long friction life and provides stable friction characteristics over a long period of time. Therefore, bearings, motors,
Seals, valves, screws, internal surfaces of the sliding industry, joints,
Vane.

チェーン等の機構部品に適用すれば、長期信頼性があり
精度劣化が小さい部品が得られる。さらに。
If applied to mechanical parts such as chains, parts with long-term reliability and little deterioration in precision can be obtained. moreover.

下地固体との接着力、硬度が大きく、潤滑性を有するこ
とを活用すれば、切削工具等の工具への適用も可能であ
り、加工性、寿命等に与える効果は大きい。また耐摩耗
性があり潤滑性があることがら、磁気ディスク、磁気ヘ
ッド等の記憶装置に適用すれば、耐クラツシユ性、耐摩
耗性が著しく増大するなどの効果を有する。
By taking advantage of its strong adhesion to the underlying solid, its high hardness, and its lubricity, it can be applied to tools such as cutting tools, and has great effects on workability, service life, etc. Furthermore, since it has wear resistance and lubricity, when applied to storage devices such as magnetic disks and magnetic heads, it has the effect of significantly increasing crush resistance and wear resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による高硬度固体潤滑膜の形成方法の一
実施例を示す構成図、第2図はシランガスとエチレンガ
スの流量比を変えた時の高硬度固体潤滑膜の摩擦特性を
示す図、第3図はシランガスとエチレンガスの流量比を
変えた時の摩擦寿命の変化を示す図、第4図は本発明に
よる高硬度固体潤滑膜の摩擦特性を示す図である。 ■・・・矩形導波管    2・・・プラズマ生成室3
・・・磁気コイル 4.4′・・シランガス、エチレンガス導入孔5・・・
試料       7・・・試料室τ・1 図
Fig. 1 is a block diagram showing an example of the method for forming a high hardness solid lubricant film according to the present invention, and Fig. 2 shows the frictional characteristics of the high hardness solid lubricant film when the flow rate ratio of silane gas and ethylene gas is changed. 3 is a diagram showing the change in friction life when the flow rate ratio of silane gas and ethylene gas is changed, and FIG. 4 is a diagram showing the friction characteristics of the high hardness solid lubricant film according to the present invention. ■...Rectangular waveguide 2...Plasma generation chamber 3
...Magnetic coil 4.4'...Silane gas, ethylene gas introduction hole 5...
Sample 7...Sample chamber τ・1 Figure

Claims (1)

【特許請求の範囲】 1、固体表面に形成する高硬度で耐摩耗性を有する高硬
度固体潤滑膜において、上記潤滑膜を形成する硬質カー
ボンに、該カーボンの濃度より低い濃度のシリコンを含
むことを特徴とする高硬度固体潤滑膜。 2、上記シリコンは、固体と接する面で濃度が高く、表
面で濃度が低いことを特徴とする特許請求の範囲第1項
に記載した高硬度固体潤滑膜。 3、固体表面に形成する高硬度で耐摩耗性を有する高硬
度固体潤滑膜において、シランガスと炭化水素ガスまた
はふっ化炭素ガスとを導入して行うプラズマCVDまた
は減圧CVDを用い、上記シランガスと炭化水素ガスま
たはふっ化炭素ガスの流量比を0.2〜0.7とし、固
体表面にシリコンが含まれた硬質カーボンの潤滑膜を形
成することを特徴とする高硬度固体潤滑膜の形成方法。 4、上記流量比は、当初シランガスの流量比を高くし、
順次シランガスの流量比を低くするとともに炭化水素ま
たはふっ化炭素ガスの流量比を順次高くし、シリコン濃
度が固体と接する側で高くすることを特徴とする特許請
求の範囲第3項に記載した高硬度固体潤滑膜の形成方法
[Claims] 1. In a high-hardness solid lubricant film having high hardness and wear resistance formed on a solid surface, the hard carbon forming the lubricant film contains silicon at a concentration lower than that of the carbon. A high-hardness solid lubricant film featuring 2. The high hardness solid lubricant film as set forth in claim 1, wherein the silicon has a high concentration on the surface in contact with the solid and a low concentration on the surface. 3. In a high-hardness solid lubricant film having high hardness and wear resistance to be formed on a solid surface, carbonization with the silane gas is performed using plasma CVD or low pressure CVD, which is performed by introducing silane gas and hydrocarbon gas or fluorocarbon gas. A method for forming a highly hard solid lubricant film, which comprises forming a silicon-containing hard carbon lubricant film on a solid surface by setting the flow rate ratio of hydrogen gas or fluorocarbon gas to 0.2 to 0.7. 4. The above flow rate ratio initially increases the flow rate ratio of silane gas,
The method according to claim 3, characterized in that the flow rate ratio of silane gas is sequentially lowered and the flow rate ratio of hydrocarbon or fluorocarbon gas is sequentially increased, so that the silicon concentration is increased on the side in contact with the solid. Method for forming hard solid lubricant film.
JP7822086A 1986-04-07 1986-04-07 Solid lubricant film having high hardness and formation thereof Pending JPS62235393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7822086A JPS62235393A (en) 1986-04-07 1986-04-07 Solid lubricant film having high hardness and formation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7822086A JPS62235393A (en) 1986-04-07 1986-04-07 Solid lubricant film having high hardness and formation thereof

Publications (1)

Publication Number Publication Date
JPS62235393A true JPS62235393A (en) 1987-10-15

Family

ID=13655966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7822086A Pending JPS62235393A (en) 1986-04-07 1986-04-07 Solid lubricant film having high hardness and formation thereof

Country Status (1)

Country Link
JP (1) JPS62235393A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2228949A (en) * 1989-02-15 1990-09-12 Kobe Steel Ltd Silicon doped diamond films
US5275850A (en) * 1988-04-20 1994-01-04 Hitachi, Ltd. Process for producing a magnetic disk having a metal containing hard carbon coating by plasma chemical vapor deposition under a negative self bias
GB2486778A (en) * 2010-12-23 2012-06-27 Element Six Ltd A method of making a doped diamond by CVD and doped diamonds made by CVD
US8859058B2 (en) 2010-12-23 2014-10-14 Element Six Limited Microwave plasma reactors and substrates for synthetic diamond manufacture
US8955456B2 (en) 2010-12-23 2015-02-17 Element Six Limited Microwave plasma reactor for manufacturing synthetic diamond material
US9142389B2 (en) 2010-12-23 2015-09-22 Element Six Technologies Limited Microwave power delivery system for plasma reactors
US9410242B2 (en) 2010-12-23 2016-08-09 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material
US10403477B2 (en) 2010-12-23 2019-09-03 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material
US11371147B2 (en) 2010-12-23 2022-06-28 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275850A (en) * 1988-04-20 1994-01-04 Hitachi, Ltd. Process for producing a magnetic disk having a metal containing hard carbon coating by plasma chemical vapor deposition under a negative self bias
GB2228949A (en) * 1989-02-15 1990-09-12 Kobe Steel Ltd Silicon doped diamond films
GB2228949B (en) * 1989-02-15 1993-06-30 Kobe Steel Ltd Method for forming n-type semiconducting diamond films by vapor phase techniques
US8955456B2 (en) 2010-12-23 2015-02-17 Element Six Limited Microwave plasma reactor for manufacturing synthetic diamond material
GB2486778B (en) * 2010-12-23 2013-10-23 Element Six Ltd Controlling doping of synthetic diamond material
US8859058B2 (en) 2010-12-23 2014-10-14 Element Six Limited Microwave plasma reactors and substrates for synthetic diamond manufacture
GB2486778A (en) * 2010-12-23 2012-06-27 Element Six Ltd A method of making a doped diamond by CVD and doped diamonds made by CVD
US9142389B2 (en) 2010-12-23 2015-09-22 Element Six Technologies Limited Microwave power delivery system for plasma reactors
US9410242B2 (en) 2010-12-23 2016-08-09 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material
US9637838B2 (en) 2010-12-23 2017-05-02 Element Six Limited Methods of manufacturing synthetic diamond material by microwave plasma enhanced chemical vapor deposition from a microwave generator and gas inlet(s) disposed opposite the growth surface area
US9738970B2 (en) 2010-12-23 2017-08-22 Element Six Limited Microwave plasma reactors and substrates for synthetic diamond manufacture
US10403477B2 (en) 2010-12-23 2019-09-03 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material
US11371147B2 (en) 2010-12-23 2022-06-28 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material
US11488805B2 (en) 2010-12-23 2022-11-01 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material

Similar Documents

Publication Publication Date Title
US7833626B2 (en) Amorphous carbon film, process for forming the same, and high wear-resistant sliding member with amorphous carbon film provided
Bhushan Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments
Auciello et al. Review on advances in microcrystalline, nanocrystalline and ultrananocrystalline diamond films-based micro/nano-electromechanical systems technologies
US7771823B2 (en) Diamond films and methods of making diamond films
Jacobsohn et al. Structural and mechanical characterization of fluorinated amorphous-carbon films deposited by plasma decomposition of CF 4–CH 4 gas mixtures
EP2625307B1 (en) Wear resistant article
Grill et al. Novel low k dielectrics based on diamondlike carbon materials
US7629031B2 (en) Plasma enhanced bonding for improving adhesion and corrosion resistance of deposited films
US20060127300A1 (en) Method to grow carbon thin films consisting entirely of diamond grains 3-5 nm in size and high-energy grain boundaries
KR980009936A (en) Members, compressors and rotary compressors with sliding contacts
EP0321557A1 (en) Process for the deposition of diamond films
JPS62235393A (en) Solid lubricant film having high hardness and formation thereof
WO2020086344A1 (en) Method for forming molybdenum films on a substrate
Miyake Tribological properties of hard carbon films: extremely low friction mechanism of amorphous hydrogenated carbon films and amorphous hydrogenated SiC films in vacuum
Lu et al. Microstructure and nanomechanical properties of nitrogenated amorphous carbon thin films synthesized by reactive radio frequency sputtering
US5279866A (en) Process for depositing wear-resistant coatings
JP3791060B2 (en) Method for forming diamond-like carbon film on rubber and resin
JP2009035584A (en) Sliding member
JP2006342364A (en) Method for surface-treating carrier member for machining semiconductor, and surface-treated article
WO2012153819A1 (en) Carbon film laminate, method of manufacturing said laminate, and lubricant using said laminate
Ratway et al. Surface modification of chlorobutyl rubber by plasma polymerization
CN113265641B (en) Hydrophobic antifriction self-lubricating carbon film based on low-temperature glow plasma and preparation method thereof
Jaggernauth et al. Interfacial integrity enhancement of atomic layer deposited alumina on boron doped diamond by surface plasma functionalization
JPS6130671A (en) Hard carbon film
JPH0610135A (en) Production of carbon film