JPS62233692A - Support structure of thermal shield plate for thermal shock prevention - Google Patents

Support structure of thermal shield plate for thermal shock prevention

Info

Publication number
JPS62233692A
JPS62233692A JP61075469A JP7546986A JPS62233692A JP S62233692 A JPS62233692 A JP S62233692A JP 61075469 A JP61075469 A JP 61075469A JP 7546986 A JP7546986 A JP 7546986A JP S62233692 A JPS62233692 A JP S62233692A
Authority
JP
Japan
Prior art keywords
circumferential surface
shield plate
annular spacer
gap
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61075469A
Other languages
Japanese (ja)
Other versions
JPH0565793B2 (en
Inventor
Tomio Oe
大江 富男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61075469A priority Critical patent/JPS62233692A/en
Publication of JPS62233692A publication Critical patent/JPS62233692A/en
Publication of JPH0565793B2 publication Critical patent/JPH0565793B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE:To attempt abating thermal shock at a structure section of a larger wall thickness in a flow channel wall by mounting a thermal shield plate to the structure section of a larger wall thickness in a flow channel wall through an annular spacer and making a gap between the flow channel wall and the thermal shield plate a nonfluid area. CONSTITUTION:On the inner circumferential face of a structure section P of a large wall thickness in a flow channel wall 1 a thermal shield plate 9 is arranged to provide a gap S between the inner face of the wall and the plate 9 in order to abate heat shock due to high temperature fluid at the large wall thickness section. Annular spacers 20 are provided near the ends 30 and 31 of the upper and lower openings of the gap S respectively, and their inner and outer circumferential faces contact in metal touch with the outer circumferen tial face of the thermal shield plate and the outer circumferential face of the thermal shield board 9 and the outer circumferential face of the structure section of a large wall thickness, and the shield plate 9 is fixed to the outer cylinder by metal supports. High temperature fluid flowing through a high temperature fluid channel 3 is, therefore, prohibited to flow into the gap S by means of the spacers 20, and the gap becomes a nonfluid area, or a thermal shock buffer layer. Accordingly the temperature difference between the inner and outer walls a the large wall thickness section P becomes very small and stresses due to thermal shock are sufficiently abated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱衝撃防止用熱遮蔽板の支持構造に係り、特
に熱交換器等の高温流体流路の流体温度が変化した時に
生じる熱衝撃を緩和する熱遮蔽板の支持構造に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a support structure for a thermal shielding plate for preventing thermal shock, and in particular to a support structure for a thermal shielding plate for preventing thermal shock. The present invention relates to a support structure for a heat shield plate that cushions impact.

〔従来の技術〕[Conventional technology]

第4図ないし第6図に基づき従来の熱遮蔽板の支持構造
の一例を説明する。
An example of a conventional support structure for a heat shield plate will be explained based on FIGS. 4 to 6.

第4図は原子カプラントに用いる縦形シェルアンドチュ
ーブ方式熱交換器(中間熱交換器)の−例を示すもので
あり、図中、1は熱交換器の外胴。
FIG. 4 shows an example of a vertical shell-and-tube heat exchanger (intermediate heat exchanger) used in an atomic couplant, and in the figure, 1 is the outer shell of the heat exchanger.

2は1次流体人口ノズル、3は1次流体流路、4は熱交
換用伝熱管束5を収容する熱交換部、6は1次流体出口
、7は2次流体供給管、8は2次流体出口であり、1次
流体(1次冷却材)は熱交換部4内で熱交換された後に
1次流体出口6から流出する。このような熱交換器にお
いては、1次流体等の急激な温度変化によって内部熱過
渡現象が生じると、外周]の肉厚が増大する厚肉構造部
P(構造不連続部)の外壁温度と内壁温度に温度差が生
じ、厚肉構造部Pに熱衝撃応力が発生し、特に熱伝導度
の高い液体ナトリウムを使用する高速増殖炉の熱交換器
等においては、大きな熱衝撃応力が生じ易かった。そこ
で、熱交換器の厚肉構造部Pの内壁部には、従来より熱
遮蔽板9を取付けて熱衝撃応力を軽減する等している。
2 is a primary fluid artificial nozzle, 3 is a primary fluid flow path, 4 is a heat exchange section that accommodates a heat exchanger tube bundle 5, 6 is a primary fluid outlet, 7 is a secondary fluid supply pipe, 8 is 2 This is a secondary fluid outlet, and the primary fluid (primary coolant) flows out from the primary fluid outlet 6 after being heat exchanged in the heat exchange section 4 . In such a heat exchanger, when an internal thermal transient phenomenon occurs due to a rapid temperature change in the primary fluid, etc., the outer wall temperature of the thick structure part P (structural discontinuity part) where the wall thickness at the outer periphery increases and A temperature difference occurs in the inner wall temperature, and thermal shock stress occurs in the thick wall structure P. In particular, large thermal shock stress is likely to occur in the heat exchanger of a fast breeder reactor that uses liquid sodium, which has high thermal conductivity. Ta. Therefore, a heat shielding plate 9 is conventionally attached to the inner wall of the thick structure part P of the heat exchanger to reduce thermal shock stress.

なお、熱遮蔽板の従来の取付例としては、第4図に示す
如き外用内壁上部に取付けるものの他に、特開昭55−
36631号公報に示すような流体ノズル内壁に取付け
たものがあり、種々の厚肉構造箇所に熱遮蔽板が取付け
られている。
In addition to the conventional mounting example of the heat shield plate on the upper part of the external inner wall as shown in FIG.
There is one that is attached to the inner wall of a fluid nozzle as shown in Japanese Patent No. 36631, and heat shield plates are attached to various thick-walled structures.

第5図は、この種熱遮蔽板の従来の支持構造を示す部分
拡大断面図、第6図は第5図のD方向から見た矢視図で
あり、これらの図面に示すように。
FIG. 5 is a partially enlarged sectional view showing a conventional support structure for this type of heat shielding plate, and FIG. 6 is a view taken from the direction of arrow D in FIG. 5, as shown in these drawings.

従来は外胴1の内周面1aに円盤状の支持金具(スペー
サ)10をすみ肉溶接(周溶接)13により取付け、且
つ支持金具10を外胴内周面1aの周方向に多数配置し
、この支持金具10の突出部11に筒状の熱遮蔽板9を
組込み、熱遮蔽板9から貫通した突出部11に押え板1
2を嵌入固定することにより熱遮蔽板9を取付けていた
Conventionally, a disk-shaped support fitting (spacer) 10 is attached to the inner circumferential surface 1a of the outer shell 1 by fillet welding (circumferential welding) 13, and a large number of support fittings 10 are arranged in the circumferential direction of the outer shell inner circumferential surface 1a. , a cylindrical heat shielding plate 9 is assembled into the protrusion 11 of the support fitting 10, and a presser plate 1 is attached to the protrusion 11 penetrating from the heat shielding plate 9.
The heat shield plate 9 was attached by fitting and fixing the heat shield plate 2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような熱遮蔽板の支持構造においては、次のような
改善すべき問題を有していた。
Such a support structure for a heat shield plate has the following problems that should be improved.

すなわち、従来は熱遮蔽板9の支持金具1oの本体10
F+を円盤状に形成してすみ肉溶接13を施すため、外
WR1と金具本体10aとの間に未溶着部分が発生する
が、このような未溶着部分が残された状態で、流路3内
の流体温度が急激に変化すると、金具本体Ionにおけ
る外J511内周面に接触する而aと熱遮蔽板9外周面
に接触する面すとに内部温度差が生じ、この温度差の影
響を受けて金具本体10aに熱変形(たわみ)が発生し
That is, conventionally, the main body 10 of the support fitting 1o of the heat shielding plate 9
Since the F+ is formed into a disk shape and the fillet weld 13 is applied, an unwelded part occurs between the outer WR 1 and the metal fitting main body 10a. When the internal fluid temperature changes rapidly, an internal temperature difference will occur between the surface of the fitting body Ion that contacts the inner circumferential surface of the outer J511 and the surface that contacts the outer circumferential surface of the heat shield plate 9. As a result, thermal deformation (deflection) occurs in the metal fitting main body 10a.

溶接部13に過大な熱荷重が負荷され、溶接部13の機
能を損い、ひいては熱遮蔽板を支持する機能に不具合が
生じるおそれがあった。また、熱遮蔽板の支持金具10
は外胴1の内周面に周方向に間隙を置いて配設されてい
るため、第5図及び第6図の矢印Xに示すように、流路
3を通過する流体の一部が、外胴1の内周面1aと熱遮
蔽板9の外周面9aとの間の間隙Sに流れ込み1間隙部
に流動領域が生じていた。このため、熱遮蔽板9の本来
の機能が損われ、急激な内部熱過渡が発生した場合1こ
は、厚内構造部Pの温度追従性が伴わず熱衝撃緩和を充
分に図り得ないこともあった。
There was a risk that an excessive thermal load would be applied to the welded part 13, impairing the function of the welded part 13, and eventually causing a problem in the function of supporting the heat shield plate. In addition, the support metal fitting 10 of the heat shield plate
are arranged on the inner circumferential surface of the outer shell 1 with a gap in the circumferential direction, so that part of the fluid passing through the flow path 3, as shown by the arrow X in FIGS. 5 and 6, It flowed into the gap S between the inner circumferential surface 1a of the outer shell 1 and the outer circumferential surface 9a of the heat shielding plate 9, and a flow region was generated in the gap. Therefore, in the event that the original function of the heat shield plate 9 is impaired and a sudden internal thermal transient occurs, the thermal shock cannot be sufficiently alleviated due to the lack of temperature followability of the thick internal structure P. There was also.

本発明は、以上の点に鑑みてなされたものであり、その
目的とするところは、熱遮蔽板を支持する支持部材の健
全性を確保すると共に、熱衝撃緩和を充分に図り得る信
頼性の高い熱遮蔽板の支持構造を提供することにある。
The present invention has been made in view of the above points, and its purpose is to ensure the soundness of a support member that supports a heat shield plate, and to provide reliability that can sufficiently alleviate thermal shock. The object of the present invention is to provide a support structure for a high heat shielding plate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、高温流体流路の
厚肉構造部と熱遮蔽板との間に介在するスペーサを環状
に形成し、この環状スペーサを前記高温流体流路の流路
壁内周面と前記熱遮蔽板の外周面との間の間隙部の開口
両端側に夫々配設し、且つ、この環状スペーサの外周面
を前記厚肉構造部の内周面に、この環状スペーサの内周
面を前記熱遮蔽板の外周面に接触させて、前記厚肉構造
部と前記熱遮蔽板の間の間隙部に前記高温流体流路の流
体が流れ込むのを遮断して、この間隙部を非流動領域に
すると共に、前記流路壁の内周面における前4d環状ス
ペーサの設置位置には、完全溶造開先を有する支持金具
を溶接して周方向に複数配設し、該支持金具を前記環状
スペーサに設けた挿通孔から突出させて、この突出した
部分に前記熱遮蔽板を貫通固着することにより、熱該遮
蔽板を支持してなるものである。
In order to achieve the above object, the present invention forms an annular spacer interposed between a thick-walled structure of a high-temperature fluid flow path and a heat shielding plate; The annular spacer is disposed at both ends of the opening of the gap between the inner circumferential surface of the wall and the outer circumferential surface of the heat shielding plate, and the outer circumferential surface of the annular spacer is placed on the inner circumferential surface of the thick structure. The inner circumferential surface of the spacer is brought into contact with the outer circumferential surface of the heat shielding plate to block the fluid in the high temperature fluid flow path from flowing into the gap between the thick structure part and the heat shielding plate, and the gap is A plurality of support fittings having a completely welded groove are welded to the installation position of the front 4D annular spacer on the inner circumferential surface of the channel wall and arranged in the circumferential direction to make the support metal a non-flow area. The heat shielding plate is supported by making a metal fitting protrude from an insertion hole provided in the annular spacer and fixing the heat shielding plate through the protruding portion.

〔作用〕[Effect]

このような構成よりなる本発明によれば、流路壁の内周
面と熱遮蔽板の外周面との間に介在された環状スペーサ
が、厚肉構造部と熱遮蔽板との間の間隙部に流体が流れ
込むのを防止し、この間隙部が非流動領域となるので、
高温流体流路の流体がIヴ肉構造部の内周面に直接接触
することがなく。
According to the present invention having such a configuration, the annular spacer interposed between the inner circumferential surface of the channel wall and the outer circumferential surface of the heat shielding plate closes the gap between the thick structure and the heat shielding plate. This prevents fluid from flowing into the gap, and this gap becomes a non-flow area.
The fluid in the high-temperature fluid flow path does not come into direct contact with the inner circumferential surface of the IV wall structure.

その結果間隙部に熱緩衝作用が働き、高温流体の温度が
急激に変化した場合でも、厚肉構造部の外壁温度の内壁
温度の温度差が極めて小さくなり、厚肉構造部に生じる
熱衝撃を充分に緩和することができる。
As a result, a thermal buffering effect works in the gap, and even if the temperature of the high-temperature fluid changes rapidly, the temperature difference between the outer wall temperature and the inner wall temperature of the thick-walled structure becomes extremely small, reducing the thermal shock that occurs in the thick-walled structure. can be sufficiently relieved.

また、熱遮蔽板を支持する支持金具は、厚肉構造部の内
周面に完全溶造溶接により取付けであるため、この溶接
箇所に従来のような未溶着部が生じる余地がなくなり、
その結果、高温流体に湿度変化が生じても支持金具に熱
変形が生じる箇所がなくなるので、支持金具の溶接部に
過大な熱過重が負荷されるのを防止し、溶接部ひいては
支持金Jl、の健全性を確保することができろ。
In addition, since the support metal fittings that support the heat shield plate are attached to the inner circumferential surface of the thick-walled structure by complete welding, there is no room for unwelded parts to occur at these welded locations as in the past.
As a result, even if humidity changes occur in the high-temperature fluid, there will be no places where thermal deformation occurs in the support metal fittings, which prevents excessive thermal loads from being applied to the welded parts of the support metal parts, and by extension the support metal Jl. be able to ensure the soundness of

〔実施例〕〔Example〕

本発明の一実施例を第1図(a)、(b)ないし第3図
に基づき説明する。
An embodiment of the present invention will be explained based on FIGS. 1(a), 1(b) to 3. FIG.

第1図(a)は、本発明の熱遮蔽板支持構造の一実施例
を示す一部省略断面図、同図(b)は第1図(a)のA
部拡大断面図、第2図は第11刈(b)の正面方向(B
方向)がら見た一部省略正面図、第3図は第2図の上方
向(C方向)からみた一部切欠断面図である。
FIG. 1(a) is a partially omitted sectional view showing an embodiment of the heat shield plate support structure of the present invention, and FIG.
Figure 2 is an enlarged sectional view of the 11th cut (b) in the front direction (B
FIG. 3 is a partially cutaway sectional view seen from above (direction C) in FIG. 2.

先ず、第1図(a)に基づき本実施例の熱遮蔽板支持構
造の概要を説明する。なお、図中、既述した第4図ない
し第6図の従来例と同一符号は同一部分を示すものであ
る。すなわち、1は原子カプラントに用いる中rIrJ
熱交換器の外胴、3は中間熱交換器の外J屑1の内MJ
而IINに沿って形成された1次冷却材(液体ナトリウ
ム)の流路、9は1次流体流路3のJ’X肉構造部Pの
内周面に取付けた熱wI撃防止用の熱遮蔽板であり、熱
遮蔽板9は筒状の薄形金属板により形成され、後述する
環状スペーサ20を介在しつつ取付部材21により外胴
]の内周面にそって外胴壁の厚肉構造部Pに取付けられ
ている。
First, the outline of the heat shield plate support structure of this embodiment will be explained based on FIG. 1(a). In the drawings, the same reference numerals as in the conventional example shown in FIGS. 4 to 6 indicate the same parts. That is, 1 is the medium rIrJ used for the atomic couplant.
The outer shell of the heat exchanger, 3 is the inner MJ of the outer J scrap 1 of the intermediate heat exchanger.
The flow path for the primary coolant (liquid sodium) is formed along IIN, and 9 is a heat-proofing heat source installed on the inner peripheral surface of the J'X flesh structure P of the primary fluid flow path 3. The heat shielding plate 9 is a shielding plate, and the heat shielding plate 9 is formed of a cylindrical thin metal plate, and is attached to the thick wall of the outer shell along the inner circumferential surface of the outer shell by a mounting member 21 with an annular spacer 20 (described later) interposed therebetween. It is attached to the structural part P.

環状スペーサ20は、厚肉構造部Pの内周面1aと熱遮
蔽板9の外周面9aとの間に間隙部Sを形成するもので
、間隙Sの上下の開口端30゜31寄りに夫々配置され
、各環状スペーサ2oは、その外周面が外胴1の内周面
1aにメタルタッチで接触し、他方、その内周面が熱遮
蔽板9の外周面9aにメタルタッチで接触するようにし
である。
The annular spacer 20 forms a gap S between the inner circumferential surface 1a of the thick structure part P and the outer circumferential surface 9a of the heat shielding plate 9. Each annular spacer 2o is arranged such that its outer circumferential surface contacts the inner circumferential surface 1a of the outer shell 1 with a metal touch, and the inner circumferential surface thereof contacts the outer circumferential surface 9a of the heat shielding plate 9 with a metal touch. It's Nishide.

第1図(b)は、同図(a)のA部を拡大して熱遮蔽板
9の支持構造の詳細を表わした要部断面図であり1図中
、21は熱遮蔽板9を厚肉構造部Pの内周面】aに取付
けるための取付部材であり。
FIG. 1(b) is an enlarged cross-sectional view of part A in FIG. 1(a) showing the details of the support structure of the heat shielding plate 9. In FIG. This is a mounting member for attaching to the inner circumferential surface of the meat structure P]a.

取付部材21は小径円柱状の支持金具22と円盤状の押
さえ板23とによりなる。支持金具22は、一端22′
を円錐形に尖らせて円錐面を完全溶造開先面とするもの
で、支持金具22は外胴1内周面における環状スペーサ
2o取付位置に周方向に向けて複数配設され、また、一
端22′の尖端を外胴1の内周面1aに点接触させた状
態で完全溶造溶接24を行うことにより固着されている
。他方、環状スペーサ20には1周方向に向けて挿入 
The mounting member 21 consists of a small-diameter cylindrical supporting metal fitting 22 and a disc-shaped pressing plate 23. The support fitting 22 has one end 22'
is sharpened into a conical shape to make the conical surface a completely welded groove surface, and a plurality of supporting metal fittings 22 are arranged in the circumferential direction at the mounting positions of the annular spacers 2o on the inner circumferential surface of the outer shell 1, and It is fixed by performing complete welding 24 with the tip of one end 22' in point contact with the inner circumferential surface 1a of the outer shell 1. On the other hand, the annular spacer 20 is inserted in the circumferential direction.
.

孔25が複数配設され、環状スペーサ2oを外胴1の内
周面に配置した時に挿入孔25に支持金具22が内挿さ
れ、挿入孔25がら支持金具22の一部が突出するよう
にしである。そして、挿入孔25から突出する支持金具
22の突出部分を熱遮蔽板9の取付穴9bに挿通した後
に、押さえ板23を支持金具22に嵌入し、押さえ板2
;3を熱遮蔽板9の内周面に接触させた状態で押さえ板
23と支持金具22のfillを溶接26することによ
り、熱遮蔽板9を環状スペーサ2oの内周面に圧接させ
つつ取付けている。環状スペーサ20に配設した挿入孔
25は、その孔径を支持金具22の径よりも充分に大き
く形成してあり、環状スペーサ20が周方向に熱膨張し
た時に、支持金具22の溶接部24にせん断荷重がかが
らないようにしである。また、環状スペーサ20には、
第3図に示すように、熱膨張による周方向の伸びを吸収
するために、環状スペーサ20の一部を分割(符号Gで
示す部分)して熱膨張吸収用の間隙27を形成し、且つ
環状スペーサ20の各分割部Gの端面に凹凸段差面28
.29を形成し、この段差面28.29の凹凸面を互い
に重ね合わせて接合することにより分割部Gの継ぎ目間
に流体が流入しないようにしである。
A plurality of holes 25 are provided, and when the annular spacer 2o is arranged on the inner peripheral surface of the outer shell 1, the support metal fitting 22 is inserted into the insertion hole 25, and a part of the support metal fitting 22 protrudes from the insertion hole 25. It is. Then, after inserting the protruding portion of the support fitting 22 protruding from the insertion hole 25 into the mounting hole 9b of the heat shielding plate 9, the holding plate 23 is fitted into the supporting fitting 22, and the holding plate 23 is inserted into the mounting hole 9b of the heat shielding plate 9.
3 is in contact with the inner peripheral surface of the heat shielding plate 9, and by welding 26 the holding plate 23 and the fill of the support fitting 22, the heat shielding plate 9 is attached while being pressed against the inner peripheral surface of the annular spacer 2o. ing. The insertion hole 25 provided in the annular spacer 20 is formed to have a diameter sufficiently larger than the diameter of the support fitting 22, so that when the annular spacer 20 thermally expands in the circumferential direction, the welded portion 24 of the support fitting 22 is inserted. This is to prevent shear load from being applied. Further, the annular spacer 20 includes
As shown in FIG. 3, in order to absorb circumferential elongation due to thermal expansion, a part of the annular spacer 20 is divided (a portion indicated by the symbol G) to form a gap 27 for absorbing thermal expansion. An uneven step surface 28 is formed on the end surface of each divided portion G of the annular spacer 20.
.. 29 is formed, and the uneven surfaces of the stepped surfaces 28 and 29 are overlapped and bonded to each other to prevent fluid from flowing between the joints of the divided portion G.

しかして、このような熱遮蔽板支持構造によれば、熱遮
蔽板9の外周面9aと厚肉構成部Pの内周面1aとの間
に、上下の各環状スペーサ20を介して隙間Sが形成さ
れ、しかも、各環状スペーサ20が外胴1の内周面1a
と熱遮蔽板9の外周面9/1とに周方向に沿ってメタル
タッチで接触するため、この環状スペーサ2oを介して
隙間Sに流体が流れ込むのを阻止する。従って、隙間S
には、1次流体流路3に流れる1次高温流体が流れ込ん
で流動を形成するようなことがなく、隙間Sが非流動領
域(スタグナント領域)となるので。
According to such a heat shielding plate support structure, a gap S is formed between the outer circumferential surface 9a of the heat shielding plate 9 and the inner circumferential surface 1a of the thick-walled component P via the upper and lower annular spacers 20. is formed, and each annular spacer 20 is formed on the inner circumferential surface 1a of the outer shell 1.
and the outer circumferential surface 9/1 of the heat shielding plate 9 along the circumferential direction with a metal touch, thus preventing fluid from flowing into the gap S via the annular spacer 2o. Therefore, the gap S
In this case, the primary high-temperature fluid flowing into the primary fluid flow path 3 does not flow and form a flow, and the gap S becomes a non-flow region (stagnant region).

厚肉構造部Pの内周面1aには1次高温流体が直接接触
せず、また隙間Sが熱緩衝層を形成する。
The primary high temperature fluid does not come into direct contact with the inner circumferential surface 1a of the thick structure portion P, and the gap S forms a thermal buffer layer.

その結果51次高温流体の温度が急激に変化した場合で
も、ノブ肉構造部Pには温度変化後の流体熱が直ぐには
伝わらず、時間をかけて徐々に伝わり、その間に厚肉構
造部Pの肉厚全体が、外胴1の厚肉構造部P以外の薄肉
構造部P’  (N肉構造部P′は既に1次高温流体の
温度変化に追従した状態にある。)からの熱伝達を受け
て1次高温流体の湿度にほぼ近づくので、隙間Sを介し
て温度変化後の1次高温流体の熱が厚肉構造部Pに伝わ
る時点においては、厚肉構造部Pの外壁側と内壁側の温
度差が極めて小さくなり、厚肉構造部Pに生じる熱?l
I撃応力を充分に緩和することができる。
As a result, even if the temperature of the 51st-order high-temperature fluid changes suddenly, the fluid heat after the temperature change is not transferred to the knob wall structure part P immediately, but gradually over time, and during that time, the fluid heat after the temperature change is transferred to the thick wall structure part P. The entire wall thickness of the outer shell 1 is transferred from the thin wall structure P' other than the thick wall structure P' (the N wall structure P' is already in a state that follows the temperature change of the primary high temperature fluid). Since the humidity of the primary high-temperature fluid approaches the temperature of the primary high-temperature fluid due to the The temperature difference on the inner wall side becomes extremely small, and the heat generated in the thick structure part P? l
I impact stress can be sufficiently alleviated.

また、熱遮蔽板9を支持する支持金具22は。Furthermore, the support metal fittings 22 that support the heat shielding plate 9 are as follows.

外胴1の内壁に完全溶造み溶接24により取付けである
ため、外胴1と支持金具22との間には従来の如き未溶
着部(第5図の符号aで示す部分)が発生する余地がな
くなり、そ、の結果、1次高温流体に急激な温度変化が
生じても支持金具22に熱変形が発生するような箇所が
なくなるので、溶接部24に過大な熱荷重が負荷される
のを確実に防止し、溶接部24の健全性を確保すること
ができる。
Since it is attached to the inner wall of the outer shell 1 by complete welding 24, an unwelded part (the part indicated by the symbol a in FIG. 5) is generated between the outer shell 1 and the support fitting 22 as in the conventional case. As a result, there is no place where thermal deformation can occur in the support fitting 22 even if a sudden temperature change occurs in the primary high temperature fluid, so an excessive thermal load is applied to the welded part 24. It is possible to reliably prevent this and ensure the integrity of the welded portion 24.

更に、本実施例によれば、熱遮蔽板9を支持する支持金
具22が押さえ板23から突出することなく嵌合し、支
持金具22と押さえ板23の接合面dが平担面を形成し
ているので1次高温流体の流体抵抗を極力小さくするこ
とができ、しかも。
Furthermore, according to this embodiment, the support fitting 22 that supports the heat shielding plate 9 fits into the holding plate 23 without protruding from it, and the joint surface d between the supporting fitting 22 and the holding plate 23 forms a flat surface. Because of this, the fluid resistance of the primary high-temperature fluid can be minimized.

環状スペーサ20には、熱膨張の伸びを吸収する分割部
(隙間部27)が形成され、且つ環状スペーサ2oを配
設した挿通孔25を充分に大きくして熱膨張時のせん断
荷重が支持金具22に負荷されないようにしであるので
、耐熱性、耐久性に優れた熱遮蔽板支持構造を提供する
ことができる。
The annular spacer 20 is formed with a divided part (gap part 27) that absorbs the elongation due to thermal expansion, and the insertion hole 25 in which the annular spacer 2o is disposed is made sufficiently large so that the shear load at the time of thermal expansion is absorbed by the support metal. 22, it is possible to provide a heat shielding plate support structure with excellent heat resistance and durability.

なお1本実施例は原子カプラントの中間熱交換器に取付
ける熱遮蔽板の支持構造を一例に説明したが、これに限
定されるものではなく、その他に高速増殖炉、加圧水彩
原子炉形等の蒸気発生器。
Note that this embodiment has been described using as an example the support structure of a heat shield plate attached to an intermediate heat exchanger of a nuclear couplant, but the structure is not limited to this, and other structures such as fast breeder reactors, pressurized watercolor reactors, etc. steam generator.

火力プラントにおける熱交換器、更には熱交換器以外の
高温流体容器、配管等にも適用することができる。
It can be applied to heat exchangers in thermal power plants, and also to high-temperature fluid containers, piping, etc. other than heat exchangers.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、熱遮蔽板を支持する支持
部材の健全性を確保すると共に、熱?11撃緩和を充分
に図り得る信頼性の高い熱遮蔽板の支持構造を提供する
ことができる。
As described above, according to the present invention, the soundness of the support member that supports the heat shield plate is ensured, and the heat resistance is maintained. Therefore, it is possible to provide a highly reliable support structure for a heat shielding plate that can sufficiently reduce the impact caused by No. 11.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(、)は1本発明の一実施例たる熱遮蔽板支持構
造の一部省略断面図、第1図(b)は、同図(a)のA
部拡大断面図、第2図は、第11fi(b)のB方向か
らみた一部省略正面図、第3図は、第2図のC方向から
みた一部切欠断面図、第4図は、中間熱交換器の断面図
、第5図は、熱遮蔽板支持構造の従来例を示す要部断面
図、第6図は、第5図のD方向からみた一部省略断面図
である。 】・・・外胴(流路、4!り、la・・・外胴の内周面
、3・・・高温流体流路、9・・・熱遮蔽板、9a・・
・熱遮蔽板の外周面、20・・・環状スペーサ、22・
・・支持金具、23・・・押さえ板、24・・・完全溶
造溶接部、25・・・挿通孔、27・・・隙間、28.
29・・・凹凸段差面。 30.3.1・・・間隙部の開口両端部、G・・・分割
部、(ほか1名)− 第 1 目 びノ                       
          υ。 s−m要部 第2図 第30 第4閲
FIG. 1(,) is a partially omitted cross-sectional view of a heat shielding plate support structure according to an embodiment of the present invention, and FIG. 1(b) is an A of FIG. 1(a).
FIG. 2 is a partially omitted front view of No. 11fi(b) as seen from direction B, FIG. 3 is a partially cutaway sectional view as seen from direction C of FIG. 2, and FIG. FIG. 5 is a cross-sectional view of a main part showing a conventional example of a heat shielding plate support structure, and FIG. 6 is a partially omitted cross-sectional view of the intermediate heat exchanger as viewed from direction D in FIG. ]... Outer shell (channel, 4!, la... inner peripheral surface of outer shell, 3... high temperature fluid flow path, 9... heat shielding plate, 9a...
・Outer peripheral surface of heat shielding plate, 20... annular spacer, 22・
...Supporting metal fitting, 23...Pressure plate, 24...Completely welded part, 25...Through hole, 27...Gap, 28.
29...Uneven stepped surface. 30.3.1... Both ends of the opening of the gap, G... Divided part, (and 1 other person) - 1st opening
υ. s-m main part Figure 2 Figure 30 4th review

Claims (1)

【特許請求の範囲】 1、高温流体流路を形成する流路壁の厚肉構造部の内周
面にスペーサを介在させて所定の間隙を保持しつつ熱遮
蔽板を取付けてなるものにおいて、前記スペーサは、そ
の外周面が前記流路壁の内周面に接触し、他方その内周
面が前記熱遮蔽板の外周面に接触する環状のスペーサよ
りなり、この環状スペーサを前記厚肉構造部の内周面と
前記熱遮蔽板の外周面との間に形成される間隙部の開口
両端側に夫々配設し、更に該環状スペーサを介して前記
間隙部に前記高温流体流路の流体が流れ込むのを遮断し
て、該間隙部を非流動領域にすると共に、前記流路壁の
内周面における前記環状スペーサの設置位置には、完全
溶込開先を有する支持金具を溶接して周方向に複数配設
し、該支持金具を前記環状スペーサに設けた挿通孔から
突出させて、この突出した部分に前記熱遮蔽板を貫通固
着することにより該熱遮蔽板を支持してなることを特徴
とする熱衝撃防止用熱遮蔽板の支持構造。 2、特許請求の範囲第1項において、前記環状スペーサ
は数箇所を分割して、この分割部に該環状スペーサの熱
膨張による伸びを吸収する隙間を有し、且つ分割された
環状スペーサの構成部材の端部には互いに重ね合って接
合する凹凸段差面を有し、更に前記環状スペーサに配設
された前記挿通孔は、前記環状スペーサの熱膨張時に前
記支持金具にせん断荷重を負荷しない程度にその孔径を
前記支持金具の外径よりも充分に大きくしてなる熱衝撃
防止用熱遮蔽板の支持構造。
[Claims] 1. A heat shield plate is attached to the inner circumferential surface of a thick structure of a flow path wall forming a high temperature fluid flow path while maintaining a predetermined gap by interposing a spacer, The spacer is an annular spacer whose outer circumferential surface contacts the inner circumferential surface of the channel wall and whose inner circumferential surface contacts the outer circumferential surface of the heat shield plate, and the annular spacer is connected to the thick wall structure. are arranged at both ends of the opening of a gap formed between the inner circumferential surface of the heat shield plate and the outer circumferential surface of the heat shielding plate, and the fluid of the high-temperature fluid flow path is provided in the gap through the annular spacer. A supporting metal fitting having a full penetration groove is welded to the installation position of the annular spacer on the inner circumferential surface of the flow path wall. A plurality of supporting metal fittings are arranged in the circumferential direction, and the heat shielding plate is supported by protruding from an insertion hole provided in the annular spacer and fixing the heat shielding plate through the protruding portion. A support structure for a heat shield plate for preventing thermal shock, characterized by: 2. In claim 1, the annular spacer is divided into several parts, and each of the divided parts has a gap for absorbing elongation due to thermal expansion of the annular spacer, and the divided annular spacer has a structure The ends of the member have uneven stepped surfaces that overlap and join each other, and the insertion hole provided in the annular spacer is formed to such an extent that no shear load is applied to the support fitting during thermal expansion of the annular spacer. A support structure for a heat shield plate for preventing thermal shock, wherein the hole diameter is sufficiently larger than the outer diameter of the support fitting.
JP61075469A 1986-04-03 1986-04-03 Support structure of thermal shield plate for thermal shock prevention Granted JPS62233692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61075469A JPS62233692A (en) 1986-04-03 1986-04-03 Support structure of thermal shield plate for thermal shock prevention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61075469A JPS62233692A (en) 1986-04-03 1986-04-03 Support structure of thermal shield plate for thermal shock prevention

Publications (2)

Publication Number Publication Date
JPS62233692A true JPS62233692A (en) 1987-10-14
JPH0565793B2 JPH0565793B2 (en) 1993-09-20

Family

ID=13577200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61075469A Granted JPS62233692A (en) 1986-04-03 1986-04-03 Support structure of thermal shield plate for thermal shock prevention

Country Status (1)

Country Link
JP (1) JPS62233692A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276763A (en) * 1975-12-22 1977-06-28 Hitachi Ltd Abrasive shock-absorbing plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276763A (en) * 1975-12-22 1977-06-28 Hitachi Ltd Abrasive shock-absorbing plate

Also Published As

Publication number Publication date
JPH0565793B2 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
US20030041857A1 (en) Thin wall header for use in molten salt solar absorption panels
JPH07287088A (en) Fuel aggregate of nuclear reactor
US6375130B1 (en) Core spray upper T-box clamp
EP0594398A1 (en) Tolerant metal fuel/cladding barrier and related method of installation
US3920518A (en) Pressure vessels having thermal insulsation
US2849387A (en) Corrosion resistant jacketed metal body
JPS62233692A (en) Support structure of thermal shield plate for thermal shock prevention
CN109812646A (en) A kind of high-performance metal reflection-type insulating layer
US3311541A (en) Nuclear reactor fuel elements
JPH0321878B2 (en)
JPH04232899A (en) Method for plugging pipe of straight-pipe type heat exchanger and use of this method
CN108140435A (en) The component of the sodium-cooled fast reactor type nuclear reactor of isolation plate that its shell is improved equipped with rigidity
GB2147403A (en) Tube-in-shell heat exchangers
JPS61112888A (en) High-temperature double piping
JP2000158130A (en) Neutron-proof irradiation welding structure for reactor core composing element
JPS6023705A (en) Water wall tube for combustion apparatus
JP3446855B2 (en) Sealing device for the upper shield of the HTGR and the control rod guide tube
Brissaud et al. Pressure vessels having thermal insulation
JPH0275801A (en) Steam generator
JPS61268994A (en) Intermediate heat exchanger
JPH0610585B2 (en) Heat exchanger
JPS61107196A (en) Bellows piping for fast breeder reactor
JPH01193690A (en) Fuel assembly
JPS61189390A (en) Expansion pipe joint
JPS6237695A (en) Heat exchanger having connecting section of flange