JP2000158130A - Neutron-proof irradiation welding structure for reactor core composing element - Google Patents

Neutron-proof irradiation welding structure for reactor core composing element

Info

Publication number
JP2000158130A
JP2000158130A JP10334431A JP33443198A JP2000158130A JP 2000158130 A JP2000158130 A JP 2000158130A JP 10334431 A JP10334431 A JP 10334431A JP 33443198 A JP33443198 A JP 33443198A JP 2000158130 A JP2000158130 A JP 2000158130A
Authority
JP
Japan
Prior art keywords
block
neutron
tubular member
swelling material
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10334431A
Other languages
Japanese (ja)
Inventor
Tomonori Soga
知則 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Nuclear Cycle Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Nuclear Cycle Development Institute filed Critical Japan Nuclear Cycle Development Institute
Priority to JP10334431A priority Critical patent/JP2000158130A/en
Publication of JP2000158130A publication Critical patent/JP2000158130A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain a welding part soundness till a light irradiation volume by reducing a stress caused by a swelling difference under a fast neutron irradiation at the welding part, and increasing safety when a reactor core composing element is assembled by welding with a pipe-like member composed of a low swelling material and a block-like material composed of a high swelling material. SOLUTION: This reactor core composing element (for example, a restriction element, 10) is assembled by welding a block-like member (for example, an end stopper 16) composed of a high swelling material and a pipe-like member (for example, a covered pipe 14) composed of a low swelling material. In this case, a concave part 24 is formed, at an opposed part against the pipe like member of the block-like member in a manner that a pipe sectional shape thereof is made identical to that of the pipe-like member, so that the block-like member and the pipe-like member are butt welded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高速炉の炉心構成
要素における耐中性子照射溶接構造に関し、更に詳しく
述べると、高スエリング材と低スエリング材との対向部
を同一断面形状にして突き合わせ溶接構造で組み立てる
ことにより、高速中性子照射下でのスエリング差によっ
て溶接部に生じる応力を緩和し、高照射量まで健全性を
保つことができるようにした溶接構造に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a neutron-irradiation welding structure in a core component of a fast reactor, and more particularly, to a butt welding structure in which opposed portions of a high swelling material and a low swelling material have the same cross-sectional shape. The present invention relates to a welding structure capable of relaxing stress generated in a welded portion due to a swelling difference under high-speed neutron irradiation and maintaining soundness up to a high irradiation dose.

【0002】[0002]

【従来の技術】高速炉の炉心構成要素、例えば制御棒、
燃料集合体、反射体、遮蔽集合体、中性子源集合体など
では、その強度部材としてオーステナイト系ステンレス
鋼が広く使用されている。その場合、被覆管やラッパ
管、保護管などの管状部材は、強度及び耐スエリング性
の向上を目的として約20%程度の冷間加工材が用いら
れることが多い。他方、この管状部材に溶接接合するグ
リッド板や端栓などのブロック状部材は、特に太径の棒
材の場合に冷間加工を施すことが困難であることから、
主に溶体化処理材が使用されている。
2. Description of the Related Art Core components of fast reactors, such as control rods,
In fuel assemblies, reflectors, shield assemblies, neutron source assemblies, and the like, austenitic stainless steel is widely used as a strength member. In this case, about 20% of a cold-worked material is often used for a tubular member such as a cladding tube, a wrapper tube, and a protection tube for the purpose of improving strength and swelling resistance. On the other hand, block-shaped members such as grid plates and end plugs to be welded to this tubular member are difficult to cold-work, especially in the case of large-diameter bars,
A solution treatment material is mainly used.

【0003】そして、従来、管状部材とブロック状部材
の溶接接合構造は、ブロック状部材の管状部材との対向
部の側面に、前記管状部材の肉厚に相当する段差を有す
るようなやや細径の部分を形成し、ブロック状部材のそ
の細径部分を前記管状部材内に嵌入して溶接する、所謂
「嵌め合い溶接」が採用されている。接合方法について
は、ボルト締め、ねじ込み式などの機械的な方法も考え
られるが、特に高照射量領域まで使用する機器の接合方
法としては、溶接が最も一般的であり、既に十分な使用
実績があるためである。
[0003] Conventionally, a welded joint structure between a tubular member and a block-shaped member has a slightly small diameter such that a step corresponding to the wall thickness of the tubular member is formed on the side surface of a portion of the block-shaped member facing the tubular member. Is formed, and the small-diameter portion of the block-shaped member is fitted into the tubular member and welded, so-called "fitting welding" is employed. For the joining method, mechanical methods such as bolting and screwing are also conceivable.However, welding is the most common method of joining equipment that is used up to high irradiation areas, and has already been used sufficiently. Because there is.

【0004】[0004]

【発明が解決しようとする課題】しかし、高速中性子束
下での使用においては、管状部材とブロック状部材の間
に、照射によるスエリング(体積膨張)差が生じること
から、従来の嵌め合い溶接で接合した場合には、管状部
材側に押し広げの強制変位が発生する。照射量の増加に
伴いこのスエリング差は大きくなることから、管状部材
の応力は時間と共に上昇し、弾性限界を超える歪みは管
状部材の塑性歪みとして蓄積されていく。特に原子炉運
転中に引き抜いて使用する制御棒では、下部の溶接部が
中性子束の高い炉心中心近傍に位置するため、長寿命化
を達成する上では、このスエリング差によって生じる溶
接部の応力緩和が課題であった。これは、他の炉心構成
要素についても共通している。
However, when used under a high-speed neutron flux, a swelling (volume expansion) difference due to irradiation occurs between the tubular member and the block-shaped member. In the case of joining, a forced displacement of pushing and spreading occurs on the tubular member side. Since the swelling difference increases as the irradiation amount increases, the stress of the tubular member increases with time, and strain exceeding the elastic limit is accumulated as plastic strain of the tubular member. Especially for control rods that are pulled out during operation of the reactor, the lower welded part is located near the center of the core where the neutron flux is high. Was an issue. This is common for other core components.

【0005】本発明の目的は、低スエリング材からなる
管状部材と高スエリング材からなるブロック状部材とを
溶接により組み立てる際に、溶接部での高速中性子照射
下でのスエリング差による応力を低減し、安全性を向上
させると共に、溶接部の健全性を高照射量まで維持でき
るようにした炉心構成要素の耐中性子照射溶接構造を提
供することである。
SUMMARY OF THE INVENTION An object of the present invention is to reduce stress caused by a swelling difference under high-speed neutron irradiation at a welded portion when a tubular member made of a low swelling material and a block-shaped member made of a high swelling material are assembled by welding. Another object of the present invention is to provide a neutron-irradiation welding structure for core components, which improves safety and maintains the integrity of a welded portion up to a high irradiation dose.

【0006】[0006]

【課題を解決するための手段】本発明は、低スエリング
材からなる管状部材と高スエリング材からなるブロック
状部材とを溶接により組み立てる構造の炉心構成要素を
前提とし、そのブロック状部材の管状部材との対向部
に、該管状部材と同じ管断面形状となるように凹部を形
成し、前記ブロック状部材と管状部材とを突き合わせ溶
接する炉心構成要素の耐中性子照射溶接構造である。
SUMMARY OF THE INVENTION The present invention presupposes a core component having a structure in which a tubular member made of a low swelling material and a block member made of a high swelling material are assembled by welding. A neutron-irradiation welding structure of a core component in which a concave portion is formed in a portion opposed to the tubular member so as to have the same tube cross-sectional shape as the tubular member, and the block-shaped member and the tubular member are butt-welded.

【0007】典型的には、管状部材としてはオーステナ
イト系ステンレス鋼冷間加工材(低スエリング材)を用
い、ブロック状部材としてはオーステナイト系ステンレ
ス鋼溶体化処理材(高スエリング材)を用いる。オース
テナイト系ステンレス鋼冷間加工材は、高温強度、スエ
リングなどの観点から、高速炉の使用条件において優れ
た材料特性を持つからであり、現在のところ炉心構成要
素の主要材料として最も使用頻度が高い。ブロック状部
材に溶体化処理材を用いるのは、前述のように冷間加工
が困難なためである。
Typically, an austenitic stainless steel cold worked material (low swelling material) is used as the tubular member, and an austenitic stainless steel solution heat treated material (high swelling material) is used as the block-shaped member. Because austenitic stainless steel cold-worked materials have excellent material properties under the operating conditions of fast reactors from the viewpoint of high-temperature strength, swelling, etc., they are currently the most frequently used as main materials for core components. . The solution treatment material is used for the block-shaped member because the cold working is difficult as described above.

【0008】本発明では上記のように、ブロック状部材
と管状部材との突き合わせ端面を同一形状に加工してお
くことで、溶接により接合一体化した後、両者のスエリ
ング差により相互に与えられる強制変位を小さくするこ
とができる。
In the present invention, as described above, by forming the butted end faces of the block-shaped member and the tubular member into the same shape, they are joined and integrated by welding, and then the forcing given to each other by the swelling difference between the two. The displacement can be reduced.

【0009】[0009]

【発明の実施の態様】本発明における炉心構成要素とし
ては、制御棒及びその制御要素、燃料集合体及びその燃
料要素、反射体、遮蔽集合体及びその遮蔽要素、中性子
源受入集合体及びその中性子源本体、制御棒下部案内管
などがある。管状部材は、それらに用いる被覆管、保護
管、ラッパ管等であり、ブロック状部材は、それらに用
いる端栓、グリッド板、エントランスノズル等である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The core components of the present invention include a control rod and its control element, a fuel assembly and its fuel element, a reflector, a shielding assembly and its shielding element, a neutron source receiving assembly and its neutron. There are a source main body and a control rod lower guide tube. The tubular member is a cladding tube, a protective tube, a trumpet tube or the like used for them, and the block-shaped member is an end plug, a grid plate, an entrance nozzle or the like used for them.

【0010】低スエリング材としては、前記の他、フェ
ライトマルテンサイト系ステンレス鋼もある。また「ス
エリング」とは、広義には原因を問わず体積膨張という
ことであるから、本発明の技術は、狭義のスエリング
(即ち、中性子照射による体積膨張)による場合のみな
らず、熱膨張差を有する材料の組み合わせの場合にも応
用可能である。例えば、低熱膨張材としてはフェライト
マルテンサイト系ステンレス鋼があり、高熱膨張材とし
てはオーステナイト系ステンレス鋼がある。
As the low swelling material, in addition to the above, there is a ferritic martensitic stainless steel. In addition, “swelling” means volume expansion regardless of the cause in a broad sense. Therefore, the technology of the present invention is not limited to the case of swelling in a narrow sense (that is, volume expansion due to neutron irradiation), but also the difference in thermal expansion. The present invention is also applicable to a combination of materials having the same. For example, ferritic martensitic stainless steel is used as the low thermal expansion material, and austenitic stainless steel is used as the high thermal expansion material.

【0011】[0011]

【実施例】図1は、本発明を適用した制御要素の一例を
示す説明図である。制御要素は、後述するように、制御
棒の主要構成部材である。この制御要素10は、中性子
吸収体12(例えばB4 Cペレット)を被覆管14内に
充填し、下端と上端に端栓16,18を取り付けた構造
である。なお、被覆管14内には、ベント管20やペレ
ット押さえスプリング22などの必要な部材も組み込ま
れる。ここで被覆管14はオーステナイト系ステンレス
鋼冷間加工材(低スエリング材)で製作されており、端
栓16はオーステナイト系ステンレス鋼溶体化処理材
(高スエリング材)からなる。
FIG. 1 is an explanatory diagram showing an example of a control element to which the present invention is applied. The control element is a main component of the control rod, as described below. The control element 10 has a structure in which a neutron absorber 12 (for example, B 4 C pellet) is filled in a cladding tube 14 and end plugs 16 and 18 are attached to a lower end and an upper end. In addition, necessary members such as the vent tube 20 and the pellet holding spring 22 are also incorporated in the cladding tube 14. Here, the cladding tube 14 is made of an austenitic stainless steel cold-worked material (low swelling material), and the end plug 16 is made of an austenitic stainless steel solution-treated material (high swelling material).

【0012】ここで本実施例では、拡大して示している
ように、端栓16の被覆管14との対向部に、該被覆管
14と同じ管断面形状となるように凹部24を機械加工
等によって形成しておく。つまり、端栓16の端面での
外径は被覆管14の外径と一致し、且つその肉厚も被覆
管の肉厚と一致した形状である。そして、これら被覆管
14と端栓16とを、それらの端面同士を突き合わせて
溶接することにより接合一体化する。
In this embodiment, as shown in an enlarged manner, a concave portion 24 is machined at a portion of the end plug 16 facing the cladding tube 14 so as to have the same tube cross-sectional shape as the cladding tube 14. And the like. In other words, the outer diameter of the end plug 16 at the end face matches the outer diameter of the cladding tube 14, and the thickness thereof also matches the thickness of the cladding tube. Then, the cladding tube 14 and the end plug 16 are joined and integrated by welding their end faces to each other.

【0013】図2は、溶接による熱影響部のスエリング
特性を模式的に示している。オーステナイト系ステンレ
ス鋼の溶体化処理材(端栓16)に20%冷間加工材
(被覆管14)を溶接すると、ビード部が溶体化される
と共に、溶接部近傍は熱影響を受け、その特性が溶体化
処理材に近くなる。この範囲を熱影響部と呼ぶが、その
熱影響部では、見掛け上、冷間加工材にかけられた冷間
加工度が溶接部に近づくにつれ徐々に低下していく。ま
た、オーステナイト系ステンレス鋼のスエリングの潜伏
期間は、冷間加工度が高くなるほど長くなる傾向がある
ため、熱影響部においてはスエリング量がなだらかな傾
斜を持つことになる。
FIG. 2 schematically shows the swelling characteristics of the heat-affected zone due to welding. When a 20% cold-worked material (cladding tube 14) is welded to a solution-treated material (end plug 16) of austenitic stainless steel, the bead portion is solutionized and the vicinity of the welded portion is affected by heat, and its characteristics are affected. Becomes closer to the solution treatment material. This range is called a heat-affected zone. In the heat-affected zone, apparently, the degree of cold work applied to the cold-worked material gradually decreases as approaching the welded portion. Also, the swelling incubation period of austenitic stainless steel tends to be longer as the degree of cold working increases, so that the swelling amount has a gentle slope in the heat-affected zone.

【0014】図3は、参考のために従来の制御要素の溶
接構造を図示している。端栓26の被覆管14との対向
部の側面に、前記被覆管14の肉厚に相当する段差を有
するようなやや細径部分26aを機械加工により形成
し、端栓26のその細径部分26aを被覆管14内に嵌
め込んで溶接している。
FIG. 3 shows a conventional control element welding structure for reference. On the side surface of the end plug 26 facing the cladding tube 14, a slightly smaller diameter portion 26 a having a step corresponding to the thickness of the cladding tube 14 is formed by machining, and the smaller diameter portion of the end plug 26 is formed. 26a is fitted into the cladding tube 14 and welded.

【0015】図4は本発明品Aと従来品Bのスエリング
差による応力イメージの比較を示している。従来の嵌め
合い溶接構造では、高スエリング材(端栓26)のスエ
リングによって、低スエリング材(被覆管14)に強制
変位が直接与えられ、大きな応力及び塑性歪みが生じ
る。それに対して、本発明の突き合わせ溶接構造では、
熱影響部ではスエリング不連続による弱い応力が生じる
が、強制変位が直接与えられることはなく、低スエリン
グ材(被覆管14)に生じる応力及び塑性歪みは低減さ
れる。因みに、この制御要素における被覆管と下部端栓
の溶接部を模擬した解析の一例によれば、従来の嵌め合
い溶接構造に対して本発明の突き合わせ溶接構造では、
使用中に被覆管に生じる累積塑性歪みがおよそ1/2に
なるという結果が得られている。
FIG. 4 shows a comparison of stress images due to a swelling difference between the product A of the present invention and the conventional product B. In the conventional fitting welding structure, the swelling of the high swelling material (end plug 26) directly applies a forcible displacement to the low swelling material (the cladding tube 14), causing large stress and plastic strain. In contrast, in the butt welding structure of the present invention,
In the heat-affected zone, weak stress due to swelling discontinuity is generated, but no forced displacement is directly applied, and stress and plastic strain generated in the low swelling material (the cladding tube 14) are reduced. By the way, according to an example of an analysis simulating the welded portion between the cladding tube and the lower end plug in the control element, the butt welding structure of the present invention is compared with the conventional fitting welding structure,
It has been obtained that the cumulative plastic strain generated in the cladding tube during use is reduced to about 1/2.

【0016】図5は、本発明を高速炉制御棒に適用した
一例を示している。制御棒30は、原子炉の出力調整、
異常時の緊急停止などの機能を有するものであり、前記
の図1に示した如き中性子吸収体を内蔵した制御要素1
0を7本束ねて円形の保護管32の内部に収納してい
る。保護管32の上下にはグリッド板34を溶接する。
このグリッド板34は、各制御要素10を支持し、それ
ら制御要素10について適切な間隔を保って保護管内の
冷却材の流路を確保する機能を果たす。各制御要素10
は、その端部をグリッド板34に差し込むことで支持さ
れる。なお、下部グリッド板の下側にはスクラム動作の
終わりに干渉作用を行わせるダッシュラム36を、上部
グリッド板の上側には制御棒の駆動機構等による・み、
離しを行うためのハンドリングヘッド38を溶接してい
る。
FIG. 5 shows an example in which the present invention is applied to a fast reactor control rod. The control rod 30 controls the power of the reactor,
The control element 1 has a function such as an emergency stop in the event of an abnormality, and incorporates a neutron absorber as shown in FIG.
0 are bundled and housed inside the circular protection tube 32. A grid plate 34 is welded above and below the protection tube 32.
The grid plate 34 has a function of supporting the respective control elements 10 and securing a flow path of the coolant in the protective tube while maintaining an appropriate interval between the control elements 10. Each control element 10
Is supported by inserting its end into the grid plate 34. In addition, a dash ram 36 for performing an interference action at the end of the scrum operation is provided below the lower grid plate, and a control rod driving mechanism is provided above the upper grid plate,
The handling head 38 for separating is welded.

【0017】制御棒は炉心に挿入することによって、原
子炉を停止するのに十分な制御能力(中性子吸収能力)
を有することから、運転中は炉心から中性子吸収体装填
部が引き抜かれた状態で使用される。このため、運転中
は中性子吸収体装填部の下側にある被覆管と端栓の溶接
接合部あるいは保護管と下部グリッド板の溶接接合部が
炉心中心近傍に位置し、高い中性子束下に曝されること
から、これらの溶接部でのスエリング差による応力の発
生が問題となっているのである。
By inserting the control rod into the reactor core, sufficient control ability to shut down the reactor (neutron absorption capacity)
Therefore, during operation, the neutron absorber loading section is used in a state where the neutron absorber loading section is pulled out from the reactor core. For this reason, during operation, the welded joint between the cladding tube and the end plug or the welded joint between the protective tube and the lower grid plate located under the neutron absorber loading section is located near the core center and exposed to high neutron flux. Therefore, the generation of stress due to the swelling difference at these welds is a problem.

【0018】そこで本実施例では、拡大して図示してい
るように、下部グリッド板34の保護管32との対向部
に、該保護管32と同じ管断面形状となるように凹部4
0を機械加工等によって形成しておく。つまり下部グリ
ッド板34の上端部での外径は保護管32の外径と一致
し、且つその肉厚も保護管の肉厚と一致した形状であ
る。更に、下部グリッド板34の下部構造体42との対
向部も、該下部構造体42と同じ管断面形状となるよう
に凹部44を機械加工等によって形成しておく。つまり
下部グリッド板34の下端部での外径は下部構造体42
の外径と一致し、且つその肉厚も下部構造体42の肉厚
と一致した形状とする。そして、これら保護管32と下
部グリッド板34、及び下部グリッド板34と下部構造
体42を突き合わせ溶接により接合一体化する。
Therefore, in the present embodiment, as shown in an enlarged view, the concave portion 4 is formed in a portion of the lower grid plate 34 facing the protective tube 32 so as to have the same tube cross-sectional shape as the protective tube 32.
0 is formed by machining or the like. That is, the outer diameter at the upper end of the lower grid plate 34 matches the outer diameter of the protection tube 32, and the thickness of the lower grid plate 34 also matches the thickness of the protection tube. Further, a concave portion 44 is formed by machining or the like so that a portion of the lower grid plate 34 facing the lower structure 42 also has the same tube cross-sectional shape as the lower structure 42. That is, the outer diameter at the lower end of the lower grid plate 34 is
Of the lower structure 42 and the thickness of the lower structure 42. Then, the protective tube 32 and the lower grid plate 34, and the lower grid plate 34 and the lower structure 42 are joined and integrated by butt welding.

【0019】制御棒の下部構造についての本発明品と従
来品との比較を模式的に示したのが図6である。Aは本
発明品を、Bは従来品を示している。これによって、制
御要素の端栓及び制御棒におけるグリッド板の形状並び
に溶接構造の違いをより一層明確にした。なお、A(本
発明品)における各部材を示す符号は、分かり易くする
ために図1及び図5と一致させている。B(従来品)に
おいて部材を示す符号の一部は図3に一致させており、
それ以外の部材としては、符号46は下部グリッド板
を、符号48は下部構造体をそれぞれ表している。
FIG. 6 schematically shows a comparison between the product of the present invention and the conventional product regarding the lower structure of the control rod. A shows the product of the present invention, and B shows the conventional product. This further clarifies the difference in the shape of the grid plate and the welding structure in the end plugs and control rods of the control element. Note that the reference numerals indicating the members in A (the present invention) are the same as those in FIGS. 1 and 5 for easy understanding. Some of the reference numerals indicating members in B (conventional product) correspond to those in FIG.
As other members, reference numeral 46 denotes a lower grid plate, and reference numeral 48 denotes a lower structure.

【0020】図7は本発明を高速炉の炉心燃料集合体に
適用した一例を示している。炉心燃料集合体50は、正
六角形断面のラッパ管52の中に多数本の炉心燃料要素
54を規則的に配列収納したものである。ラッパ管52
の上部にはハンドリングヘッド56を取り付け、ラッパ
管52の下部にはエントランスノズル58を取り付け
る。
FIG. 7 shows an example in which the present invention is applied to a core fuel assembly of a fast reactor. The core fuel assembly 50 is one in which a number of core fuel elements 54 are regularly arranged and housed in a trumpet tube 52 having a regular hexagonal cross section. Wrapper tube 52
A handling head 56 is attached to the upper part of the horn, and an entrance nozzle 58 is attached to the lower part of the wrapper tube 52.

【0021】ここで本実施例では、拡大して示している
ように、エントランスノズル58のラッパ管52との対
向部に、該ラッパ管52と同じ管断面形状となるように
凹部60を機械加工等によって形成しておく。つまり、
エントランスノズル58の端面での外形はラッパ管の外
形と一致した六角形状であり、且つその肉厚もラッパ管
の肉厚と一致した形状である。そして、これらラッパ管
とエントランスノズルの端面同士を突き合わせて溶接す
ることにより接合一体化する。
In this embodiment, as shown in an enlarged manner, a concave portion 60 is machined in a portion of the entrance nozzle 58 facing the wrapper tube 52 so as to have the same cross-sectional shape as the wrapper tube 52. And the like. That is,
The outer shape at the end face of the entrance nozzle 58 is a hexagonal shape that matches the outer shape of the trumpet tube, and the thickness thereof also matches the thickness of the trumpet tube. Then, the end faces of the wrapper tube and the entrance nozzle are joined to each other by butt welding.

【0022】以上、本発明について幾つかの実施例を図
面に基づき詳述したが、本発明は前述したように、燃料
要素、反射体、遮蔽集合体及びそれに組み込む遮蔽要
素、中性子源受入用集合体及びそれに組み込む中性子源
本体等にも適用でき、そのような炉心構成要素の耐中性
子照射溶接構造についても本発明に含まれる。
As described above, some embodiments of the present invention have been described in detail with reference to the drawings. As described above, the present invention relates to a fuel element, a reflector, a shield assembly and a shield element incorporated therein, and a neutron source receiving assembly. The present invention is also applicable to a body and a neutron source main body incorporated therein, and such a neutron irradiation welding structure of core components is also included in the present invention.

【0023】[0023]

【発明の効果】本発明は上記のように、高スエリング材
からなるブロック状部材の、低スエリング材からなる管
状部材との対向部に、該管状部材と同じ管断面形状とな
るように凹部を形成し、前記ブロック状部材と管状部材
とを突き合わせ溶接するように構成した炉心構成要素の
耐中性子照射溶接構造であるから、高速中性子照射下で
のスエリング差による応力及び塑性歪みを低減し、安全
性を向上させることができ、溶接部の健全性を高照射量
まで維持することができる。
As described above, according to the present invention, a concave portion is formed in a portion of a block-shaped member made of a high swelling material opposite to a tubular member made of a low swelling material so as to have the same tube cross-sectional shape as the tubular member. Since the neutron-resistant welding structure of the core components configured to butt-weld the block-shaped member and the tubular member to be formed, the stress and plastic strain due to the swelling difference under high-speed neutron irradiation are reduced. The weldability can be improved, and the soundness of the weld can be maintained up to a high irradiation dose.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を制御要素に適用した一例を示す説明
図。
FIG. 1 is an explanatory diagram showing an example in which the present invention is applied to a control element.

【図2】その溶接による熱影響部のスエリング特性を示
すイメージ図。
FIG. 2 is an image diagram showing swelling characteristics of a heat-affected zone due to the welding.

【図3】従来の嵌め合い溶接構造の例を示す説明図。FIG. 3 is an explanatory view showing an example of a conventional fitting welding structure.

【図4】本発明と従来技術の応力イメージの比較を示す
説明図。
FIG. 4 is an explanatory view showing a comparison between stress images of the present invention and a conventional technique.

【図5】本発明を制御棒に適用した一例を示す説明図。FIG. 5 is an explanatory diagram showing an example in which the present invention is applied to a control rod.

【図6】本発明に係る制御棒と従来技術の制御棒の構造
の違いを示す説明図。
FIG. 6 is an explanatory diagram showing a difference in structure between a control rod according to the present invention and a control rod according to the related art.

【図7】本発明を炉心燃料集合体に適用した一例を示す
説明図。
FIG. 7 is an explanatory view showing an example in which the present invention is applied to a core fuel assembly.

【符号の説明】[Explanation of symbols]

10 制御要素 12 中性子吸収体 14 被覆管 16 端栓 24 凹部 Reference Signs List 10 control element 12 neutron absorber 14 cladding tube 16 end plug 24 recess

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21C 21/02 GDF G21C 21/02 GDFA ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G21C 21/02 GDF G21C 21/02 GDFA

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 低スエリング材からなる管状部材と高ス
エリング材からなるブロック状部材とを溶接により組み
立てる炉心構成要素において、 ブロック状部材の管状部材との対向部に、該管状部材と
同じ管断面形状となるように凹部を形成し、前記ブロッ
ク状部材と管状部材とを突き合わせ溶接することを特徴
とする炉心構成要素の耐中性子照射溶接構造。
1. A core component for assembling a tubular member made of a low swelling material and a block-shaped member made of a high swelling material by welding, wherein a portion of the block-shaped member facing the tubular member has the same cross section as the tubular member. A neutron-resistant irradiation welding structure for core components, wherein a recess is formed to have a shape, and the block-shaped member and the tubular member are butt-welded.
【請求項2】 低スエリング材からなる管状部材が被覆
管であり、高スエリング材からなるブロック状部材が端
栓である請求項1記載の炉心構成要素の耐中性子照射溶
接構造。
2. The neutron-irradiation welding structure for a core component according to claim 1, wherein the tubular member made of a low swelling material is a cladding tube, and the block-shaped member made of a high swelling material is an end plug.
【請求項3】 低スエリング材からなる管状部材が保護
管であり、高スエリング材からなるブロック状部材がグ
リッド板である請求項1記載の炉心構成要素の耐中性子
照射溶接構造。
3. The neutron-irradiation-welded welding structure for core components according to claim 1, wherein the tubular member made of the low swelling material is a protective tube, and the block-shaped member made of the high swelling material is a grid plate.
【請求項4】 低スエリング材からなる管状部材がラッ
パ管であり、高スエリング材からなるブロック状部材が
エントランスノズルである請求項1記載の炉心構成要素
の耐中性子照射溶接構造。
4. The structure according to claim 1, wherein the tubular member made of the low swelling material is a trumpet tube, and the block-shaped member made of the high swelling material is an entrance nozzle.
【請求項5】 管状部材がオーステナイト系ステンレス
鋼冷間加工材からなり、ブロック状部材がオーステナイ
ト系ステンレス鋼溶体化処理材からなる請求項1乃至4
のいずれかに記載の炉心構成要素の耐中性子照射溶接構
造。
5. The tubular member is made of an austenitic stainless steel cold-worked material, and the block-shaped member is made of an austenitic stainless steel solution-treated material.
A neutron-irradiation welding structure for a core component according to any one of the above.
JP10334431A 1998-11-25 1998-11-25 Neutron-proof irradiation welding structure for reactor core composing element Pending JP2000158130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10334431A JP2000158130A (en) 1998-11-25 1998-11-25 Neutron-proof irradiation welding structure for reactor core composing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10334431A JP2000158130A (en) 1998-11-25 1998-11-25 Neutron-proof irradiation welding structure for reactor core composing element

Publications (1)

Publication Number Publication Date
JP2000158130A true JP2000158130A (en) 2000-06-13

Family

ID=18277313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10334431A Pending JP2000158130A (en) 1998-11-25 1998-11-25 Neutron-proof irradiation welding structure for reactor core composing element

Country Status (1)

Country Link
JP (1) JP2000158130A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149366A (en) * 2001-11-19 2003-05-21 Japan Nuclear Cycle Development Inst States Of Projects Wrapper tube with welded joint, and its manufacturing method
CN103117100A (en) * 2013-02-04 2013-05-22 中国核动力研究设计院 Design method for balance cycle reactor core of supercritical water-cooled reactor
JP2019049527A (en) * 2017-07-06 2019-03-28 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Assembly for sfr type nuclear reactor using reversible non-weld coupling between assembly casing and assembly element inserted into assembly casing
EP3381600A4 (en) * 2015-11-26 2019-10-23 State Atomic Energy Corporation "Rosatom" on Behalf of The Russian Federation Welded join between a fuel element casing and a plug

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149366A (en) * 2001-11-19 2003-05-21 Japan Nuclear Cycle Development Inst States Of Projects Wrapper tube with welded joint, and its manufacturing method
CN103117100A (en) * 2013-02-04 2013-05-22 中国核动力研究设计院 Design method for balance cycle reactor core of supercritical water-cooled reactor
EP3381600A4 (en) * 2015-11-26 2019-10-23 State Atomic Energy Corporation "Rosatom" on Behalf of The Russian Federation Welded join between a fuel element casing and a plug
US10583513B2 (en) 2015-11-26 2020-03-10 State Atomic Energy Corporation “Rosatom” On Behalf Of The Russian Federation Welded joint between a fuel element casing and a plug
JP2019049527A (en) * 2017-07-06 2019-03-28 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Assembly for sfr type nuclear reactor using reversible non-weld coupling between assembly casing and assembly element inserted into assembly casing

Similar Documents

Publication Publication Date Title
Slobodyan Resistance, electron-and laser-beam welding of zirconium alloys for nuclear applications: a review
JP2009258126A (en) Cluster for adjusting nuclear reactor core reactivity, absorber rod of this cluster and method for protecting this absorber rod against wear
JP2013507605A5 (en)
JP2013507605A (en) Nuclear fuel assembly body and nuclear fuel assembly having nuclear fuel assembly body
JP2007232457A (en) Repairing method of penetration nozzle, and plug for nozzle port
JP2763739B2 (en) Fuel element and method of installing a partition in the element
Elkin et al. Pulsed laser welding of Zr1% Nb alloy
Ukai et al. Oxide dispersion strengthened (ODS) fuel pins fabrication for BOR-60 irradiation test
JP2000158130A (en) Neutron-proof irradiation welding structure for reactor core composing element
US8891724B2 (en) Dual-cooled nuclear fuel rod having annular plugs and method of manufacturing the same
Lee et al. Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding Alloy 690 butt weldments
Song et al. Estimation of residual stress distribution for pressurizer nozzle of Kori nuclear power plant considering safe end
Li et al. The effect of helium on welding irradiated materials
Rudling et al. Welding of Zirconium alloys
KR20060051542A (en) Welding of vessel internals with noble metal technology
EP4141889A1 (en) Fuel rod of a water-cooled water-moderated nuclear reactor
Siddique et al. Numerical simulation of mechanical stress relieving in a multi-pass GTA girth welded pipe–flange joint to reduce IGSCC
JP5171151B2 (en) Control rod for boiling water reactor
Farrell Materials selection for the HFIR cold neutron source
JP5346203B2 (en) Laser welding of castings to minimize distortion
JPS5928875B2 (en) control rod assembly
JP2987631B1 (en) Stress relief method at the joint between pipe and stopper
US20230110615A1 (en) Nuclear waste storage canisters and method of fabricating the same
JPH02107996A (en) Welded structure of nuclear reactor pressure vessel and control rod housing
JP2013231722A (en) Control rod driving pipe, and manufacturing method therefor and installing method therefor