JPS62233602A - Coated tube for light-water reactor steam generator - Google Patents

Coated tube for light-water reactor steam generator

Info

Publication number
JPS62233602A
JPS62233602A JP61074670A JP7467086A JPS62233602A JP S62233602 A JPS62233602 A JP S62233602A JP 61074670 A JP61074670 A JP 61074670A JP 7467086 A JP7467086 A JP 7467086A JP S62233602 A JPS62233602 A JP S62233602A
Authority
JP
Japan
Prior art keywords
tube
steam generator
water reactor
reactor steam
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61074670A
Other languages
Japanese (ja)
Other versions
JPH063287B2 (en
Inventor
孝男 南
長野 博夫
和夫 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61074670A priority Critical patent/JPH063287B2/en
Publication of JPS62233602A publication Critical patent/JPS62233602A/en
Publication of JPH063287B2 publication Critical patent/JPH063287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は耐応力腐食割れ性にすぐれた軽水炉蒸気発生
器用被覆管に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a cladding tube for a light water reactor steam generator that has excellent stress corrosion cracking resistance.

〔従来の技術〕[Conventional technology]

現在、軽水炉型原子炉の蒸気発生器用管(以下単にチュ
ーブという)としては、2次側(AVT処理)環境下に
おいて耐食性にすぐれているA110y600 (商品
名)が主として使用されている。しかし最近このAII
oy600のチューブに、2次側環境下においてアルカ
リ濃縮によると思われる応力腐食割れが発生することが
報告されている。このアルカリ)層線の最も大きな要因
は、系内のイオン交換樹脂の不良により該樹脂からNa
”イオンが流出して系内に流入するためと考えられてい
る。
Currently, A110y600 (trade name), which has excellent corrosion resistance in the secondary side (AVT treatment) environment, is mainly used as steam generator tubes (hereinafter simply referred to as tubes) for light water reactors. However, recently this AII
It has been reported that stress corrosion cracking, which is thought to be caused by alkali concentration, occurs in the oy600 tube in the secondary environment. The biggest cause of this alkali) layer line is the failure of the ion exchange resin in the system, which causes Na
``It is thought that this is because ions flow out and flow into the system.

また1次側環境(主要成分が例えば数百ρpIIIBコ
゛+lppmLi” +Ht)下においても、AIIo
y600の小径チューブのUベンド先端部の内側に応力
腐食割れが発生するといわれている。
Furthermore, even under the primary environment (where the main components are, for example, several hundred ρpIIIB+lppmLi"+Ht), AIIo
It is said that stress corrosion cracking occurs inside the U-bend tip of the Y600 small diameter tube.

これらの応力腐食割れに対して従来次の■■のような対
策がとられているが、いずれも記述のような問題を抱え
ているのが実状である。
Conventionally, countermeasures such as the following (■■) have been taken against these stress corrosion cracks, but the reality is that all of them have the problems described above.

■ 環境面からの対策 (イ>  :5食因子とされているCI−、Ol、 N
a’。
■ Environmental measures (A>: CI-, Ol, N, which are considered to be the five dietary factors)
a'.

金属酸化物(FezO4,Cut。)等の低減、(ロ)
:インヒビクー(m食防止剤)の添加による腐食防止が
あるが、(イ)では系中Cr、 Ot−Na’。
Reduction of metal oxides (FezO4, Cut.), etc. (b)
: Corrosion can be prevented by adding inhibitors (m-corrosion inhibitors), but in (a), Cr and Ot-Na' are present in the system.

金属酸化物(FesOn+Cuzo)等の低減は実質的
に極めて困難であり、(ロ)ではインヒビターが一般的
に価格が極めて高く、これを系内に大量添加することは
経済面から極めて不利となる。
It is practically extremely difficult to reduce metal oxides (FesOn+Cuzo), etc. In (b), inhibitors are generally extremely expensive, and adding large amounts of them to the system is extremely disadvantageous from an economic standpoint.

■ 材料面からの対策 (イ) :材質の改良として (al  Ni  Cr−Fe基本成分の適正化(1)
)微量成分の添加或いは低減化 があるが、チューブ内外の1次、2次側環境が互いに異
なる場合、双方に対して適正とされるNi −Cr −
Fe基本成分系合金の開発が難かしい、また微量成分の
添加または低減化によるといっても、微量元素の影響は
様々で、耐応力腐食性に対し適正な元素および含有量を
選定するのは困難である。
■ Countermeasures from the material aspect (a): Improvement of the material (Al Ni Cr-Fe optimization of basic components (1)
) There is addition or reduction of trace components, but if the primary and secondary environments inside and outside the tube are different, Ni - Cr - is appropriate for both.
It is difficult to develop alloys based on Fe basic components, and even if trace elements are added or reduced, the effects of trace elements vary, and it is difficult to select the appropriate element and content for stress corrosion resistance. Have difficulty.

(ロ):特殊熱処理の適用として、650〜800℃で
長時間加熱し、十分にCr欠乏層を回復させ、かつCr
炭化物を析出させる方法があるが、これはコストが高く
つくとともに、場合によっては一方の環境では良くても
、もう一方の環境では耐応力腐食割れ性が極めて劣化す
るよってこともあって、好ましくない。
(b): As a special heat treatment, it is heated at 650 to 800°C for a long time to fully recover the Cr-deficient layer, and
There is a method of precipitating carbides, but this is not desirable because it is expensive and in some cases, even if it is good in one environment, the stress corrosion cracking resistance is extremely deteriorated in the other environment. .

(ハ) :上記(イ)(ロ)を組合せた方法でもやはり
内外の異なる環境の双方に対して適正な材料を得ること
は難かしい。
(c): Even with a method that combines the above (a) and (b), it is still difficult to obtain materials suitable for both internal and external environments.

上記の如〈従来の対策はその何れもが応力腐食割れ防止
策として不十分なものであり、従って新たな対策が望ま
れていた。
All of the conventional measures described above are insufficient as measures to prevent stress corrosion cracking, and therefore new measures have been desired.

〔発明の目的〕[Purpose of the invention]

この発明は上記要望に応えるものであって、軽水炉蒸気
発生器のチューブに使用してその内外の異なる腐食環境
の何れに対しても極めて良好な耐応力腐食割れ性を示す
被覆管を提供しようとするものである。
The present invention is in response to the above-mentioned needs, and aims to provide a cladding tube that can be used in tubes of light water reactor steam generators and exhibits extremely good stress corrosion cracking resistance in both internal and external corrosive environments. It is something to do.

〔発明の構成〕[Structure of the invention]

本発明はNi40〜70wt%、Cr20〜35wt%
を含むNi基合金管の外表面にNiメフキ層を付与した
ことを特徴とする軽水炉蒸気発生器用被覆鋼管を要旨と
する。すなわち本発明の被覆管は材質面からの改善を図
ったもので、主としてアルカリ濃縮およびCI−の腐食
環境からなる2次側環境下においてすぐれた耐応力腐食
割れ性を示す純Niを外側表層に配し、主成分が例えば
数百9pmB”+lppmLi” +!1.およびCI
−の腐食環境からなる1次環境下においてすぐれた耐応
力腐食割れ性を示す成分組成のNi基合金を内側基体と
して、内外を流れる異なる腐食環境の両方に十分に耐え
得るようにしたものである。
In the present invention, Ni40-70wt%, Cr20-35wt%
The subject matter is a coated steel pipe for a light water reactor steam generator, which is characterized in that a Ni coating layer is provided on the outer surface of the Ni-based alloy pipe. In other words, the cladding tube of the present invention has been improved in terms of material quality, and the outer surface layer is coated with pure Ni, which exhibits excellent stress corrosion cracking resistance in the secondary environment consisting mainly of alkali concentration and CI- corrosive environments. The main component is, for example, several hundred 9pmB"+lppmLi"+! 1. and C.I.
The inner base is made of a Ni-based alloy with a composition that exhibits excellent stress corrosion cracking resistance in the primary corrosive environment consisting of -, and is made to be able to withstand both the different corrosive environments flowing inside and outside. .

次に本発明の被覆管の製造方法について説明する。Next, a method for manufacturing a cladding tube according to the present invention will be explained.

1)まず、内側基体となるべき管(被覆原管)を製造す
る。
1) First, a tube (coated original tube) to be the inner substrate is manufactured.

所定の合金材料(例えばAl1oy600またはAl1
oy60)を真空溶解炉で溶解後鍛伸し、皮むきして所
定寸法のビレットを作る。このビレットを次いで機械加
工し、熱管押出しにより素管となし、これを冷間加工し
、途中軟化後、冷間引抜にかけ、しかるのち最終熱処理
を施して、被覆原管を得る。
Certain alloy materials (e.g. Al1oy600 or Al1
oy60) is melted in a vacuum melting furnace, forged and stretched, and then peeled to make a billet of a predetermined size. This billet is then machined and hot-tube extruded to form a blank tube, which is then cold-worked, softened during the process, cold-drawn, and then subjected to a final heat treatment to obtain a coated blank tube.

11)次いでこの原管にNiメ・7キを施す。11) Next, apply Ni coating and 7 coatings to this original tube.

メッキの方法は、基本的にはNtメッキ可能なものであ
れば何れを用いてもよい、具体的には電気メッキ、溶射
、無電解メッキ等が採用できるが、実用的なのは、電気
メッキであり、なかでも本出願人が先に出願した特願昭
56−129321号のメッキ方法が推奨される。
Basically, any method of plating that can be used for Nt plating can be used. Specifically, electroplating, thermal spraying, electroless plating, etc. can be used, but electroplating is the most practical method. Among these, the plating method disclosed in Japanese Patent Application No. 129321/1983, previously filed by the present applicant, is recommended.

電気メッキによる場合は、次のような手順が一般的であ
る。
When using electroplating, the following steps are common.

まず原管の外表面をベルグー研磨し、有機溶剤(アセト
ン、トリクレン)で脱脂後乾燥し、次いで10%Na0
)1溶液で電解研磨を行い、水洗い後直ちにNiメッキ
浴にて電気メッキを実施する。
First, the outer surface of the original tube was berg-polished, degreased with an organic solvent (acetone, trichlene) and dried, and then 10% Na0
) 1 solution, and immediately after washing with water, electroplating is performed in a Ni plating bath.

ところで、Ni等のメッキは一般に、被メッキ材が上記
原管のようにCr含有の多い材料では十分な被膜形成を
得難い面があるが、このような傾向に対処するには、電
気メッキに際し前もって表面活性化のための下記予備処
理(特願昭56−129321号)を行うことが有効で
ある。すなわち、塩化物を含有する酸性水溶液中で一旦
陽極電解し、この水溶液に保持したまま次いで陰極電解
を行う。ここに塩化物を含有する酸性水溶液とは、CI
−およびメッキ金属(ここではNi)イオンを含有する
凹成性の水溶液のことをいう、この酸性水溶液中には、
添加材としてLiCl、NaCl、  KC[、Me$
CIg、CaCIzを含有しても差支えない。
By the way, when plating with Ni or the like, it is generally difficult to form a sufficient film when the material to be plated is a material containing a large amount of Cr, such as the above-mentioned original tube. It is effective to carry out the following preliminary treatment for surface activation (Japanese Patent Application No. 129321/1982). That is, anodic electrolysis is performed once in an acidic aqueous solution containing chloride, and then cathodic electrolysis is performed while being held in this aqueous solution. The acidic aqueous solution containing chloride is CI
In this acidic aqueous solution, which refers to a concave aqueous solution containing - and plating metal (here Ni) ions,
Additives include LiCl, NaCl, KC[, Me$
There is no problem even if CIg and CaCIz are contained.

次に本発明において内側基体のNi、、Crの含有量を
上記の如く限定した理由を説明する。
Next, the reason why the content of Ni, Cr in the inner substrate is limited as described above in the present invention will be explained.

Ni含[1が40%未満では、Ni分が不足して高温(
400〜500℃)の水素雰囲気中で胞化し易くなるか
らであり、また70%を超えると1次側環境に対しては
Ni分が高すぎるため360℃の高温となると不動態被
膜が不安定となって応力腐食割れが生じ易(なるからで
ある、またCr含有量が20%未満では完全なCrtO
xの安定した層が得られないからであり、また35%を
超えると熱間鍛造性が大きく悪化し好ましくないからで
ある。
If the Ni content [1] is less than 40%, the Ni content will be insufficient and high temperatures (
This is because the Ni content is too high for the primary environment when it exceeds 70%, so the passive film becomes unstable at a high temperature of 360°C. This is because stress corrosion cracking is likely to occur, and if the Cr content is less than 20%, complete CrtO
This is because a stable layer of x cannot be obtained, and if it exceeds 35%, hot forgeability will greatly deteriorate, which is undesirable.

なお、Niメッキ層の厚みはとくに限定しないが、後述
の実施例から明らかなように50μm未満では耐SCC
性が十分でないからこれ以上の厚みとするのがよくζま
たコストの面から多くとも200μ−程度に止めるのが
好ましい。
Note that the thickness of the Ni plating layer is not particularly limited, but as is clear from the examples described later, if it is less than 50 μm, the SCC resistance is poor.
Since the thickness is not sufficient, it is preferable to use a thickness greater than this, and from the viewpoint of cost, it is preferable to limit the thickness to about 200 μm at most.

〔実 施 例〕〔Example〕

第1表に示す成分組成からなる、被覆管の内側基体とな
るべき合金(A)〜(E)をそれぞれ500kg宛真空
溶解し、皮むき後所定寸法(18(Inφ〜100 a
mφ)のビレットを作り、機械加工後、1200℃加熱
押出しにより素管となし、次いで冷間加工、途中軟化後
、冷間引抜を行って19.05 Mφ×1.3mmtの
管を得、これを製品熱処理(1050℃×2分八〇)を
施して原管とした。
Alloys (A) to (E), which are to be the inner base of the cladding tube and have the composition shown in Table 1, are vacuum melted to 500 kg each, and after peeling, they are melted to a specified size (18 (Inφ ~ 100 a).
A billet of 19.05 Mφ x 1.3 mmt was made by making a billet of 19.05 Mφ x 1.3 mmt by machining, heating and extrusion at 1200°C to obtain a blank tube, followed by cold working, softening in the middle, and cold drawing. was subjected to product heat treatment (1050°C x 2 minutes and 80 minutes) to obtain a master tube.

次いでこの原管を用い、外表面ベルグー研磨−有機溶剤
脱脂、乾燥−10%N a OIt溶液使用の電解研磨
(原管:十極、鉄抜ニー極、4A/dm”、5分間、常
温)−水洗後直ちに第1図のようにして電気メッキ(メ
ッキ浴:スルフォンfIIN i浴、陽極:N+s2A
/dm”、50〜60℃)を行い所要の被覆厚になるま
で通電、の以上の工程を経てNi被覆鋼管を製作した。
Next, using this original tube, the outer surface was Belgu polished, organic solvent degreased, dried, and electrolytically polished using a 10% NaOIt solution (original tube: 10 electrodes, ironless knee electrodes, 4A/dm'', 5 minutes, room temperature). - Immediately after washing with water, perform electroplating as shown in Figure 1 (Plating bath: Sulfone fIIN i bath, Anode: N+s2A
/dm", 50 to 60° C.) and energization until the required coating thickness was achieved. Through the above steps, a Ni-coated steel pipe was manufactured.

このようにして得たNi被覆鋼管およびNiメフキなし
の上記原管ままのものについて、次の腐食試験をおこな
った。
The following corrosion tests were conducted on the Ni-coated steel pipes thus obtained and the original pipes without Ni coating.

(イ)  2次側環境下での試験 各供試管から第2図に示すような弧状型試験片(2龍厚
×10fl巾×75龍長)を採取し、この両端部に5 
amφのキリ孔を開けた後、半径5錦RでU字形に曲げ
さらにボルトナンドで5龍拘束して試験に供した。試験
は、15%Na0II溶液を脱気後330℃に加熱保持
し、これに試験片を600時間浸γnする方法によった
(b) Test under secondary environment An arc-shaped test piece (2 lengths x 10 fl width x 75 lengths) as shown in Fig. 2 was taken from each test tube, and a
After drilling a hole of amφ, it was bent into a U-shape with a radius of 5 brocades R, and was then restrained with a bolt nand for testing. The test was conducted by heating and holding a 15% Na0II solution at 330° C. after degassing it, and immersing the test piece in it for 600 hours.

(ロ)1次側環境下での試験 各供試管を500龍長に切断し、これに15%の引張歪
を与えた後同様の弧状型試験片(第2図)を採取し、被
覆管については基体側が外側となるように曲げて、(イ
)と同様のUベンド試験に供した。試験は800Pps
 B”+2ppmLi”+30(:CHz/Hオ0・k
gの溶液を脱気後360℃に加熱保持し、これに500
時間浸漬する方法によった。
(b) Test under primary side environment Each test tube was cut into 500 dragon lengths, a tensile strain of 15% was applied to it, a similar arc-shaped test piece (Fig. 2) was taken, and the cladding tube was The samples were bent so that the base side was on the outside and subjected to the same U-bend test as in (a). The test is 800Pps
B”+2ppmLi”+30(:CHz/H0・k
After degassing, heat and hold the solution at 360°C, and add 500
It was based on a method of soaking for a period of time.

上記各試験終了後、試験片を半割に切断した後、切断面
に樹脂を埋め込んで割れ深さを光学顕微鏡で測定し、耐
応力腐食割れ性の良否を判定した。
After completing each of the above tests, the test piece was cut in half, resin was embedded in the cut surface, and the crack depth was measured using an optical microscope to determine whether the stress corrosion cracking resistance was good or bad.

各試験結果を第2表に示す。The results of each test are shown in Table 2.

第2表において、従来例(原管まま)は全て耐アルカリ
SCC性(2次側環境下)が劣っている。
In Table 2, all of the conventional examples (as original tubes) have poor alkali SCC resistance (under the secondary environment).

また、基体材料がり、 E(Ni≧70訂%)の比較例
は、Niメッキ層があるため耐アルカリSCCは良好で
あてるが、−次側環境下での耐SCC性に難がある。こ
れらに対してNiメッキ層を有しかつ基体の成分範囲が
本発明範囲にある本発明例は全て、何れの環境において
もすぐれた耐SCC性を示した。
In addition, the comparative example of base material E (Ni≧70%) has good alkali SCC resistance because of the Ni plating layer, but has a problem in SCC resistance in the negative side environment. On the other hand, all the examples of the present invention having a Ni plating layer and having a substrate composition within the range of the present invention exhibited excellent SCC resistance in any environment.

ただし、第3図(Ni−C)に示すデータから明らかな
ように、Niメッキ層の厚みが50μ−未満では、その
効果も薄く、よってこの厚みとしては50μ麟以上が好
ましい。
However, as is clear from the data shown in FIG. 3 (Ni-C), if the thickness of the Ni plating layer is less than 50 .mu.m, the effect is weak, and therefore, the thickness is preferably 50 .mu.m or more.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の被覆管は、外
側にNi、内側にNi分を下げたC「含有Ni7&合金
を用いることによって1次、2次側の互いに異なった腐
食環境の両方に耐えてすぐれた耐応力腐食割れ性を発揮
するものであるから、軽水炉蒸気発生器チューブに使用
してその寿命延長に著しい効果を発揮する。
As is clear from the above description, the cladding tube of the present invention can withstand both the different corrosive environments on the primary and secondary sides by using Ni on the outside and a C-containing Ni7 alloy with a lower Ni content on the inside. Because it withstands stress corrosion and exhibits excellent stress corrosion cracking resistance, it can be used in light water reactor steam generator tubes to have a remarkable effect on extending their life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で用いたメッキ装置を示す工程図、第2
図は試験片の膨軟を示す斜視図、第3図はN1メッキ層
の厚みと応力腐食割れ深さとの関係を示す実験データで
ある。
Figure 1 is a process diagram showing the plating equipment used in the example, Figure 2 is a process diagram showing the plating equipment used in the example.
The figure is a perspective view showing the expansion and softening of the test piece, and Figure 3 is experimental data showing the relationship between the thickness of the N1 plating layer and the stress corrosion cracking depth.

Claims (1)

【特許請求の範囲】[Claims] (1)Ni40〜70Wt%、Cr20〜35Wt%を
含むNi基合金管の外表面にNiメッキ層を付与したこ
とを特徴とする軽水炉蒸気発生器用被覆鋼管。
(1) A coated steel tube for a light water reactor steam generator, characterized in that a Ni plating layer is provided on the outer surface of a Ni-based alloy tube containing 40 to 70 Wt% Ni and 20 to 35 Wt% Cr.
JP61074670A 1986-03-31 1986-03-31 Light water reactor steam generator tube Expired - Lifetime JPH063287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61074670A JPH063287B2 (en) 1986-03-31 1986-03-31 Light water reactor steam generator tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61074670A JPH063287B2 (en) 1986-03-31 1986-03-31 Light water reactor steam generator tube

Publications (2)

Publication Number Publication Date
JPS62233602A true JPS62233602A (en) 1987-10-14
JPH063287B2 JPH063287B2 (en) 1994-01-12

Family

ID=13553898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61074670A Expired - Lifetime JPH063287B2 (en) 1986-03-31 1986-03-31 Light water reactor steam generator tube

Country Status (1)

Country Link
JP (1) JPH063287B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104841A (en) * 2014-12-01 2016-06-09 新日鐵住金株式会社 Lubrication film for drawing and composition for forming the same, and film forming method and metal pipe producing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125251A (en) * 1979-03-19 1980-09-26 Sumitomo Metal Ind Ltd Cr-containing ni alloy with superior stress corrosion cracking resistance and manufacture thereof
JPS5625958A (en) * 1979-08-10 1981-03-12 Mitsubishi Metal Corp Electroless nickel plating method for high nickel chromium alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125251A (en) * 1979-03-19 1980-09-26 Sumitomo Metal Ind Ltd Cr-containing ni alloy with superior stress corrosion cracking resistance and manufacture thereof
JPS5625958A (en) * 1979-08-10 1981-03-12 Mitsubishi Metal Corp Electroless nickel plating method for high nickel chromium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104841A (en) * 2014-12-01 2016-06-09 新日鐵住金株式会社 Lubrication film for drawing and composition for forming the same, and film forming method and metal pipe producing method

Also Published As

Publication number Publication date
JPH063287B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
US2983634A (en) Chemical nickel plating of magnesium and its alloys
US4017368A (en) Process for electroplating zirconium alloys
US4416739A (en) Electroplating of titanium and titanium base alloys
US3771972A (en) Coated article
Crook Corrosion of Nickel and Nickel-Base Alloys
US5246786A (en) Steel product with heat-resistant, corrosion-resistant plating layers
US4137131A (en) Process for electrolytic deposition of metals on zirconium materials
JPS62233602A (en) Coated tube for light-water reactor steam generator
US4018628A (en) Process for coloring aluminium
US4894125A (en) Optically black pliable foils
US5422192A (en) Steel product with heat-resistant, corrosion-resistant plating layers
JP5850827B2 (en) Tube expansion heat exchanger, heat exchanger tube and fin material
Dini et al. Plating on some difficult-to-plate metals and alloys
JPH0250993B2 (en)
JP2001502757A (en) Advanced electrolytic corrosion protection
JPS60211097A (en) Electrochemical and chemical coating method of niobium
US3164897A (en) Method of brazing
US3338803A (en) Electroplating on maraging steels
JPH0219489A (en) Surface treatment of aluminum material
JPS63266088A (en) Production of nickel coated inconel pipe
JPH0247287A (en) Silver plating method
JPS63153253A (en) Hot dipping agent for iron-base secondary worked product
JPH0413437B2 (en)
JPS61122403A (en) Double tube for steam generator of light-water reactor
JPS61291979A (en) Corrosion-proof copper or copper alloy tube