JPS62233459A - Turbine type gas compressor - Google Patents

Turbine type gas compressor

Info

Publication number
JPS62233459A
JPS62233459A JP7868186A JP7868186A JPS62233459A JP S62233459 A JPS62233459 A JP S62233459A JP 7868186 A JP7868186 A JP 7868186A JP 7868186 A JP7868186 A JP 7868186A JP S62233459 A JPS62233459 A JP S62233459A
Authority
JP
Japan
Prior art keywords
air
gas
exhaust gas
turbine
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7868186A
Other languages
Japanese (ja)
Inventor
Daiji Mitsuhiro
光広 大二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7868186A priority Critical patent/JPS62233459A/en
Publication of JPS62233459A publication Critical patent/JPS62233459A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a lightweight and highly efficient compressor, by using an axial-flow turbine to divide air fed under pressure into an air compressing chamber, into two parts to apply a torque to a combustion turbine, and by mixing exhaust gas and air to cool exhaust gas. CONSTITUTION:When fuel is injected and ignited, air is compressed successively through rotor blades 2, inclined air passages or several stages of turbines or the like, and is then introduced into a compressing chamber 3. At this time the most part of air flows through holes 4 and a ventilating cylinder, and is jetted from a jet port 6 while the remainder of air is injected into a combustion chamber 8 through a gap 7. Further fuel jetted from the a nozzle 9 is ignited and burnt to produce high pressure gas which rotates a turbine rotor 12 by means of drive stationary vanes 10 and rotor blades 11. At this time exhaust gas having a high temperature is mixed with a large amount of air in an air-gas mixing chamber 13 to be cooled down to lower the temperature of the gas.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、私願の加圧航空船(昭和59年特許願15
1566号)用、(短時間に大量圧縮を必要とするもの
)として考えたが、一般産業用としても充分利用される
ものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention is based on a private pressurized airship (Patent Application No. 15 of 1982).
1566) (which requires a large amount of compression in a short period of time), but it can also be fully utilized for general industrial purposes.

(従来の技術) ピストン式による空気圧縮機(コンプレッサーとも言う
)が主体で、ロータリ一式や最近発明された、スクリュ
一式があるが、圧縮空気量に対し重量が大で、圧縮速度
も小さい。
(Prior art) Piston-type air compressors (also called compressors) are the main type, and there are also rotary sets and recently invented screw sets, but these are heavy compared to the amount of compressed air and have low compression speeds.

例えば、最新式のデンヨーのスクリューコンプレッサー
でも、最高圧カフhg/d、吐出空気量、1分間当り5
.1イ、でも、重量は1000 kgもある。
For example, even with the latest Denyo screw compressor, the maximum pressure cuff hg/d, the discharge air volume, and the
.. 1, but it weighs 1000 kg.

これらの要因は一般的に、レシプロエンジンや電気モー
ドルを使用している事と、圧縮機と、これを動かすエン
ジンが別々である事など考えられる。
These factors are generally considered to include the use of a reciprocating engine or electric mode, and the fact that the compressor and the engine that drives it are separate.

(発明が解決しようとする問題点) このような、高重量で不効率な圧縮機に変り、タービン
の高性能を駆使して、圧縮機とエンジンを一体化し、吐
出気体量も1分間当り数拾−にもし、その上、重量もは
るかに軽くしようとするものである。
(Problem to be solved by the invention) Instead of such a heavy and inefficient compressor, the compressor and engine are integrated by making full use of the high performance of the turbine, and the amount of gas discharged per minute can be increased by several times per minute. Moreover, it is intended to be much lighter in weight.

(問題点を解決するための手段) 上記の1−1的を辻するため、ジェットエンジンに近い
、軸流式タービンを使用して圧縮空気を造ると共に、そ
のエンジンの排気も混入して、一層高速入容量の気体圧
縮機とする。
(Means for solving the problem) In order to achieve the above goal 1-1, compressed air is created using an axial flow turbine similar to a jet engine, and the exhaust gas of the engine is also mixed in to make the air even more compressed air. This is a gas compressor with high-speed input capacity.

この圧縮機はターボプロップ等の如く軸出力を利用しな
いため、燃焼エネルギーの殆どは空気圧縮用に使用され
る。
Since this compressor does not utilize shaft output like a turboprop, most of the combustion energy is used for air compression.

勿論、後述しますが、排気を混入せず、圧縮空気だけ取
り出すこともできます。
Of course, as will be explained later, it is also possible to extract only the compressed air without mixing in the exhaust air.

(実施例) 図によって作用説明すると、第一図はその断面図で、ジ
ェットエンジンの如くであり、燃料を噴射点火すると、
空気は回転翼(2)、並びに空気通路の傾斜、又はター
ビンの段数等によって段々と圧縮され、圧縮室(3)に
圧入される。
(Example) To explain the function using figures, Figure 1 is a cross-sectional view of the engine, which looks like a jet engine, and when fuel is injected and ignited,
Air is gradually compressed by the rotary blade (2), the inclination of the air passage, the number of stages of the turbine, etc., and is then pressurized into the compression chamber (3).

ここで、大部分は適当に配置した孔(4)を通って通気
筒(5)を経て噴出口(6)より噴出する。一方は(7
)の間隙を高速で通って燃焼室(8)に噴入する。ここ
では、ノズル(9)より燃料が噴射され適当に着火燃焼
して高圧ガスを生成する。
Here, most of the water passes through appropriately arranged holes (4), passes through the ventilation pipe (5), and is ejected from the ejection port (6). On the other hand (7
) is injected into the combustion chamber (8) at high speed. Here, fuel is injected from the nozzle (9) and is appropriately ignited and combusted to generate high pressure gas.

このガスは、駆動用固定翼(101、同回転翼(11)
、これはブレードとも言う、を経て、タービン回転体(
12)を回転する。この回転体は固定翼等の枠組(フレ
ーム)等で支持される。
This gas is supplied to the driving fixed blade (101) and the rotary blade (11).
, which are also called blades, pass through the turbine rotating body (
12) Rotate. This rotating body is supported by a frame such as a fixed wing.

この回転力は他型の如く軸馬力を使わないから全部空気
圧縮用のみに使用され割合小馬力でよい。
This rotational power does not use shaft horsepower like other types, so it is used only for air compression, so only relatively small horsepower is required.

故に、この時排出するガスは高温であるが、空気とガス
の混合室(13)で大量の空気と混合され冷却されて降
温する。
Therefore, although the gas discharged at this time has a high temperature, it is mixed with a large amount of air in the air/gas mixing chamber (13) and cooled to lower its temperature.

例えば、排ガスに対して空気量は数倍である。For example, the amount of air is several times that of exhaust gas.

この冷却は大なる程よく、排ガスの収縮によってタービ
ンの駆動効率は上昇する。
The greater the cooling, the better, and the contraction of the exhaust gas increases the driving efficiency of the turbine.

尚、この混合気体は相当の圧力とスピードを以て吐出口
(14)より噴出し、目的に使用される。
Incidentally, this mixed gas is ejected from the discharge port (14) with considerable pressure and speed, and is used for the purpose.

加圧航空船は、炭素繊維や、チラノ繊維の相当高熱耐材
(500〜1000°C)で造られるから圧気体が20
0’C位なら大丈夫であるが、一般産業用に使用の場合
は、吐出口の次に、ラジェーターを付は冷却した気体を
供給する事も考えられる。
Pressurized airships are made of carbon fiber and Tyranno fiber, which are extremely heat-resistant materials (500 to 1000°C), so pressurized gas can reach 20°C.
It is okay if it is around 0'C, but if it is used for general industrial purposes, it may be possible to install a radiator next to the discharge port to supply cooled gas.

(15)は断熱材で、通気筒(5)に燃焼室の熱をなる
可く伝えないためである。
(15) is a heat insulating material to prevent the heat of the combustion chamber from being transmitted to the ventilation pipe (5) as much as possible.

圧縮空気のみ(排気を含まず)必要とする場合は第二図
の如く、排気は直接空中に放出し通気筒(5)の先端に
、圧縮空気吐出口(16)等、取付ければよい。しかし
、この結合部で空気もれを生ずる恐れがあるので、あま
り高圧には向かない。
If only compressed air (excluding exhaust) is required, the exhaust can be discharged directly into the air and a compressed air outlet (16) or the like can be installed at the tip of the ventilation cylinder (5), as shown in Figure 2. However, there is a risk of air leakage at this joint, so it is not suitable for high pressure applications.

間隙(7)は、タービン回転力を確保するだけの空気を
入れればよく、多からず少なからず、空回転や回転力不
足を生じないようにし、その」二燃焼効率は最大になる
よう設計しなければならない。場合によっては調整装置
を設ける。
The gap (7) should be designed so that enough air can be inserted to secure the turbine rotational force, and it should be designed to avoid idling or lack of rotational force, and to maximize the double combustion efficiency. There must be. An adjustment device may be provided in some cases.

又タービン翼の段数も、図では簡単に示しであるが、気
体の圧縮圧力や吐出容量を充分考慮して決定されるもの
である。
Furthermore, although the number of stages of the turbine blades is simply shown in the figure, it is determined by fully considering the compression pressure and discharge capacity of the gas.

(発明の効果) 1、一般的に認められている、タービンの良性性(説明
略)を活用して、圧縮機とエンジンを一体化したため、
高速で短時間に大量の圧縮気体を生成し、その上重量が
軽い。
(Effects of the invention) 1. The compressor and engine are integrated by utilizing the generally recognized benign nature of the turbine (explanation omitted).
It generates a large amount of compressed gas in a short time at high speed, and is light in weight.

2、圧縮機とエンジンを同体としたため描込が簡単で、
機械的強度が高く、その上圧縮気体量に対する燃料効率
が高い。
2. Easy to draw because the compressor and engine are integrated.
It has high mechanical strength and high fuel efficiency relative to the amount of compressed gas.

3、 タービン特性の回転数とトルクの関係で、加圧航
空船の空気袋や、一般的に使用されている蓄圧タンクに
気体を圧入する場合、初めは無圧だから、タービンなら
高速回転し多量の気体を圧入するが、だんだんと圧力が
上昇するにつれ、回転数は落ちるがトルクは上昇し圧入
気体変動が少なく、この関係が自動的に行われるが、一
般使用のレシプロエンジン式では圧力に関係なく回転数
は殆ど一定で、低圧時の圧大量少なく、少し高圧となる
と、エンジンがダウンする。
3. Due to the relationship between rotational speed and torque, which are characteristics of turbines, when gas is injected into the air bladder of a pressurized airship or a commonly used pressure storage tank, there is no pressure at first, so a turbine rotates at high speed and pumps a large amount of gas. As the pressure gradually increases, the rotation speed decreases, but the torque increases, and there is little fluctuation in the injected gas.This relationship is established automatically, but in a reciprocating engine type for general use, there is no relationship with the pressure. The rotational speed is almost constant, the amount of pressure is small at low pressure, and when the pressure gets a little high, the engine will shut down.

4、本機の吐出気体を検討しても、排ガス量は全体の数
分の1ではあるが、酸素は少な(、水と炭酸ガス(空気
重量の1,5倍重)等、普通の空気より多くなるため、
重量がそれだけ大になり燃性は減じるので、加圧航空船
の降下には好都合で好性性である。
4. Even when considering the gas discharged from this machine, although the amount of exhaust gas is a fraction of the total, there is little oxygen (it is similar to normal air, such as water and carbon dioxide (1.5 times heavier than air)). Because there will be more
Since the weight increases and the flammability decreases, it is convenient and preferable for pressurized airships to descend.

5、第二図の如く圧縮空気のみ造る場合で、排ガスを直
接空中に放出しても、レシプロエンジンに比べて二酸化
チッソなど有毒性ガスが少な(、環境悪化し難い。
5. When only compressed air is produced as shown in Figure 2, even if the exhaust gas is released directly into the air, compared to a reciprocating engine, there are fewer toxic gases such as nitrogen dioxide (and the environment is less likely to deteriorate).

【図面の簡単な説明】[Brief explanation of drawings]

第一図は本発明の一例を示す断面図で、第二図は、第一
図の燃焼室以降の部分図である。
FIG. 1 is a sectional view showing an example of the present invention, and FIG. 2 is a partial view of the combustion chamber and subsequent parts of FIG. 1.

Claims (2)

【特許請求の範囲】[Claims] (1)軸流タービンを利用、圧縮空気室に圧入された空
気を二分し、大部分は内部通気側を通じて噴出口に導き
、一部は燃焼室に送って燃料を燃焼タービンに、回転力
を与へ、この排ガスと空気を混合室で混合して排気を冷
却すると共に、その圧力、速度を、そのまま取出口より
噴出する気体圧縮機。
(1) Using an axial flow turbine, the air pressurized into the compressed air chamber is divided into two parts, most of which is guided to the jet port through the internal ventilation side, and some of which is sent to the combustion chamber to supply fuel to the combustion turbine and generate rotational force. Furthermore, a gas compressor cools the exhaust gas by mixing the exhaust gas and air in a mixing chamber, and jets out the same pressure and velocity from the outlet.
(2)空気のみ圧縮の場合は第二図の如く排気は用済後
、直接排出、通気筒末端が回転し得るような取出口を設
けたもので、他の部は(1)と同じ。
(2) In the case of compressing only air, as shown in Figure 2, the exhaust gas is directly discharged after its use, and an outlet is provided so that the end of the ventilation cylinder can be rotated, and the other parts are the same as (1).
JP7868186A 1986-04-01 1986-04-01 Turbine type gas compressor Pending JPS62233459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7868186A JPS62233459A (en) 1986-04-01 1986-04-01 Turbine type gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7868186A JPS62233459A (en) 1986-04-01 1986-04-01 Turbine type gas compressor

Publications (1)

Publication Number Publication Date
JPS62233459A true JPS62233459A (en) 1987-10-13

Family

ID=13668612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7868186A Pending JPS62233459A (en) 1986-04-01 1986-04-01 Turbine type gas compressor

Country Status (1)

Country Link
JP (1) JPS62233459A (en)

Similar Documents

Publication Publication Date Title
US9279334B2 (en) Gas turbine engine
US6446425B1 (en) Ramjet engine for power generation
US2416389A (en) Torque balancing of jet propulsion turbine plant
US7434400B2 (en) Gas turbine power plant with supersonic shock compression ramps
JP4929217B2 (en) Gas turbine, gas turbine intermediate shaft, and gas turbine compressor cooling method
EP1532358B1 (en) Orbiting combustion nozzle engine
JP2001506340A (en) Ramjet engine for power generation
US20080229751A1 (en) Cooling system for gas turbine engine having improved core system
CA2356529A1 (en) Apparatus and method to increase turbine power
US20050138914A1 (en) Turbo rocket with real carnot cycle
US6192668B1 (en) Method and apparatus for compressing gaseous fuel in a turbine engine
JPH0367026A (en) Turborocket engine-ramjet engine combined afterburning propeller
EP1637712A2 (en) Gas turbine engine having improved core system
JPS62501304A (en) gas turbine engine
WO1997002407A1 (en) Centrifugal gas turbine
JP3955844B2 (en) Injection propulsion engine using discharge exhaust
EP0146624A1 (en) Process of intensification of the thermoenergetical cycle and air jet propulsion engines.
JPS62233459A (en) Turbine type gas compressor
WO2011096850A1 (en) Blade and propulsion unit for tip-jet helicopter
RU2495269C2 (en) Compressor air breather
KR100521393B1 (en) Jet engine using exhaust gas
RU2553052C1 (en) Hydrogen air-jet engine
RU2311555C2 (en) Pulsating gas-turbine engine
US2941355A (en) Gas turbine and gas generator means
CN106555705A (en) Topping turbine jet engine