JPS6223304A - Force air cooler - Google Patents

Force air cooler

Info

Publication number
JPS6223304A
JPS6223304A JP60161564A JP16156485A JPS6223304A JP S6223304 A JPS6223304 A JP S6223304A JP 60161564 A JP60161564 A JP 60161564A JP 16156485 A JP16156485 A JP 16156485A JP S6223304 A JPS6223304 A JP S6223304A
Authority
JP
Japan
Prior art keywords
cooling
heating element
radiator
air
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60161564A
Other languages
Japanese (ja)
Inventor
小針 啓蔵
坂詰 龍一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP60161564A priority Critical patent/JPS6223304A/en
Publication of JPS6223304A publication Critical patent/JPS6223304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Patch Boards (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は例えば密閉形配電盤の中をファンにより冷却風
l循環させ、これにより配電盤内の発熱性部品l冷却は
せる強制風冷装置に関Tるものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a forced air cooling system that uses a fan to circulate cooling air through a closed power distribution board, thereby cooling heat-generating components within the power distribution board. It is something that can be done.

B2発明の概要 本発明は、冷却ファンにより冷却風な循環風路に沿って
循環させ、ラジェータにて熱交換された冷却風により発
熱体を冷却させる強制風冷装置において、 発熱体を通過した冷却風がラジェータを通らずに尚該発
熱体に戻るようにバイパス風路を設け、最適な冷却効率
が得られるようにバイパス風路゛の通過風tl調整する
ことによって、 高い冷却効率を得ながら、部品点数が少なく、経済的で
、且つ保守性にも優れているという効果が得られるよう
にしたものである。
B2 Summary of the Invention The present invention provides a forced air cooling device in which a heating element is cooled by the cooling air that is circulated along a circulating air path by a cooling fan and heat exchanged in a radiator. By providing a bypass air path so that the air returns to the heat generating element without passing through the radiator, and by adjusting the passing air tl of the bypass air path so as to obtain the optimum cooling efficiency, while obtaining high cooling efficiency, This has the advantage of having a small number of parts, being economical, and having excellent maintainability.

C1従来の技術 第6図は従来の強制風冷装置を示す図であり、1は例え
ば密閉形配電盤内のキユービクル、2は発熱体例えば配
電盤内の発熱性部品、31−rラジェータ、4は冷却フ
ァン、5に冷却風の循環風路である。このような装置で
は、冷却ファン4により冷却風な矢印のように循環風路
5に沿って循環させ、ラジェータ3で熱交換された冷却
風によって発熱体2な冷却する。
C1 Conventional technology FIG. 6 is a diagram showing a conventional forced air cooling system, in which 1 is a cubicle in a sealed power distribution board, 2 is a heating element, such as a heat-generating component in a power distribution board, 31-r radiator, and 4 is a cooling device. Fan, 5 is a cooling air circulation path. In such a device, a cooling fan 4 circulates cooling air along a circulation air path 5 as shown by an arrow, and the heating element 2 is cooled by the cooling air with which heat is exchanged in a radiator 3 .

上記のV:、lfにより高い冷却効率を得るためには、
発熱体2の周囲温度(冷却風の温度)l低く抑えながら
当該発熱体2を通過する冷却風のaiv増丁憎子が望ま
しい。ところで冷却ファン4からみたヘッドロスは、ラ
ジェータ3及び発熱体2の各ヘッドロスの合成である。
In order to obtain higher cooling efficiency with the above V:, lf,
It is desirable that the cooling air be passed through the heating element 2 while keeping the ambient temperature (temperature of the cooling air) of the heating element 2 low. By the way, the head loss seen from the cooling fan 4 is a combination of the head losses of the radiator 3 and the heating element 2.

第7図にこの様子を示すグラフであり、Lはファンの能
力を示すグラフ、xl、x2n夫々発熱体2及び冷却フ
ァン4のヘッドロスである。従って周囲温度な低く抑え
るためにラジェータ3の通気面積な大きくしてそのヘッ
ドロスな小さくすると、ラジェータ3(二おけるatは
増加するが、発熱体3における風量が減って発熱体2の
冷却が不十分になる。これとは逆に発熱体2における風
量を憎子ために、ラジェータ3の通気面積l小す〈シて
そのヘッドロスを太きくすると熱交換の能力が減少し、
周囲温度が上昇してしまう。゛ このようなことを解決するために従来では、ブースタフ
ァン等l追加して設け、これにより熱交換の能力l維持
しながら発熱体3における風蝕を増やして冷却を行うよ
うにしていた。
FIG. 7 is a graph showing this situation, where L is a graph showing the capacity of the fan, and xl and x2n are the head losses of the heating element 2 and the cooling fan 4, respectively. Therefore, in order to keep the ambient temperature low, if the ventilation area of the radiator 3 is increased and the head loss is decreased, the at of the radiator 3 (2) will increase, but the air volume in the heating element 3 will decrease and the cooling of the heating element 2 will be insufficient. On the other hand, if we reduce the ventilation area of the radiator 3 in order to reduce the air volume in the heating element 2 and increase its head loss, the heat exchange capacity will decrease.
The ambient temperature will rise. In order to solve this problem, in the past, a booster fan or the like was added, thereby increasing the wind erosion on the heating element 3 and cooling it while maintaining the heat exchange capacity.

D9発明が解決しようとする問題点 しかしながらブースタファン等を使用することに、部品
点数が増えて不経済であり、且つ構造が複雑になって保
守性が悪いという問題点がある。
D9 Problems to be Solved by the Invention However, the use of a booster fan and the like has problems in that the number of parts increases, which is uneconomical, and the structure becomes complex, making maintenance difficult.

本発明は高い冷却効率な得ながら、このような問題点を
も解決することができる強制風冷却装置な提供すること
を目的とするものである。
An object of the present invention is to provide a forced air cooling device that can solve these problems while achieving high cooling efficiency.

E1問題点を解決するための手段 本発明は、冷却すべき発熱体とラジェータと冷却ファン
とを循環風路に設け、前記発熱体1通過した冷却風がラ
ジェータを通らずに当該発熱体に戻るようにバイパス風
路を設け、このバイパス風路の通気面積を調整する調整
手段な設けて成る。
Means for Solving Problem E1 The present invention provides a heating element to be cooled, a radiator, and a cooling fan in a circulating air path, and the cooling air that has passed through the heating element 1 returns to the heating element without passing through the radiator. A bypass air passage is provided, and adjustment means for adjusting the ventilation area of the bypass air passage is provided.

F1作用 バイパス風路の通気面積を太きくするにつれて。F1 action As the ventilation area of the bypass air passage increases.

発熱体を通過する冷却風の風量が増加し、これにより発
熱体の温度が低下するが、前記通気面積なある大きさ以
上にすると、冷却風の温度が高くなりTぎて発熱体の温
度が上昇してしまう。このため前記調整手段により発熱
体の温度が低くなるよう:;バイパス風路の通気面積を
調整する。
The amount of cooling air passing through the heating element increases, which lowers the temperature of the heating element, but if the ventilation area exceeds a certain size, the temperature of the cooling air becomes too high and the temperature of the heating element decreases. It will rise. Therefore, the ventilation area of the bypass air passage is adjusted by the adjustment means so that the temperature of the heating element is lowered.

G、実施例 第1図は本発明の実施例を示す構成図であり、この実施
例では冷却ファン4からラジェータ3の入口までの風路
とラジェータ3の出口との間に、バイパス風路6が設け
られると共に、このバイパス風路6の通気面積l調整す
る調整手段、例えばダンパやスライド部材等(図示せず
)が設けられる。従って発熱体21通って出た冷却風は
、冷却ファン4により循環風路5に沿って流れるが、そ
の一部はラジェータ3な通らずにバイパス風路61通っ
て発熱体2に戻る。
G. Embodiment FIG. 1 is a configuration diagram showing an embodiment of the present invention. In this embodiment, a bypass air channel 6 is provided between the air channel from the cooling fan 4 to the inlet of the radiator 3 and the outlet of the radiator 3. In addition, an adjusting means for adjusting the ventilation area l of the bypass air passage 6, such as a damper or a slide member (not shown), is also provided. Therefore, the cooling air that has passed through the heating element 21 flows along the circulation air passage 5 by the cooling fan 4, but a part of it does not pass through the radiator 3, but returns to the heating element 2 through the bypass air passage 61.

このような構成においては、発熱体2、ラジェータ3、
バイパス風路61夫々通過する風tをQT、QR,QB
とし、発熱体2を通過する冷却風の温度YTT、ラジェ
ータ3、バイパス風路6の各出口の冷却風の温度を夫々
TR1TBとすると次の(1)(2)式が成り立つ。
In such a configuration, the heating element 2, the radiator 3,
The wind t passing through the bypass air passage 61 is QT, QR, QB.
If the temperature of the cooling air passing through the heating element 2 is YTT, and the temperature of the cooling air at each outlet of the radiator 3 and the bypass air passage 6 is TR1TB, the following equations (1) and (2) hold true.

QT=QB+QR(yy//m i n )   、、
、、、、(1)ここで発熱体2の通気面積は一定である
ことから、QTを増せば発熱体2を通過する冷却風の風
速が太きくなり、冷却効率が高くなる。@2図の実線m
は発熱体2を冷却風が通過するときの熱抵抗と風速との
関係を示すグラフであり、このグラフから風速が大きく
なる程熱抵抗が小さくなって冷却効率が高くなることが
理解される。一方ラジエータ3な通過する風iQRはラ
ジェータ3のへラドロスによ幻冷却ファン4の能力に応
じて決まる。従って冷却ファン4とラジェータ3を決定
した後にQT”’に増加はせるためにけ、バイパス風路
6を通過する風量QB V増やせばよい。第3図はバイ
パス風路6の通気面積l変化させたときに、QB、QR
,QTがどのように変化するかその様子を示すグラフで
あり、実線2点線、鎖線は夫々QT。
QT=QB+QR(yy//min),,
(1) Here, since the ventilation area of the heating element 2 is constant, increasing QT increases the speed of the cooling air passing through the heating element 2, increasing the cooling efficiency. @ Solid line m in figure 2
is a graph showing the relationship between thermal resistance and wind speed when cooling air passes through the heating element 2. From this graph, it can be understood that as the wind speed increases, the thermal resistance decreases and the cooling efficiency increases. On the other hand, the wind iQR passing through the radiator 3 is determined by the heladros of the radiator 3 according to the capacity of the phantom cooling fan 4. Therefore, after determining the cooling fan 4 and radiator 3, in order to increase QT''', the air volume passing through the bypass air passage 6 can be increased. When QB, QR
, is a graph showing how QT changes, and the solid two-dot line and the chain line represent QT, respectively.

Qp、QBl−、、対応するものでおる。このグラフか
らQTを増や丁ためにはバイパス風路6の通気面積な大
きくしてQBを増やせばよいことが理解される。@4図
は第7図と同様Cニファンの能力特性l示すグラフであ
り、tはファンの能力な示すグラフ、x1+x2は夫々
バイパス風路6がない場合の発熱体2及び冷却ファン4
のへラドロス、X’1. X’2は夫々バイパス風路7
がある場合の発熱体2及び冷却ファン4のヘッドロスで
ある。この図かられかるよりにQB ”&増してQRを
減ら丁ことによりラジェータ3のへラドロスl下げ、フ
ァン4の動作点!右側(QTの増加する方向)に移動感
せることができる。
Qp, QBl-, are the corresponding ones. From this graph, it is understood that in order to increase QT, the ventilation area of the bypass air passage 6 should be increased to increase QB. Figure @4 is a graph showing the performance characteristics of the C fan like Figure 7, t is a graph showing the fan capacity, and x1+x2 are the heating element 2 and cooling fan 4 when there is no bypass air path 6, respectively.
Heradrus, X'1. X'2 is each bypass air passage 7
This is the head loss of the heating element 2 and cooling fan 4 when there is. From this figure, it can be seen that by increasing QB and decreasing QR, the radiator 3 is lowered and the operating point of the fan 4 is moved to the right (in the direction in which QT increases).

ところで、バイパス風路6を通過した冷却風はラジェー
タ3で冷却されていないので、その温度TBは周囲温度
に等しく、当然ラジェータ3を通過した冷却風の温度T
Rよりも高いため、バイパス風路6の風量QBを増やし
過ぎると発熱体2を通過する冷却風の温度TTが上昇し
過ぎてしまい、この結果冷却効率が悪くなってしまう。
By the way, since the cooling air that has passed through the bypass air passage 6 is not cooled by the radiator 3, its temperature TB is equal to the ambient temperature, and naturally the temperature T of the cooling air that has passed through the radiator 3 is equal to the ambient temperature.
Since it is higher than R, if the air volume QB of the bypass air passage 6 is increased too much, the temperature TT of the cooling air passing through the heating element 2 will rise too much, resulting in poor cooling efficiency.

第5図はこの様子な示すグラフであり、実線nは発熱体
2のフィン温度がバイパス風路6の通気面積によりどの
ように変化するかを表わしたものである。このグラフ1
:ついて説明すると、バイパス風′#!16の通気面積
が増加するにつれ発熱体2のフィンを流れる冷却風量が
増加し、第2図に示す風速と熱抵抗との関係によりフィ
ンの温度が下がる。この間にも発熱体2を通過する冷却
風の温度TTは上昇するが、フィンの熱抵抗の下降の程
度の方が大きいため総合的にフィンの温度は下がる。し
かしながらバイパス風路6の通気面積がある面積Soを
越えるとフィンの熱抵抗の下降の程度の方が冷却風の温
度TTの上昇の程度よりも小さくなり、総合的にフィン
の温度が上昇する。このようなことから単に発熱体2を
通過する風量QTを増加きせるのではなく、QTを多く
とりながら且つTTを低くしてできるだけ発熱体2のフ
ィンの温度が低くなるようにバイパス風路6の通気面積
を調整する必要がある。そこでこの実施例では、前記調
整手段によってバイパス風路6の通気面積を最適面積(
第5中So)に調整し、これにより最大の冷却効率を得
るようにする。
FIG. 5 is a graph showing this situation, and the solid line n represents how the fin temperature of the heating element 2 changes depending on the ventilation area of the bypass air passage 6. This graph 1
: To explain it, it's bypass style'#! As the ventilation area 16 increases, the amount of cooling air flowing through the fins of the heating element 2 increases, and the temperature of the fins decreases due to the relationship between wind speed and thermal resistance shown in FIG. During this time, the temperature TT of the cooling air passing through the heating element 2 increases, but the degree of decrease in the thermal resistance of the fins is greater, so the overall temperature of the fins decreases. However, when the ventilation area of the bypass air passage 6 exceeds a certain area So, the degree of decrease in the thermal resistance of the fins is smaller than the degree of increase in the temperature TT of the cooling air, and the temperature of the fins increases overall. For this reason, instead of simply increasing the amount of air passing through the heating element 2, QT, the bypass air passage 6 is designed to increase QT and lower TT so that the temperature of the fins of the heating element 2 is as low as possible. It is necessary to adjust the ventilation area. Therefore, in this embodiment, the ventilation area of the bypass air passage 6 is adjusted to the optimum area (
5th medium So) to obtain maximum cooling efficiency.

尚このような調整は、ラジェータ3や発熱体2の冷却フ
ィン自体で行うこともできるが、その都度フジエータ3
、ファン4等の設計を行わなければならない。これに対
してダンパ等の風量調整手段でその調整な行えばラジェ
ータ等の設計をその都度行わなくて済む。またバイパス
風路6を設けなくとも、クジエータ3の設計によっては
、例工ばラジェータ3と発熱体2との風量を揃えるよう
にすれば高い冷却効率l得ることができるが、このよう
な手段ではへラドロスの小ざいフィン間隔の大きいラジ
ェータが必要となって、ラジェータが大型化してしまう
という問題点がある。これに対してバイパス風路を設け
るようにすれば、ラジ二一夕を大型化することなく高い
冷却効率を得ることができる。
Incidentally, such adjustment can also be made on the cooling fins of the radiator 3 or heating element 2, but each time the fugiator 3
, fan 4, etc. must be designed. On the other hand, if the adjustment is made using an air volume adjusting means such as a damper, there is no need to design the radiator or the like each time. Furthermore, even if the bypass air passage 6 is not provided, depending on the design of the radiator 3, high cooling efficiency can be obtained by, for example, making the air volume of the radiator 3 and the heating element 2 equal. There is a problem in that Heladros's small fin spacing requires a radiator with a large spacing, resulting in an increase in size of the radiator. On the other hand, if a bypass air path is provided, high cooling efficiency can be obtained without increasing the size of the radiator.

H9発明の効果 以上のように本発明によれば、バイパス風路を設けてそ
の通気風量を調整することにより発熱体の温度を七きる
だけ低く抑えるようにしているため、ブースタファン等
の追加部品を用いることなく高い冷却効率な得ることが
できる。従って部品点数が少ないので経済的であり、し
かも構造が簡単なので保守性にも優れている。
H9 Effects of the Invention As described above, according to the present invention, the temperature of the heating element is kept as low as possible by providing a bypass air passage and adjusting the ventilation air volume, so additional parts such as a booster fan are not required. High cooling efficiency can be obtained without using. Therefore, it is economical because the number of parts is small, and the structure is simple, so it is easy to maintain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例な示す構造図、第2図は冷却効率の特性
を示すグラフ、@3図はバイパス風路の通気面積と風量
との関係な示すグラフ、第4図は実施例に係る冷°却フ
ァンの能力特性図、第5図a冷却効率の特性を示すグラ
フ、第6図は従来装置の構造図、第7図は従来装置に係
る冷却ファンの能力特性図である。 1・・・キユービクル、2・・・発熱体、3・・・ラジ
ェータ、4・−・冷却ファン、5・・・循環風路、6・
・・バイパス風路。 第1図 爽虐例0構べ凹 l。 瓜 t(m/s)        バイパス風路/)通
気分重(m2)沖郵フヱンハ能力!¥1−柁凹 に却蜘ギ糖佐凹 s□ バイハ′ス臘晃i月%気l(□2) 第6図 多6宋#lEの勇戒目 に郡−71ンO能1糟l匣目 l 髪
Figure 1 is a structural diagram showing an example, Figure 2 is a graph showing the characteristics of cooling efficiency, Figure 3 is a graph showing the relationship between the ventilation area of the bypass air path and air volume, and Figure 4 is a graph showing the example. Fig. 5a is a graph showing characteristics of cooling efficiency, Fig. 6 is a structural diagram of a conventional device, and Fig. 7 is a capacity characteristic diagram of a cooling fan according to a conventional device. DESCRIPTION OF SYMBOLS 1... Cubicle, 2... Heating element, 3... Radiator, 4... Cooling fan, 5... Circulating air path, 6...
...Bypass air path. Figure 1 Exhaustion example 0 configuration concave l. Melon t (m/s) Bypass air path/) Ventilation weight (m2) Okiyu fan capacity! ¥ 1 - 柁 に に か G ぎ sugar s □ Baiha'su 臘晃月%ki l (□ 2) Figure 6 Ta 6 Song #l E's Yukai Me Gun - 71 N O No 1 糟l box eyes hair

Claims (1)

【特許請求の範囲】 冷却すべき発熱体とラジエータと冷却ファンとを循環風
路に設け、前記冷却ファンにより冷却風を循環風路に沿
つて循環させ、前記ラジエータにて熱交換された冷却風
により発熱体を冷却させる強制風冷装置において、 前記発熱体を通過した冷却風がラジエータを通らずに当
該発熱体に戻るようにバイパス風路を設け、このバイパ
ス風路の通気面積を調整する調整手段を設けたことを特
徴とする強制風冷装置。
[Scope of Claims] A heating element to be cooled, a radiator, and a cooling fan are provided in a circulating air path, and the cooling fan circulates cooling air along the circulating air path, and the cooling air with heat exchanged by the radiator. In a forced air cooling device that cools a heating element, a bypass air path is provided so that the cooling air that has passed through the heating element returns to the heating element without passing through the radiator, and the ventilation area of this bypass air path is adjusted. A forced air cooling device characterized by being provided with a means.
JP60161564A 1985-07-22 1985-07-22 Force air cooler Pending JPS6223304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60161564A JPS6223304A (en) 1985-07-22 1985-07-22 Force air cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60161564A JPS6223304A (en) 1985-07-22 1985-07-22 Force air cooler

Publications (1)

Publication Number Publication Date
JPS6223304A true JPS6223304A (en) 1987-01-31

Family

ID=15737508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60161564A Pending JPS6223304A (en) 1985-07-22 1985-07-22 Force air cooler

Country Status (1)

Country Link
JP (1) JPS6223304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2762796A1 (en) * 2013-02-04 2014-08-06 ABB Oy Cooling assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2762796A1 (en) * 2013-02-04 2014-08-06 ABB Oy Cooling assembly
CN103974602A (en) * 2013-02-04 2014-08-06 Abb公司 Cooling assembly

Similar Documents

Publication Publication Date Title
US2949283A (en) Apparatus for heat transfer
US11337340B2 (en) Open and closed flow air/coolant hybrid system
US20080023189A1 (en) Heat exchanger
CA2289781A1 (en) Rotating machine
CN207927116U (en) A kind of step type radiator
US20170338024A1 (en) Systems and methods for liquid heat exchange for transformers
CN208044515U (en) A kind of gradient type radiator
JPS63153343A (en) Control-module cooling device
JP2000156580A (en) Cooler
JP6444618B2 (en) COOLING SYSTEM, COOLING COMPUTER SYSTEM AND COMPUTER EQUIPMENT
JP2006050742A (en) Forced air-cooling power converter and electric motor car
JPS6223304A (en) Force air cooler
US10414412B2 (en) Traction box of a railway vehicle with a cooling system, associated application method and railway vehicle
CN217241225U (en) Heat dissipation system and electronic equipment
CN207067916U (en) A kind of augmented reality helmet
CN213987154U (en) Heat dissipation module and projection device
EP0467189A3 (en) Cold water unit with performance adjustment
CN208691088U (en) A kind of servo motor convenient for heat dissipation
ATE304150T1 (en) AIR CONDITIONER FOR TEMPERATURE REGULATION
JP3678996B2 (en) Cooling system
CN205940202U (en) Powder cooling device
CN211706835U (en) Test article constant temperature water-cooling platform
CN210198137U (en) Multi-medium combined cooler
CN219454307U (en) Temperature adjusting device and temperature adjusting garment
CN208159099U (en) Heat-exchanger rig and rail vehicle control cabinet